
DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS
State of the Art and Challenges

Sabrina F̈ortsch and Bernhard Westfechtel
Bayreuth University, Applied Computer Science I

95440 Bayreuth, Germany

Keywords: Merging, Differencing, UML Diagram.

Abstract: For long, fine-grained version control for software documents has been neglected severely. Typically, software
configuration management systems support the management of text or binary files. Unfortunately, text-based
tools for fine-grained version control are not adequate for software documents produced in earlier phases in the
software life cycle. Frequently, these documents have a graphical syntax; therefore we will call them software
diagrams. This paper discusses the current state of the art in fine-grained version control (differencing and
merging) for software diagrams with an emphasis on UML diagrams.

1 INTRODUCTION

Software engineers create a large variety of arti-
facts such as requirements definitions, software ar-
chitectures, program code, etc. All of these artifacts
are subsumed under the generic termsoftware doc-
ument. Throughout its life cycle, a software docu-
ment evolves into multipleversions, each of which
records a snapshot of its evolution. Version control
has been studied for a long time in the discipline of
software configuration management(see e.g. (Con-
radi and Westfechtel, 1998) for an overview).

This paper investigatesfine-grained version con-
trol for software diagrams. In the early phases of the
software life cycle, software documents with a graph-
ical syntax are used widely; consider e.g. data flow di-
agrams, entity-relationship diagrams, UML diagrams
(the primary focus of this paper), etc. Traditional
software configuration management provides version
control for text files or binary files. Low-level sup-
port of this kind is not sufficient to compare or merge
software diagrams on a conceptual level. Therefore,
structure-based algorithms and tools are required for
differencingandmergingof software diagrams.

The rest of this paper is structured as follows: Sec-
tion 2 introduces some basic notions, providing the
foundation for the following sections. Section 3 states
general requirements for differencing and merging.

Section 4 briefly reviews previous work on differenc-
ing and merging of program code. Section 5, which
constitutes the core part of this paper, deals with dif-
ferencing and merging of software diagrams. Sec-
tion 6 gives an overview of existing tools for differ-
encing and merging, Section 7 concludes the paper.

2 BASIC NOTIONS1

A difference is represented formally as adelta. There
are two kinds of deltas: Asymmetric deltaof two ver-
sionsv1 and v2 contains all elements which belong
to v1 but not tov2 and vice versa. Using set nota-
tion loosely, the symmetric delta may be written as
∆(v1,v2) = (v1\v2)∪ (v2\v1). In contrast, adirected
delta starts from one of the versions - sayv1 - and
creates the other one(v2) by applying a sequence of
operations. Thus, a directed delta may be formalized
as a sequence∆ = op1 . . .opm such that∆(v1) = v2.

Mergingdenotes the process of combiningn alter-
native versionsa1, . . . ,an into a consolidated version
m. Usually,n = 2, which will be assumed in the fol-
lowing. Two-way mergingcompares two versionsa1
anda2 with the help of a diff algorithm which calcu-
lates a symmetric delta. When a differing element is

1for terminology see (Conradi and Westfechtel, 1998)

90
Förtsch S. and Westfechtel B. (2007).
DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 90-99
DOI: 10.5220/0001342900900099
Copyright c© SciTePress



detected, the user has to decide whether the element
is to be included into the merge version. Furthermore,
the user may have to decide upon the relative arrange-
ments of elements in the merge version, e.g., when
two different lines occur at the same position in two
text files.

In the case of two-way merging, any difference
requires a user interaction. Frequently, the alterna-
tive versions have been derived from a common base
versionb, and the merge is intended to combine the
parallel changes to the base version. Thus,three-
way mergingcompares three versionsb,a1, and a2
and constructs a merge versionm incorporating the
changes fromb to a1 anda2, respectively.

Three-way merging increases the level of automa-
tion by consulting the base version as an arbitrator in
the case of differences. For example, when a line in a
text file occurs in only one of the alternative versions,
it is inserted into the merge version if and only if it
has not been present yet in the base version. A con-
flict occurs in the case of contradicting changes, e.g.,
when two lines have been inserted at the same posi-
tion. User interaction is required only in the case of
conflicts.

The task of three-way merging may be charac-
terized as follows: Given a base versionb, two al-
ternative versionsai and two directed deltas∆i =
∆(b,ai)(i = 1,2), construct a merge versionm and a
merge delta∆m such that∆m(b) = m and∆m consti-
tutes an order-preserving, complete merge of the op-
eration sequences∆1 and∆2. Thus, merging builds
upon differencing, but adds further complications: In
general, it cannot be guaranteed that the input deltas
may be merged successfully. For example, an oper-
ationop from ∆1 may be overridden by an operation
op′ from ∆2, or op may not be executable any more
after the execution ofop′. In these cases, a conflict
occurs becauseopandop′ do not commute. But even
when such conflicts are not detected, the result of the
merge may not make sense at all if the merge is per-
formed at a too low level of abstraction.

3 REQUIREMENTS

In this section, we will define potential requirements
for diff and merge tools. The attribute “potential” in-
dicates that these requirements may be posed in one
application context, but they may also be considered
irrelevant in another context. Furthermore, since re-
quirements may contradict each other, one require-
ment may have to be traded against another require-
ment.

Table 1 lists requirements for differencing tools.

(R1) and (R2) refer to the quality of the result pro-
duced by the diff algorithm. (R3) and (R4) ensure
reusability. (R5) enables the comparison of diagram
versions which were created independently. (R6) re-

Table 1: Requirements for differencing.

(R1) Accuracy: The diff tool should calculate
the difference between two versionsv1 and
v2 as precisely as possible.

(R2) High conceptual level: The diff tool
should report differences on a high level of
abstraction, i.e., it has to operate on a logi-
cal rather than a physical level.

(R3) Domain independence: The diff tool
should be applicable to a large set of dia-
gram types.

(R4) Tool independence:The diff tool should
be independent of the tools which were
used to create the diagram versions to be
processed.

(R5) History independence: The result pro-
duced by the diff tool should depend only
on the final states of the diagram versions,
but not on the history of edit operations
used to create these versions.

(R6) Efficiency: The diff tool should calculate
its output as fast as possible, requiring as
little space as possible.

(R7) User-friendly representation: The diff
tool should represent its output in a user-
friendly way.

(R8) Lightweight approach: Implementation
of the merge tool should require as little ef-
fort as possible.

Table 2: Requirements for merging.

(R9) Conflict detection: The merge tool should
detect conflicts between the changes to be
merged.

(R10) Conflict resolution: The merge tool
should support the resolution of conflicts
detected during the merge.

(R11) User interaction: The merge tool should
offer an interactive mode, where conflicts
are resolved according to user decisions
rather than automatically.

(R12) Three-way merging: The merge tool
should support three-way merging, which
employs a common base version as an ar-
bitrator in order to eliminate unnecessary
user interactions.

(R13) Preservation of consistency:The merge
tool should preserve the consistency level
of the input versions as far as possible
when producing the merge version.

DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges

91



quests for a fast response, which is important when
processing large volumes of data. (R7) ensures that
the result is represented in a user-friendly way. (R8)
is motivated by reducing the implementation effort.

Of course, requirements may contradict each
other. For example, efficiency may contradict accu-
racy, domain independence may stand in conflict with
operation at a high conceptual level, etc.

Please note that all of these requirements hold for
merge tools, too. Thus, Table 2 lists only those re-
quirements which are specific to merge tools. (R9)
and (R10) demand conflict detection and conflict res-
olution, respectively. (R11) calls for conflict resolu-
tion by user interaction. We believe that automatic
(default) decisions are too dangerous. (R12) prefers
three-way merging over two-way merging because
the amount of user interaction may be reduced by con-
sulting a common base version. However, two-way
merging may still be required if the base version is
not known or the alternative versions have been de-
veloped independently2. Finally, (R13) requires that
the result of the merge should be “as consistent as pos-
sible”.

4 DIFFERENCING AND
MERGING OF PROGRAM
VERSIONS

For a long time, differencing and merging has been
studied primarily for versions of programs, since
eventually each software process has to produce an
executable program (other artifacts are often consid-
ered merely as “documentation”). For a survey of pro-
gram merging, see (Mens, 2002).

It is interesting to note that up to nowtext-based
tools dominate the current state of practice. Text-
based tools for differencing and merging have been
provided as stand-alone tools; in addition, they have
been implemented in both commercial and free soft-
ware configuration management systems. The under-
lying technology is cheap, efficient, and widely appli-
cable as it stands.

Text-based tools for differencing and merging are
characterized by the following features:

• Usually, text files are treated as sequences of text
lines, i.e., text lines are considered as atomic
units. However, some tools operate at a more fine-
grained level (sequences of characters).

2Three-way merging partially conflicts with history in-
dependence, since it assumes a common base version. How-
ever, change logs are not necessarily assumed for three-way
merging.

• Differences are calculated a posteriori without
assuming any historical information (logs of
changes). Thus, differencing and merging does
not rely on tools recording change logs. In partic-
ular, no information beyond the actual text (e.g.,
unique identifiers of text lines) is required.

• Even for text files, there is no unique formal defi-
nition of the termdifference. The actual meaning
of this term depends on the level of granularity
(lines or characters) and on the set of edit opera-
tions which are taken into account (insert, delete,
move, copy).

• For text files, there areexact algorithmsavailable
which calculate the minimal difference with re-
spect to a formally definedmetric. For exam-
ple, (Hunt and Szymanski, 1977) calculates the
longest common subsequence (lcs), while (Tichy,
1984) additionally covers block moves.

• Text-based merging usually relies on the lcs al-
gorithm for comparing text files line by line (e.g.
the well-known Unix utilitydiff3). Thus, changes
within one line and moves cannot be handled by
such tools.

Remarkably, text-based merging can guarantee no
more than a text file as output. As a consequence, the
result of the merge may contain syntactic and seman-
tic errors. Furthermore, syntactic and semantic con-
flicts may go undetected. These shortcomings have
triggered numerous research activities at the syntac-
tic or semantic level (e.g. (Buffenbarger, 1995) and
(Horwitz et al., 1989)).

So far syntactic or semantic differencing and
merging of programs have been implemented not only
in some research prototypes but also in widely used
development environments (see the eclipse plugin
compare). On the one hand, the required technology
has proved to be much more sophisticated than for
text-based tools. On the other hand, some approaches
are severely constrained with respect to the set of pro-
grams to which they can be applied (in particular, this
statement holds true for semantic merging).

In contrast, text-based tools perform very badly
in theory, but fairly well in practice. As noted in
(Mens, 2002), empirical evaluations have shown a
very high fraction (more than 90%) of successful,
non-conflicting merges. Even when the merge result
is not consistent, errors injected by the merge are usu-
ally caught by the compiler or by failing regression
tests. Nevertheless, merging cannot be trusted blindly,
and has proved difficult when it is performed after
a fairly long time of parallel development (Wiborg-
Weber, 1999).

ICSOFT 2007 - International Conference on Software and Data Technologies

92



5 DIFFERENCING AND
MERGING OF SOFTWARE
DIAGRAMS

Treating diagrams as texts is possible when a textual
format is defined which may be used as backup or for
exchanging data between different tools. Nowadays,
all kinds of diagrams may be stored as XML docu-
ments, i.e.,structured text. Effectively, this means
that documents are represented as trees, augmented
with cross-references. In contrast, the termplain text
refers to a flat text, consisting of a sequence of text
lines.

Viewing diagrams as plain text is not very helpful
for differencing and merging (see (Ohst and Kelter,
2002)). Text-based tools for differencing and merg-
ing are sensitive to changes of the order in which lines
appear in a text file, and they are also sensitive to
changes in the layout such as e.g. the applied rules of
indentation. To a large extent, the order of text lines
and their layout is immaterial to the diagram which
is represented by the text. Therefore, applying diff
and merge tools at the level of plain text will hardly
produce meaningful results. Instead, some suitable
structural representation has to be used.

Below, we will explore severaldesign decisions
which affect functionality, user interface, and effi-
ciency of tools for differencing and merging of soft-
ware diagrams. In particular, we will discuss the re-
spective trade-offs that have to be taken into account.

5.1 Delineation of the Domain

In the first place, it has to be decided to which types
of diagrams the diff or merge tool is going to be ap-
plied. For example, the tool may operate on any kind
of UML diagrams (Kelter et al., 2005), a specific kind
of UML diagram (e.g., class diagrams (Ohst et al.,
2003; Xing and Stroulia, 2005)), any diagram pro-
cessable by a meta-CASE tool (Mehra et al., 2005),
etc. The trade-off which has to be made concerns the
requirements (R2) and (R3): A tool which is appli-
cable to a large domain can make only basic assump-
tions with respect to the contents of the diagram to be
processed.

5.2 Determination of a Document
Model

After having fixed the domain, the tool developer has
to design adocument modeldefining the elements, re-
lationships, and attributes to be considered. The doc-
ument model has a strong impact on the capabilities

of the diff or merge tool. Via the document model,
views are defined on the diagrams to be processed. A
simple document model allows for simple (R8) and
(relatively) efficient (R6) algorithms, but lowers the
conceptual level of differencing or merging (R2).

Considerably differing document models have
been proposed for differencing and merging software
diagrams. For example, (Engel et al., 2006; Alanen
and Porres, 2003), (VVU, 2007, Ahrens) are based on
MOF and are thus applicable to MOF instances, in-
cluding UML diagrams. (Kelter et al., 2005; Xing
and Stroulia, 2005) rely on tool-specific document
models (trees augmented with cross-references). In
(Soto and M̈unch, 2006) diagrams are transformed
into RDF. (VVU, 2007, Sẗorrle) proposes to trans-
form diagrams into Datalog clauses. The motivation
to transform diagrams into some generic model is to
reuse generic tools and algorithms for differencing
and merging. Graphs are another promising docu-
ment model (VVU, 2007, Ebert et al.).

The document model has to be selected carefully.
Differencing and merging have to be performed at an
adequate level of abstraction such that aconceptual
mismatchis avoided. In particular, this issue has to be
taken into account when a document is transformed
into another representation for the purpose of differ-
encing and merging: The results of differencing and
merging have to be translated back into the “native”
document model. In the case of differencing, this
means that sets of low-level differences have to be
aggregated into high-level differences. Likewise, for
merging it has to be checked whether combinations of
low-level changes may be composed into correspond-
ing high-level changes.

5.3 Definition of Differences

After having determined the document model, the no-
tion of difference has to be defined. A diff tool has
to calculate (or at least approximate) aminimal differ-
encebetween two diagrams. In the case of directed
deltas, the minimal difference may be defined as a se-
quence∆ of operations since that∆(v1) = v2 and the
costc(∆) is minimal. In the case of a symmetric delta,
v1∩v2 has to be maximized.

Thus, defining the difference involves the selec-
tion of an appropriate definition of a cost model for
calculating the costs of executing a sequence of op-
erations. What is considered “appropriate”, is even-
tually answered by the user. A formal notion of dif-
ference may serve as aspecificationagainst which the
implementation may be verified or tested. In addition,
a validation is required to check whether the require-
ments of the user are actually satisfied (i.e., whether

DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges

93



the user considers the calculated difference as mini-
mal).

Note that a formal definition of minimal differ-
ence introduces ametric for measuring the distance
between documents. A metric also allows us to assess
the quality of the diff algorithm quantitatively. With-
out a metric, there is no specification of the problem
to be solved by the diff algorithm.

On the other hand, it should be noted that an eval-
uation of some diff algorithm with respect to a given
metric alone is not sufficient: Even if the minimal dif-
ference with respect to that metric is always found, the
user may still complain about missing accuracy (R1).
As a simple example, assume that the set of base op-
erations does not contain a move operation. Then,
each move is simulated by deletions and insertions,
and the user will not consider the calculated differ-
ence as minimal.

It is worthwhile to notice that many approaches to
differencing do not rely on a formally defined metric.
In some cases, the metric may be customized by the
user. E.g., (Melnik et al., 2002; Kelter et al., 2005)
support customizable similarity functions on which
the matching decisions are based.

5.4 Reliance on Unique Identifiers

In order to calculate differences, a criterion ofsame-
nessis required: Which elements of different versions
v1,v2 are considered to be the same? In the case of
text-based tools, sameness is decided solely with the
help of the contents and position of text lines. In this
way, history independence (R5) is achieved.

On the other hand, structure-based differencing
and merging turns out to be much more difficult. It is
not easy to identify elements of different versions in
such a way that a minimal delta is computed. There-
fore, several diff and merge tools rely onunique iden-
tifiers (Ohst et al., 2003; Lindholm, 2004; Alanen and
Porres, 2003; Rho and Wu, 1998; Mehra et al., 2005;
Engel et al., 2006; Soto and M̈unch, 2006): When an
element is created, it is assigned a new unique identi-
fier. When the containing diagram is copied, the iden-
tifiers of its elements are retained. In this way, differ-
ent copies of the “same” element may be located in
the versions to be processed.

To a great extent, the calculation of differences is
“for free” when unique identifiers are present. Thus
unique identifiers simplify algorithms (R8) and make
them more efficient. However, unique identifiers
make differencing and merging dependent on the his-
tory of changes, which implies a contradiction to re-
quirement (R5). In the extreme, it might happen that
two versionsv1 and v2 are considered to have an

empty intersection even though they are isomorphic.
This situation occurs when both versions have been
created with the same contents independently by dif-
ferent users.

Thus, even when using a tool maintaining unique
identifiers, differencing and merging may not perform
accurately (R1) and even produce counter-intuitive re-
sults. It should be noted that the user usually is not
aware of unique identifiers and thus might experience
anomalies which violate the principle of least possible
amazement.

In addition, unique identifiers introduce tool de-
pendencies, contradicting (R4). In the worst case,
identifier-based differencing and merging will work
only if all versions have been created with the same
tool. This situation is improved when multiple tool
vendors agree upon the management of unique iden-
tifiers, as it is encouraged - yet not enforced - in the
XMI standard (xmi, 2005). In (VVU, 2007, Hein
and Ritter), an approach is presented which supports
diff and merge across tool boundaries by relying on
unique identifiers introduced in the MOF versioning
standard (mof, 2005).

5.5 Design of Algorithms

Clearly, the previous decisions heavily influence the
algorithms for differencing and merging. Unfortu-
nately, structure-based algorithms tend to be more
complex and less efficient than text-based algorithms.
In particular, this holds true without unique identi-
fiers: Optimal matches may be expensive to compute.
In the case of trees, computing a minimal delta is
known to be an NP-hard problem.

With respect to a formally defined notion of dif-
ference, we may distinguish amongexact algorithms
which are guaranteed to produce a minimal differ-
ence,approximation algorithmswhich may miss the
minimum only up to a defined maximal distance, and
heuristic algorithmswith no guarantees at all. Accu-
racy (R1) has to be balanced against efficiency (R6).

So far, we are aware only of heuristic algorithms
for differencing and merging. All algorithms assum-
ing unique identifiers fall into this class, since they
take the identification for granted and do not search
for a better match. But those algorithms which do not
build upon unique identifiers are also heuristic algo-
rithms (Kelter et al., 2005; Melnik et al., 2002; Xing
and Stroulia, 2005; Chawathe and Garcia-Molina,
1997; Cobena et al., 2002). Accuracy of these al-
gorithms is typically evaluated by human judgment;
a metric is not used for this purpose. This makes it
difficult to compare these algorithms with respect to
their accuracy.

ICSOFT 2007 - International Conference on Software and Data Technologies

94



Computational complexity may exclude the appli-
cation of exact algorithms. For example, let us as-
sume that documents are modeled as graphs. Com-
putation of minimal graph differences includes the
search of a graph isomorphism as a special case (if
this search is successful, the graphs would be con-
sidered to be identical). Graph isomorphism is not
known to be a tractable problem. Known algo-
rithms for testing graph isomorphism have a super-
exponential worst case behavior. However, this need
not be a “killing argument”; consider e.g. the
speed up of graph pattern matching achieved in the
PROGRES system (Schürr et al., 1999) by exploiting
additional information, e.g., from the graph schema.

5.6 Designing the User Interface

Differencing and merging of software diagrams re-
quires a well-designed user interface which in partic-
ular relates differences and conflicts to diagram repre-
sentations the user is familiar with (R7). In the case of
differencing, diagrams may be displayed side by side
with differences being marked graphically (e.g. by us-
ing colors). If not enough space is available, instead a
unified diagrammay be constructed which shows the
common and all specific elements contained in only
one version (Kelter et al., 2005). However, this rep-
resentation may easily be overloaded (as an analogy,
consider reading a C file with extensive conditional
compilation).

Unfortunately, the requirement for a user-friendly
representation is neglected in several tools. In
(Schneider et al., 2004),(VVU, 2007, Schneider and
Zündorf), a merge tool for Fujaba models reports
changes in a cryptic textual format. In (Engel et al.,
2006) differences between MOF instances are repre-
sented as trees rather than graphically. In (Xing and
Stroulia, 2005) structural changes are visualized in
a more sophisticated way as containment and inher-
itance change trees.

5.7 Conflict Detection and Resolution

The problem of conceptual mismatch mentioned ear-
lier has to be considered particularly for three-way
merging: The user expects that operations are com-
bined and conflicts are detected and resolved at a
conceptual level conforming to the document model
which (s)he has in mind. When the merge tool oper-
ates at a different (physical) level, conflicts reported
at that level cannot be understood by the user. Like-
wise, conflict resolution has to be performed on the
conceptual rather than on the physical level.

No merge tool can be blamed for a failing merge

if the changes that have been performed concurrently
by different users cannot be combined in a meaning-
ful way. While the merge tool has to strive for produc-
ing a consistent result (R13), uncoordinated changes
may cause inconsistencies. For example, two users
may have inserted a class with the same name, result-
ing in a name clash. Or one user may have madec1
a subclass ofc2, while another user has defined the
inheritance relationship in the opposite direction. In
general, we cannot expect that a merge tool detects
all kinds of context-sensitive conflicts, reports them to
the user, and ensures consistency by rejecting changes
causing inconsistencies. Please recall that we do not
expect such a behavior when applying text-based pro-
gram merging; rather, errors introduced by the merge
can (partially) be detected by running the compiler.
Likewise, merging of diagrams may result in incon-
sistencies which are fixed in a post-processing step.

However, there is one crucial difference compared
to text-based merging: As a result of merging text
files, we will get a text file which may be checked
by the compiler and which may be viewed and edited
with the help of some text editor. In contrast, merg-
ing of diagrams may result infundamental inconsis-
tencies: The output produced by the merge may not
be processable any more because fundamental con-
straints are violated. In fact, in many approaches pre-
sented in the literature merging may produce an in-
consistent result (Lindholm, 2004; Alanen and Porres,
2003; Ohst et al., 2004; Rho and Wu, 1998; Mehra
et al., 2005; Chen et al., 2003), (VVU, 2007, Schnei-
der and Z̈undorf). The merge tool may be blamed for
this problem if the merge is performed at the wrong
level of abstraction. On the other hand, the consis-
tency constraints enforced by some CASE tool may
be too tight. If inconsistencies were tolerated in a dia-
gram editor, the merge tool could create a potentially
inconsistent output, which the user can improve sub-
sequently in the editor. To make this work, the under-
lying document model has to be generalized such that
inconsistencies are tolerated (Schneider et al., 2004),
(VVU, 2007, Schneider and Z̈undorf).

6 DESCRIPTION AND
CLASSIFICATION OF KNOWN
TOOLS

In the following paragraphs, six tools are compared in
more detail: one algorithm for calculating a matching,
two algorithms for differencing without unique iden-
tifiers (see 6.1) and two differencing methods that rely
on unique identifiers (see 6.2). The latter are merging

DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges

95



tools too, as described in 6.3, where another merging
tool that uses logged operations as delta is presented.

6.1 Differencing without Unique
Identifiers

Differencing tools that do not rely on unique identi-
fiers need other criteria to identify corresponding di-
agram elements that are sufficiently similar. In all
known concepts the matching and the computation
of differences are considered to be separate problems.
Since the computation of differences with respect to
a given matching is discussed in the next paragraph,
we regard the following three algorithms only with
respect to the heuristics they use to find a matching.

Similarity Flooding(Melnik et al., 2002) is a gen-
eral graph matching algorithm operating on directed
labeled graphs whose nodes represent diagram ele-
ments. For the computation of the similarity of two
nodes their neighbourhood is relevant: The similarity
of two nodes increases if their adjacent nodes are sim-
ilar. The computation itself works as follows: Initial
similarity values are computed by a pairwise compar-
ison of the node names. These similarity values are
then propagated in a fixpoint computation along the
edges of the similarity propagation graph. A matching
can be selected from these globally computed simi-
larity values by choosing thresholds, constraints and
selection metrics.

The generic algorithmSiDiff (Kelter et al., 2005)
uses an internal data model comparable with a sim-
plified UML meta-model and is configurable for var-
ious types of UML diagrams. A diagram is extracted
from an XMI file and is represented as a tree con-
sisting of the composition structure augmented with
cross-references. Assuming that model elements are
characterized by the elements they consist of, the
difference algorithm starts with a bottom-up traver-
sal at the leaves of the composition tree. All ele-
ments of the same type are compared pairwise using
a type-specific similarity function that evaluates the
weighted aggregation of type-specific criteria. For
instance, in the case of class diagrams the similar-
ity of name, attributes, methods and inheritance re-
lations are considered. If a significant correspon-
dence of two nodes has been identified, these nodes
are matched and if they possess child nodes that have
not been matched yet, the similarity is propagated
top-down into the subtree, i.e. the similarity values
of the child nodes are computed anew with respect
to the correspondence of their parent nodes. The al-
gorithm ends if all nodes have been processed in the
bottom-up phase and all similarities have been propa-
gated downwards (see figure 1). It is important to note

Figure 1:SiDiff : Search for Correspondences.

that the matching in the bottom-up phase is not very
successful at the lowest levels of the tree, since many
leave nodes are nearly identical (see the frequent oc-
currences of data type integer in class diagrams for
instance). To handle this problem the original algo-
rithm has been extended by a pre-phase which tries
to match nodes by comparing hash values computed
on the paths of the nodes in the composition tree. Af-
ter the matching has been found, differences are com-
puted and represented in a unified document.

The algorithmUMLDiff in (Xing and Stroulia,
2005) operates on class diagrams which have been
reverse engineered from Java source code and thus
works on a much more fine-grained level than the
two algorithms presented above. The data model
used consists of a directed graph including a span-
ning tree of containment relations. In contrast toSiD-
iff, UMLDiff starts at the root nodes and compares the
nodes of the same logical level pairwise. On the way
down only those entities in subtrees are compared
whose root nodes have been matched on a higher level
(see figure 2). If two objects have the same name, they
are identified as equal. If not, their structural simi-
larity is considered, computed from the similarity of
names and other criteria specific of the considered en-
tity type. In the case of methods, these are parameter
types, fields they read or write and other methods they
call or are called by. If a computed structure similarity
of two entities exceeds a user-defined threshold and
if it is the maximum value of all possible matching
candidates, the entities are matched as equal. After
all the leaves of the composition tree have been pro-
cessed, the remaining objects are compared in order
to find moved objects. If there are two entities with
the same name in different subtrees, they are consid-
ered as moved. Then the algorithm tries to identify
moved and renamed elements by structural similarity.
The top-down traversal with the early restriction of
the search space to the subtrees of matched entities
and the method of matching the entities by name first
make this algorithm efficient. It presumes however,
that the two versions that are compared are not too
different, i.e. in particular that not many movements
and renamings have occurred.

The methods described above seem to work satis-
fyingly in terms of performance and error rate judging

ICSOFT 2007 - International Conference on Software and Data Technologies

96



Figure 2:UMLDiff : Search for Correspondences.

from the published results. In all three cases, how-
ever, the differences and matchings have only been
verified by hand. Due to the lack of metrics, it is
not possible to compare the different algorithms. It is
worth mentioning that the computation inSimilarity
Floodinguses a global concept even if the underlying
model is quite simple. On the other handSiDiff and
UMLDiff make a sequence of local decisions. Further
SiDiff uses configuration files to adapt the algorithm
to the specific diagram types and thus offers a com-
promise between (R2) and (R3) whereasSimilarity
Flooding, working on a high conceptual level, can-
not use diagram type-specific information.UMLDiff
gives up generality in favour of domain specific op-
timization. None of the three tools described above
supports merging.

6.2 Differencing with Unique Identifiers

The tools presented in this paragraph identify the
corresponding diagram elements by comparing their
unique identifiers.

In (Ohst et al., 2003) the two diagrams that should
be compared are presented as graphs consisting of a
spanning tree of composition relations as in the more
recent concept presented in (Kelter et al., 2005). In
a top-down traversal of each level in the spanning
tree the corresponding subtrees which are rooted at
nodes with identical identifiers are found. The cor-
responding nodes are compared with respect to their
attributes and relationships and the difference infor-
mation is recorded in an object created for the unified
document representing a symmetric difference. Then
the nodes in the matched subtrees are examined fur-
ther. A move operation is realized as composite op-
eration that deletes one object and inserts an object
with the same unique identifier. To identify moved
subtrees, all the subtrees that could not be matched
are stored in sets and compared once again. If nodes
with the same identifier exist in both sets, they repre-
sent a moved node. All other nodes have either been
deleted or created.

In (Mehra et al., 2005) component-based plug-ins
to the meta-CASE toolPounamufor diagram version-
ing, differencing and merging are presented. Any dia-
gram type, which has been defined in the meta-CASE

tool, can be compared to find a directed delta. Instead
of traversing the graph-based structure, consisting of
shapes and connectors and their properties, the dia-
grams are compared in two steps: First all shapes are
matched by their identifiers. If the properties of cor-
responding shapes differ, an appropriate change oper-
ation is added to the directed delta. If a shape exists
in one diagram only, an insert or delete operation is
added. Since a connector is defined by its source and
target shapes, if a shape is deleted all connected con-
nectors are also deleted and if a shape is inserted, the
connectors must be inserted too. In a second step all
connectors that have not been processed yet are com-
pared. Moves are not detected.

The set of feasible edit operations used in these
two approaches are not equal. InPounamuonly in-
sert and delete operations are considered, whereas in
(Ohst et al., 2003) a combined delete and insert sit-
uation is interpreted as move operation. Further in
(Ohst et al., 2003) a symmetric difference is com-
puted whereas inPounamua directed delta is deter-
mined. The two described tools also support merging
as shown in the following paragraph.

6.3 Merging

In this paragraph, three merging tools that offer dif-
ferent levels of user interaction are described.

In theCoObRAversioning framework (Schneider
et al., 2004) all edit operations that are executed on
the diagrams are logged by the tool. For this rea-
son no differences must be computed.CoObRAuses
three-way merging but gives priority to the version
that was committed first. The workflow is illustrated
in figure 3. A developer has checked versionv1 out
of the repository into the local workspace to mod-
ify it by applying the operation sequence∆2. But if
meanwhile the operation sequence∆1 has been ap-
plied to the version in the repository, the developer
fails to commit his changes. He has to update his lo-
cal version first. This means applying the changes∆1
on the origin versionv1 to reach the actual version
v2 stored in the repository, then trying to apply the
change operations in∆2 again. At this point, con-

Figure 3: Commit and Update in CoObRA.

DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges

97



flicts may occur if one or more operations in∆2 can
no longer be applied after the execution of∆1. The
operation sequence∆2∗ in the figure is a subset of∆2,
expressing that some operations might not have been
applied. Conflicts are reported to the application in a
cryptic way, conflict solving is not supported. Further
the semantic correctness may be violated: if classes
with the same name are created in∆1 and in∆2, the
merged version may contain both classes if it is not
filtered by constraints in the application.

The Pounamu meta-CASE tool described in
(Mehra et al., 2005) offers a plug-in for merging,
where the merging is realized interactively. The set of
edit operations in the computed directed delta are of-
fered to the user who decides which changes to apply.
A difference highlighting plug-in shows the differ-
ences graphically based on the local version of the di-
agram. Additionally the edit operations are presented
in a list, where edit operations which are currently not
applicable are marked.

(Ohst et al., 2004; Ohst et al., 2003) use three-
way merging and split the merging process into three
steps. First a pre-merged document is created. In
the second step, the conflicts must be resolved man-
ually before the merged document is created in the
final step. Conflicts occur if the same attribute has
been changed in both versions, if an object has been
modified in one version and deleted in the other ver-
sion and in all derived situations. In case of deletion-
modification conflicts the user has to decide whether
the object should be deleted or modified. In the case
of change conflicts the user is asked which modifi-
cation should be applied. The pre-merged document
is an extended unified document consisting of com-
mon parts, automatically merged parts and conflicts.
This pre-merged document can be modified in a tool
that supports conflict solving and undoing decisions,
even decisions that have been made automatically.
The merged class diagram may be inconsistent, con-
straints like uniqueness of names of classes, meth-
ods or attributes must be verified after merging (Ohst
et al., 2004).

Only in (Ohst et al., 2004) the two versions that
have to be merged with respect to a base document
have equal relevance.CoObRAgives priority to the
version stored in the repository,Pounamuto the local
changes. The differences used for merging are ob-
tained in different ways: inCoObRAthere is a proto-
col of the operations, inPounamuthe differences are
computed as directed delta and in (Ohst et al., 2004)
a symmetric difference is calculated. InCoObRA,
user interaction in the merging process is not pos-
sible; modifications must be made manually on the
merging result. In the meta-CASE toolPounamuthe

developer can and must decide which change opera-
tions have to be applied. In (Ohst et al., 2004) the
non-conflicting transformations are applied automat-
ically leaving only the problematic decisions to the
user, including the possibility to interfere in the taken
decisions.

7 CONCLUSION

We have defined requirements for algorithms and
tools for differencing and merging of software dia-
grams. Furthermore, we have explored several cru-
cial design decisions which tool developers have to
perform. We have also shown how these design deci-
sions have been resolved in a number of approaches
published in the literature.

The current state of the art may be characterized
as follows:

• There is a common agreement that text-based diff
and merge tools are not adequate for software di-
agrams.

• A number of commercial tools and research proto-
types provide support for differencing and merg-
ing. However, these approaches suffer from var-
ious shortcomings such as non-graphical user in-
terfaces, reliance on unique identifiers, or incon-
sistent merge results.

• There is no common agreement with respect to the
document model as the foundation for differenc-
ing and merging, metrics to be used for measuring
differences between versions, rules used for merg-
ing, etc.

• Published algorithms either assume unique iden-
tifiers or are based on heuristics. Evaluations of
these algorithms are based on human judgment,
and it is hard to compare these algorithms against
each other.

Thus, further research is needed to improve the
state of the art. However, it is difficult - or even im-
possible - to meet all of the requirements defined in
this paper. From the perspective of software configu-
ration management, it is important to go beyond text-
based version control. On the other hand, software
configuration management systems need to support
version control for a wide variety of software docu-
ments. Moreover, they need to handle large volumes
of data. From this perspective, general approaches
based e.g. on MOF or XML are required. The expe-
riences gained with differencing and merging of pro-
gram versions indicate that accuracy and sophistica-
tion may have to be traded for generality and effi-
ciency.

ICSOFT 2007 - International Conference on Software and Data Technologies

98



REFERENCES

(2005).MOF 2.0/XMI Mapping Specification, v2.1. Object
Management Group, final/05-09-01 edition.

(2005).MOF2 Versioning Final Adopted Specification. Ob-
ject Management Group, ptc/05-08-01 edition.

(2007). Contributions to the workshop ”Versionierung
und Vergleich von UML-Modellen” on the confer-
ence of Software Engineering 2007 in Hamburg.
Softwaretechnik-Trends, 27(2). (to appear).
http://pi.informatik.uni−siegen.de/gi/fg211/VVUM07/.

Alanen, M. and Porres, I. (2003). Difference and union of
models. In Stevens, P., Whittle, J., and Booch, G., ed-
itors, UML 2003 - The Unified Modeling Language,
Modeling Languages and Applications, 6th Interna-
tional Conference, LNCS 2863, pages 2–17. Springer.

Buffenbarger, J. (1995). Syntactic software merging. In
Estublier, J., editor,Software Configuration Manage-
ment: Selected Papers SCM-4 and SCM-5, LNCS
1005, pages 153–172.

Chawathe, S. S. and Garcia-Molina, H. (1997). Meaning-
ful change detection in structured data. In Peckman,
J. M., editor, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, pages 26–
37. ACM Press.

Chen, P., Critchlow, M., Garg, A., der Westhuizen, C. V.,
and van der Hoek, A. (2003). Differencing and merg-
ing within an evolving product line architecture. In
van der Linden, F., editor,Proceedings of the Fifth In-
ternational Workshop on Product Family Engineering
(PFE-5), LNCS 3014, Siena, Italy. Springer Verlag.

Cobena, G., Abiteboul, S., and Marian, A. (2002). De-
tecting changes in XML documents. InInternational
Conference on Data Engineering, pages 41–52. IEEE
Computer Society.

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management.ACM Computing
Surveys, 30(2):232–282.

Engel, K.-D., Paige, R. F., and Kolovos, D. S. (2006). Us-
ing a model merging language for reconciling model
versions. In Rensink, A. and Warmer, J., editors,
ECMDA-FA, volume 4066 ofLecture Notes in Com-
puter Science, pages 143–157. Springer.

Horwitz, S., Prins, J., and Reps, T. (1989). Integrating non-
interfering versions of programs.ACM Transactions
on Programming Languages and Systems, 11(3):345–
387.

Hunt, J. and Szymanski, T. (1977). A fast algorithm for
computing longest common subsequences.Commu-
nications of the ACM, 20(5):350–353.

Kelter, U., Wehren, J., and Niere, J. (2005). A generic dif-
ference algorithm for UML models. In Liggesmeyer,
P., Pohl, K., and Goedicke, M., editors,Software En-
gineering 2005, LNI 64, pages 105–116. GI.

Lindholm, T. (2004). A three-way merge for XML docu-
ments. In Munson, E. V. and Vion-Dury, J.-Y., editors,
Proceedings of the 2004 ACM Symposium on Docu-
ment Engineering, pages 1–10. ACM.

Mehra, A., Grundy, J. C., and Hosking, J. G. (2005).
A generic approach to supporting diagram differenc-
ing and merging for collaborative design. In Red-
miles, D. F., Ellman, T., and Zisman, A., editors,
20th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2005), pages 204–
213. ACM.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Sim-
ilarity flooding: A versatile graph matching algorithm
and ist application to schema matching. InProceed-
ings 18th International Conference on Data Engineer-
ing, pages 117–128, San Jose, CA.

Mens, T. (2002). A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineer-
ing, 28(5):449–462.

Ohst, D. and Kelter, U. (2002). A fine-grained version and
configuration model in analysis and design. InICSM,
pages 521–527. IEEE Computer Society.

Ohst, D., Welle, M., and Kelter, U. (2003). Differences
between versions of UML diagrams. InProceedings
ESEC/FSE-11, pages 227–236, New York, NY, USA.
ACM Press.

Ohst, D., Welle, M., and Kelter, U. (2004). Merging UML
documents. Internal Report, University of Siegen.

Rho, J. and Wu, C. (1998). An efficient version model of
software diagrams. InAsia Pacific Software Engineer-
ing Conference, pages 236–243. IEEE Computer So-
ciety Press.

Schneider, C., Z̈undorf, A., and Niere, J. (2004). CoObRA
- a small step for development tools to collaborative
environments. InWorkshop on Directions in Software
Engineering Environments; 26th international confer-
ence on software engineering. ICSE 2004, Scotland.

Scḧurr, A., Winter, A., and Z̈undorf, A. (1999). The PRO-
GRES approach: Language and environment. In
Ehrig, H., Engels, G., Kreowski, H.-J., and Rozen-
berg, G., editors,Handbook on Graph Grammars
and Computing by Graph Transformation: Applica-
tion, Languages, and Tools, volume 2, pages 487–550.
World Scientific.

Soto, M. and M̈unch, J. (2006). Process model difference
analysis for supporting process evolution. In Richard-
son, I., Runeson, P., and Messnarz, R., editors,Soft-
ware Process Improvement, 13th European Confer-
ence, EuroSPI 2006, LNCS 4257, pages 123–134.
Springer.

Tichy, W. F. (1984). The string-to-string correction problem
with block moves. ACM Transactions on Computer
Systems, 2(4):309–321.

Wiborg-Weber, D. (1999). CM strategies for RAD. In Es-
tublier, J., editor,System Configuration Management:
9th International Symposium (SCM-9), LNCS 1675,
pages 204–216.

Xing, Z. and Stroulia, E. (2005). UMLDiff: an algo-
rithm for object-oriented design differencing. In Red-
miles, D. F., Ellman, T., and Zisman, A., editors,
20th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2005), pages 54–
65. ACM.

DIFFERENCING AND MERGING OF SOFTWARE DIAGRAMS - State of the Art and Challenges

99


