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Abstract: This paper presents the basis of a multimodeling methodology that uses a CommonKADS conceptual model 
to interpret the diagnosis knowledge with the aim of representing the system with three models: a structural 
model describing the relations between the components of the system, a functional model describing the 
relations between the values the variables of the system can take (i.e. the functions) and a behavioural model 
describing the states of the system and the discrete events firing the state transitions. The relation between 
these models is made with the notion of variable: a variable used in a function of the functional model is 
associated with an element of the structural model and a discrete event is defined as the affectation of a 
value to a variable. This methodology is presented in this paper with a toy but pedagogic problem: the 
technical diagnosis of a car. The motivating idea is that using the same level of abstraction that the expert 
can facilitate the problem solving reasoning. 

1 INTRODUCTION 

This paper is concerned with the design of 
knowledge based systems to supervise, diagnose and 
control industrial process. The dynamic aspect of 
industrial processes poses the difficult problem of 
the acquisition and the representation of the 
underlying temporal knowledge which is often 
mixed with other types of knowledge (Basseville 
and al, 1996). 

To solve these problems, we first focus our 
works on the multi model based diagnosis approach 
(Chittaro and al, 1993) with the aim of designing 
models at the same level of abstraction level than the 
experts. Second, we want that the model formalisms 
to be adequate to represent the temporal knowledge 
coming from both from Experts and from the 
learning algorithms of the Stochastic Approach of 
(Le Goc et al, 2005). And three, we want the 
interpretation knowledge to closed to the cognitive 
tasks the models are made for and we propose to use 
a generic conceptual models. So, section 2 of this 
paper positions shortly our approach according to 
the main modelling approaches for diagnosis. 
Section 3 presents the basis of our methodology 
through its application to a toy but pedagogic 
problem: the technical diagnosis of a car. Finally, 
section 4 states our conclusions and perspectives.  

2 MODELLING APPROACHES 

The limitations and the problems (Dagues, 2001) of 
the heuristic approach (Clancey, 1985) has 
motivated the Model Based Diagnosis approach 
(MBD) where the knowledge about the system is 
represented in a unique logical model (Reiter, 1987). 

The MBD approach use of a unique model of the 
system to be diagnosed containing the knowledge 
about both the structure (components and 
interconnections) and the behavior of the system 
(relations between the values of the input and the 
output of the components). This model generally 
comes from the design model of the system so that it 
contains a lot of components leading to 
computational difficulties for the diagnosis task (the 
number of potential diagnosis is exponential with the 
number of components). This problem is crucial and 
has motivate a large amount of works to reduce the 
size of the space search. But more, this model 
contains nothing about the evolution of the values of 
the variables over time and nothing to represent the 
knowledge about the state of the system. This is a 
crucial lack when diagnosing a dynamic system 
where the observations are timed. 

The Multi Model Based Diagnosis (MMBD) has 
been proposed to avoid these problems (Chittaro and 
al, 1993). This approach defines four models linked 
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each other to describe the system to diagnose (cf. 
(Zouaoui, 1998) and (Thetiot, 1999) for examples). 
The first one is the Structural Model that describes 
the components constituting the system and how 
they are connected each other. The second model is 
the Behavioral Model describing how components 
work in terms of the physical laws linking quantities. 
These two models represent the fundamental 
knowledge. The third model is the Functional Model 
describing the different roles the components may 
play in the physical processes in which they take 
part. The concept of function is the basis of the 
description of the functional roles, the processes and 
the phenomena that provides an interpretation of the 
fundamental knowledge. The goals assigned to the 
system by its designer(s) are described in the last 
model, the Teleological Model. These two last 
models refer to the interpretation knowledge. 
Indeed, the MMBD is still concerned with the 
computational problem of the diagnosis linked with 
the number of the components declared in the 
structural model (Zouaoui, 1998). This problem is 
directly connected to the abstraction level which is 
still defined by the designer(s). 

3 MODELLING WITH EXPERTS 
ASSUMPTIONS  

So, our works is based on the hypothesis that an 
expert uses a set of models at a level of abstraction 
that allows efficient diagnosis reasoning and this 
level of abstraction is directly linked with the 
diagnosis task, not the design task. 

We propose to use a CommonKADS conceptual 
model (Schreiber and al, 2000) to interpret a 
knowledge source with the aim of representing the 
system with three models (Zanni and al, 2005): a 
structural model describing the relations between the 
components of the system, a functional model 
describing the relations between the values the 
variables can take (i.e. mathematical functions) and 
a behavioural model describing the states of the 
system (corresponding to the operating modes of 
(Chittaro and al, 1993)) and the discrete events firing 
the state transitions. The relation between these 
models is made with the notion of variable: a 
variable used in a function of the functional model is 
associated with an element of the structural model 
and a discrete event is defined as the affectation of a 
value to a variable.  

 
Left Node
Symbol

Relation
Symbol

Right Node
Symbol  

Figure 1: Typical Binary Relation. 

We define a model as an organized set of binary 
relations B(Sl, Sr) between symbols Si denoting 
objects described in the domain ontology of the 
conceptual model of the knowledge. A binary 
relation B(Si, Sj) is also denoted with a symbol (i.e. 
B). Such a binary relation only means that there exist 
a link between the objects denoted with the symbols 
Si and Sj. A typical graphical representation of a 
binary relation is provided in Figure 1, where nodes 
are boxes or circles and the relation is eventually 
represented with an ellipse. When useful, the arcs 
can be oriented to show the orientation of a flow like 
typically a flow of energy, material or information. 

A model can then be represented with a graph 
where nodes are symbols and arcs are relations. 
Basically, a node symbol denotes a component or an 
aggregate of components (i.e. a structure) in a 
structural model, a variable in a functional model or 
a state in a behavioural model. An arc represents a 
link between two nodes. Such a link can be a 
connection link between two structures in a 
structural model, an information link between the 
values of variables in a functional model or a 
transition between two states in a behavioural 
model. Consequently, a binary relation in a 
structural model represents a connection between 
two structures; a mathematical function in a 
functional model and a transition between two states 
in a behavioural model. It is to note that a set of 
binary relations with the same right node symbol can 
be aggregated in a single n-ary relation when this 
aggregation is meaningful (an arithmetical function 
between 3 variables for example). 

Functional 
Model 

Behavioral
Model 

Structural
Model (Structure, Event)

(Variable, Event)(Variable, Structure)

Functional 
Model 

Behavioral
Model 

Structural
Model (Structure, Event)

(Variable, Event)(Variable, Structure)

 

Figure 2: Links between the three models. 

With this simple formalism, a structural model is 
an organised set of physical relations between 
components or aggregates, a functional model is an 
organised set of logical relations defining the values 
of a variable given those of a set of variables, and a 
behavioural model is a set of sequential relations 
between states. These sequential relations can be 
conditioned with predicates concerning the 
occurrence of discrete events. A discrete event is 
defined according to spatial discretization principle 
of the Stochastic Approach (Le Goc et al, 2005) as a 
couple (x, i) where x is a symbol denoting a variable 
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and i is a value for x so that a discrete event 
occurrence is triplet (x, i, tk) meaning: x(tk)=i. 

The modelling is based on three principles. The 
first is that each object symbol Si used in one of the 
three models denotes a concept that is defined at the 
domain level of a CommonKADS model. This 
means that the introduction of an object symbol that 
is not associated with an element of the knowledge 
domain model is prohibited. This model provides 
then the means for interpreting the three models. The 
second principle is that a variable is always 
associated with a component or an aggregate defined 
in the structural model. The values a variable can 
take are provided either from its associated 
components (input variable) or are computed with a 
function defined in the functional model. And the 
third principle is that a transition between two states 
is conditioned either with the time elapsed in a state 
(autonomous transition) or with a logical formula 
linking the occurrences of discrete events. The 
notion of variable constitutes then the common point 
of the three models (Figure 2), providing a means to 
the consistency analysis of the models. 
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Power
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Figure 3: An example of a knowledge base. 

4 APPLICATION 

To illustrate the modelling process using these 
principles, let us take the example providing from 
(Schreiber et al, 2000) of the (simple) knowledge 
base used to diagnose a car. 

Figure 3 proposes a graphical representation of 
the set R={Ri(Pc, Pe)} of the nine rules constituting 
the knowledge base. In this graph, a rule Ri(Pc, Pe) 
denote a logical consequence relation from a 
proposition Pc to another Pe. This logical relation is 
used to represent a causal relation between a cause 
(Fuel Tank empty) and an effect (Gas in engine 
false). To interpret this knowledge, we will use the 
classical and minimal CommonKADS diagnosis 
template «hypothesis generation and hypothesis 
discrimination» (Zanni and al, 2005). This template 
(Figure 4) considers the diagnosis reasoning as being 
made of two basic inferences, one to generate the 

hypothesis from the observed behaviour and the 
second to discriminate between the different 
hypotheses according to the observed behaviour.  

h yp o th e s is

o b se rv e d b e h a v io r

g e n e ra te h yp o th e s is

d is c r im in a te h y p o th e s is

d ia g n o s is

h yp o th e s is

o b se rv e d b e h a v io r

g e n e ra te h yp o th e s is

d is c r im in a te h y p o th e s is

d ia g n o s is  
Figure 4: The Diagnosis Template.

This template allows the classification of the 
propositions contained in the knowledge base in a 
set of observed behaviour (Fuse inspection broken, 
Engine behaviour does not start, Engine behaviour 
stops, Battery dial low and Gas dial zero) and a set 
of hypothesis (Fuse blow, Battery low, Fuel Tank 
empty, Power off and Gas in engine false). The 
observed behaviour set contains the complains that 
motivate the diagnosis reasoning (Engine behaviour 
does not start, engine behaviour stops). This 
functional classification of the propositions leads to 
distinguish a first set of rules S1={R1, R4, R5} that 
allows to observe unobservable states of the car 
from the second set of rules S2={R2, R3, R6, R7, R8, 
R9} that expresses the propagation of an 
unobservable car state (Fuse blow, Battery low, Fuel 
Tank empty ) to another unobservable car state 
(Power off, Gas in engine false) and finally, to the 
complains. So the propositions of R can be 
interpreted as binary relations between a variable 
(Fuel Tank for example) and a value (empty): each 
proposition corresponds to a predicate 
Equal(Variable, Value). Consequently, a rule is an 
instantiation of a second order relation of the form 
Cause(xi=v1, xj=v2) where the symbol “=” denotes 
the predicate Equal, xi and xj denote a variable and 
v1 and v2 two values. This relation means then that 
there exist a logical relation between the fact xi=v1 
and xj=v2 (i.e. a logical rule xi=v1⇒xj=v2) and 
supposes that there exists a physical relation 
between the variables xi and xj that is to say between 
the components or the aggregates ci and cj the 
variables xi and xj are linked with. The set X={xi} of 
symbol variable associated with the set C={ci} of 
symbol components can then be build, and the 
knowledge base R can then be rewritten as follow: 

•  R1: If x1=Blown Then x4=Broken 
•  R2: If x1=Blown Then x7=Off 
•  R3: If x2=Low Then x7=Off 
•  R4: If x2=Low Then x5=Low 
•  R5: If x3=Empty Then x6=Zero 
•  R6: If x3=Empty Then x8=False 
•  R7: If x7=Off Then x9=Does_not_start 
•  R8: If x8=False Then x9=Does_not_start 
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•  R9: If x8=False Then x9=Stops 
From these items, a set of connection relations of 

the form ConnectedTo(ci, cj) can be deduced and 
represented in the structural model of figure 5. The 
symbol components electric_alimentation and 
gas_alimentation, respectively associated with the 
variables Power and Gas_in_engine, denotes 
abstract aggregates of components. Similarly, the set 
of underlying rules xi=v1⇒xj=v2 can be deduced. 
When defining the domain set of value for each 
variables, each rule xi=v1⇒xj=v2 subsumes a 
function of the form xj=f(xi) at least defined when 
xi=v1 and xj=v2. When two functions xj=fi(xi) and 
xj=fk(xk, xj) share the same output variable xj, a new 
function xj=fj(xi, xk) can be defined. In the 
functional model of figure 6, a rectangle (node) 
specifies a variable name and an ellipse (relation) 
specifies a function names. When the value set of 
each variable xi can be defined, the set F={fi} of 
functions fi can be entirely specified with tables of 
values. When a value is missing, it is always 
possible to define the missing value as the 
complement of the known values. For example, the 
value set of the variable x1 is {Blown, not_Blown}. 
The tables of figure 7 are formulated independently 
of the variables, when using the notation o(f) and i(f) 
to denote the value of the output and the input of the 
function “f”. 

To introduce the behavioural model, let us 
consider the variable x9 associated with the 
aggregate c9 (engine). The value set of x9 is {Off, 
On} where Off means either stops or does not start. 
The complains x9=Off can then be interpreted as an 
undesirable car state and so, the predicate x9=On 
corresponds to the desirable car state “the car is 
working”. According to the set of rules R, the car 
stay in this state until the occurrence of a discrete 
event No_power (x7=Off) or No_gas (x8=False). In 
this case, the car transit from a state Working to a 
state Out of Power or Out of Gas, which are by 
definition two transient states. As soon as the inertia 
will have no effect, the car will stops in a Failure 
state. When the ignition key will be off, the car will 
be in a Broken down state where x9=Off: a repairing 
action is required to bring back the car in a normal 
Stop state. This analysis leads to the behavioural 
model of Figure 8, which is a finite state machine 
represented with the DEVS formalism (Le Goc et al, 
2006). This formalism is compatible with the 
formalism of Figure 1: nodes (circles) are states and 
links are state transitions. Autonomous transitions 
(between Out of Gas and Failure) are represented 
with dashed lines. An autonomous transition is fired 
when the elapse time in a state qi is greater than the 
maximum duration ΔTi of the qi state.  
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Figure 5: Structural model. 
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Figure 6: Functional model. 

 

Figure 7: Specification of the functions. 

 

Figure 8: Behavioural model. 

The models of figures 5, 6, 7 and 8 are implicitly 
contained in the initial knowledge base of figure 3, 
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but the behavioural model is the most “covered”. 
Such an observation is very frequent because the 
dynamic properties are generally misunderstood. For 
example, the difference between the values stops 
and does not start becomes clear only when 
considering the role of the ignition key in the 
behavioural model. It is to note also that the 
behavioural model is made of two parts: one part (at 
the right of figure 8) describes the normal working 
of the car (Working, Stop, Starting and Stopping 
states), and the second part (at the left of figure 8) 
describes the abnormal working of the car. Such a 
notion can not be defined with the functional model 
because it is defined as an organized set of relations 
between values of variables. This means that when 
considering dynamic systems, the normal 
behavioural model notion of Reiter’s diagnosis 
theory for static systems has been shifted in the 
classification of the system states in normal and 
abnormal categories. This leads to design a new 
algorithm for diagnosing dynamic systems. 

o(f7)= f7(i1(f7), i2(f7)
i1(c7) i2(f7) o(f7)

T T T
T F F
F T F
F F F  

Figure 9: The f7 function as an “AND” function 

5 USING THE MODELS 

The structural and functional models of figures 5, 6 
and 7 can be used in Reiter’s diagnosis theory with a 
simple logical transcription in the first order 
predicate logic. The set of components COMPS is 
deduced from the structural model: COMPS={c1, c2, 
c3, c4, c5, c6, c7, c8} 

 

Figure 10: The nine rules as a logical circuit. 

The system description SD is deduced from the 
functional model when associating each function fi 
with the component ci corresponding to the output 
variable of the function fi. For example, the function 
f7 is associated with the component c7 through the 
variable x7: x7=o(f7). Next, the symbols used to 
specify the functions fi must be represented with the 

Boolean symbols T for True and F for False. For 
example, when rewritten the symbols not_Blown, 
not_Low and Off as T and the symbols Blown, Low 
and Off as F, the function f7 become the logical 
function AND (Figure 9). The same is true for the 
functions f8 and f9. Finaly, when considering the 
components c4, c5 and c6 as sensors that can not 
failed, this lead to consider the following logical 
circuit of Figure 10. The system description is then: 
SD = { 
¬AN(x)∧FUSE(x) ⇒ o(x)=Not_blown, 
¬AN(x)∧BATTERY(x) ⇒ o(x)=Not_low, 
¬AN(x)∧FUEL_TANK(x) ⇒ o(x)=Not_Empty, 
¬AN(x)∧AND_GATE(x) ⇒ o(x)=AND(i1(x), i2(x)), 
//Component type declaration 
FUSE(c1), BATTERY(c2), FUEL_TANK(c3), 
AND_GATE(c7), AND_GATE(c8), AND_GATE (c9), 
//Connexions 
o(c1)=i1(c7), o(c2)=i2(c7), o(c3)=i1(c8), o(c3)=i2(c8), 
o(c7)=i1(c9), o(c8)=i2(c9) 
} 

This model is not efficient for diagnosing 
because, given the observations engine behaviour 
stops or engine behaviour does not start, all the six 
components will be suspected. Adding observation 
as Gas dial zero reduces the problem, but to the 
three components c7, c8 and c9, which can be 
abnormal also. 

Now, let us suppose that at time tk, the system is 
in the Working state (Figure 8). The observation Gas 
dial zero will be represented with the discrete event 
occurrence (tk, x6, zero) (i.e. x6(tk)=zero). The 
functional model provides the relations: x6=f6(x3) and 
x8=f8(x3). Given the functional model (figures 6 and 
7), x6(tk)=zero implies x3(tk-τ6)=empty and x8(tk-
τ6+τ8)=false corresponding to the occurrence of the 
discrete event No_gas, where τ6 and τ8 are the time 
transfer of functions f6 and f7. The behavioural 
model of Figure 8 shows then that the system will 
transit from state Working to the state Out of gas at 
time tk-τ6+τ8, and finally in the state Failure at time 
tk-τ6+τ8+ΔT1. So, if at time tn>tk, the observation 
engine behaviour stops is made on the car with tn≈tk-
τ6+τ8+ΔT1, the observation Gas dial zero at time tk 
can be used to infer that the cause of this complain is 
the fact that the fuel tank is empty since tk-τ6. 

This example shows that a diagnosis algorithms 
adapted to the reasoning with timed observations is 
required. The difficulty of this problem can be 
perceived trough the formulae “tn≈tk-τ6+τ8+ΔT1”. 
The symbol ≈ denotes a temporal equality predicate 
that is generally interpreted as the fact that the time 
tn belongs to a timed interval containing the time “tk-
τ6+τ8+ΔT1”. The basic but fundamental problem is 
then to define these intervals. The Stochastic 
Approach for learning timed relations between 
discrete events proposes a solution to this problem 
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(Le Goc and al, 2005). This is the reason why one of 
the main requirements for our modelling approach is 
to be compatible with this approach of learning. 

6 CONCLUSION 

This paper presents the basis of a multimodeling 
methodology that uses a CommonKADS conceptual 
model to interpret the knowledge source with the 
aim of representing the system with three models: a 
structural model describing the relations between the 
components of the system, a functional model 
describing the relations between the values the 
variables of the system can take (i.e. the functions) 
and a behavioral model describing the states of the 
system and the discrete events firing the state 
transitions. The relation between these models is 
made with the notion of variable: a variable used in 
a function of the functional model is associated with 
an element of the structural model and a discrete 
event is defined as the affectation of a value to a 
variable. 

This methodology is presented in this paper with 
a toy but pedagogic problem: the technical diagnosis 
of a car with a given knowledge base (Schreiber and 
al, 2000). This example shows that the resulting 
models are compatible with Reiter’s theory of 
diagnosis and that a specific reasoning is required to 
take advantage of the behavioural model of the 
dynamic system to diagnose. Such reasoning must 
take into account the time of the observations. This 
example illustrates clearly our goal: making explicit 
the models used by experts to formulate their 
knowledge. The idea is that using the same level of 
abstraction that the expert can facilitate the problem 
solving reasoning. This method has been applied to a 
real world dynamic system, the Cubblize dam, 
confirming the conclusions presented in this paper 
and validating the method (Masse and Le Goc, 
2007). It is to note finally that the resulting models 
can be used either fore the design or the simulation 
phases. 

Our current work aims at formalizing the global 
methodology and to design of a diagnosis algorithm 
able to use a behavioural model that can be built 
according to the timed relation the Stochastic 
Approach of knowledge learning discovers. 
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