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Abstract: Defect prediction is an important topic in software quality research. Statistical models for defect prediction 
can be built on project repositories. Project repositories store software metrics and defect information. This 
information is then matched with software modules. Naïve Bayes is a well known, simple statistical 
technique that assumes the ‘independence’ and ‘equal importance’ of features, which are not true in many 
problems. However, Naïve Bayes achieves high performances on a wide spectrum of prediction problems. 
This paper addresses the ‘equal importance’ of features assumption of Naïve Bayes. We propose that by 
means of heuristics we can assign weights to features according to their importance and improve defect 
prediction performance. We compare the weighted Naïve Bayes and the standard Naïve Bayes predictors’ 
performances on publicly available datasets. Our experimental results indicate that assigning weights to 
software metrics increases the prediction performance significantly.   

1 INTRODUCTION 

Quality of software is often measured by the number 
of defects in the final product. Minimizing the 
number of defects—maximizing software quality— 
requires a thorough testing of the software in 
question. On the other hand, testing phase requires 
approximately 50% of the whole project schedule 
(Harold, 2000; Tahat et.al., 2001). This means 
testing is the most expensive, time and resource 
consuming phase of the software development 
lifecycle. An effective test strategy should therefore 
consider minimizing the number of defects while 
using resources efficiently. 

   Defect prediction models are helpful tools for 
software testing. Accurate estimates of defective 
modules may yield decreases in testing times and 
project managers may benefit from defect predictors 
in terms of allocating the limited resources 
effectively (Song et.al., 2006).   

Defect predictors based on linear regression 
(Munson and Khoshgoftaar, 1990), discriminant 
analysis (Munson and Khoshgoftaar, 1992), decision 
trees, neural networks (Padberg et.al., 1998; 
Khoshgoftaar and Seliya, 2004) and Naïve Bayes 
classification (Menzies et.al., 2007) have been 
analysed in previous research. Among these, Naïve 

Bayes is reported to achieve significantly better 
performances than the other methods (Menzies et.al., 
2007). Naïve Bayes assumes the independence and 
equal importance of provided features despite the 
fact that these do not hold in many cases. 
Nevertheless, Naïve Bayes has a good reputation for 
its prediction accuracy (Domingos and Pazzani, 
1997).  

This paper attempts to tackle the equal 
importance of features assumption of Naïve Bayes. 
As shown in previous research, all software metrics 
may not be good indicators of software defects 
(Basili et.al., 1996). We extend this and assume that 
all software metrics may not have equal effect on 
defect prediction and they should be treated 
accordingly. Our research goal is to develop a 
methodology that permits the use of software 
metrics in terms of their relevance to defect 
prediction. For this purpose we present one existing 
and two new heuristics for determining the degree of 
importance of software metrics and we evaluate 
these in Weighted Naïve Bayes classifier on 
datasets, which are chosen among real software 
applications and publicly provided by NASA MDP 
(Nasa, 2007). 
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2 RELATED WORK 

Linear regression analysis for defect prediction 
treats software metrics as the independent variables 
in order to estimate the dependent variable i.e. defect 
density. Munson and Khoshgoftaar (1992) 
investigate linear regression models and 
discriminant analysis to conclude the performance of 
the latter is better. They use Principal Component 
Analysis (PCA) as a pre-processing step in order to 
eliminate the co-linearity in software metrics. 
Nagappan et.al. (2005) also uses linear regression 
analysis with PCA for the STREW metric suite. 
Decision tree learning is another common method 
that is preferred for its rule generation capabilities 
(Menzies et.al., 2003; Menzies et.al., 2004). Such 
rules are easier to explain to non-technical people 
(Fenton and Neil, 1999).  

Though some research stated against using static 
code measures (Fenton and Ohsson, 2000; Shepperd 
and Ince, 1994), a recent research showed that using 
a Naïve Bayes classifier with log-filtered static code 
measures yields significantly better results than rule 
based methods like decision trees (Menzies et.al., 
2007).  

The number of researches for relaxing the 
assumptions of Naive Bayes have significantly 
increased in recent years. These researches focused 
on modifications to break the conditional 
independence assumption and weighting attributes 
(Lewis, 1998; Zhang and Webb, 2000; Frank et.al, 
2003; Zhang and Sheng, 2004; Hall, 2007). All 
studies reported results that are generally ‘not worse’ 
than the standard Naïve Bayes, while preserving the 
simplicity of the model.  

As for the attributes that are used for 
constructing predictors, some researches prefer 
ranking the features for feature subset selection 
(Mladenic and Grobelnik, 1999; Menzies et.al., 
2007), and there are also researches on using the 
ranking criteria for feature weight assignment 
(Zhang and Sheng, 2004; Auer et.al., 2006). In fact, 
feature subset selection corresponds to ‘hard’ 
weighting of features, i.e. assigning 0 or 1 for 
feature weights. 

In this paper, we aim at combining the best 
practices of the above mentioned studies for 
constructing robust and accurate defect predictors, 
by means of using a weighted Naïve Bayes classifier 
and constructing heuristics for accurate feature 
weight assignment. While above mentioned 
researches employ feature subset selection based on 
the estimated importance of features, they treat the 
selected subset of features equally. On the other 

hand, we propose to treat each feature based on their 
estimated importance and we search for empirical 
evidence for the validity of our approach. 

3 METHODS 

In this section, methods used in this research are 
explained. We first derive the Weighted Naïve 
Bayes method, and then describe three heuristics for 
feature weight assignment. 

3.1 Weighted Naïve Bayes (WNB) 

Although similar Weighted Naïve Bayes formulas 
are given by Zhang and Sheng, (2004) and Hall 
(2007), we will present a complete derivation. 

Standard Naïve Bayes derivation can be obtained 
by placing a special form of multivariate normal 
distribution, as the likelihood estimate in the famous 
Bayes theorem.  By special form of multivariate 
normal distribution we mean that the off-diagonal 
elements of the covariance matrix estimate are 
assumed to be zero, i.e. the features are independent. 
In this case the multivariate distribution can be 
written as the product of univariate normal 
distributions of each feature.  

Bayes theorem states that the posterior 
distribution of a sample is proportional to the prior 
distribution and the likelihood of the given sample 
(Alpaydın, 2004). Formally: 
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In Equation 1, the denominator is referred to as 

the evidence and given by: 
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Evidence is a normalization constant for all classes, 
thus it can be safely discarded. Then Equation 1 
becomes: 
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In a classification problem we compute the 

posterior probabilities P(Ci|x) for each class and 
choose the one with the highest posterior. In general 
the logarithms are used for computational 
convenience, which yields Equation 4. 
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Placing the special form of multivariate normal 
distribution as explained before gives the standard 
Naïve Bayes formula as given in Equation 5. 
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If we update Equation 3 as in Equation 6 in order to 
introduce weights, 
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the Weighted Naïve Bayes estimator is obtained as 
given in Equation 7: 
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3.2 Feature Weight Assignment (WA) 

3.2.1 Heuristic 1 (H1): GainRatio based WA  

GainRatio is mainly used in decision tree 
construction to determine the features that best splits 
the data (Quinlan, 1993). Zhang and Sheng (2004) 
use this heuristic for feature weight assignment. The 
weight of a feature wd, where d=1..D and D is the 
number of features, is given by Equation 8 (Zhang 
and Sheng, 2004). 
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3.2.2 Heuristic 2 (H2): InfoGain based WA 

InfoGain is another method for decision tree 
(Quinlan, 1993). It is also used in other studies for 
feature ranking (Mladenic and Grobelnik, 1999; 
Menzies, 2007). Our goal is to convert these ranking 
estimates into feature weights. Therefore, we 
propose the heuristic given in Equation 9. 
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3.2.3 Heuristic 3 (H3): PCA based WA 

PCA projects the data points onto orthogonal 
principal axes such that the variance in each axis is 
maximized. We claim that features with higher 
weights for determining principal components 
should have higher weights in the prediction 
algorithm. In our proposed heuristic, we use k 
eigenvalue and eigenvector pairs that correspond to 
the 95% of the proportion of variance explained. 
Eigenvalues are written as λ1, λ2, .., λk. Eigenvectors 
are written as eid where i=1..k, d=1..D and D is the 
number of features. Then the weight of feature d is 
estimated as a weighted sum of the corresponding 
eigenvector elements as given in Equation 8. 
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The weights are then scaled to lie in the [0, 1] 
interval by dividing each weight by the maximum 
one. 

4 EXPERIMENTS AND RESULTS 

We have evaluated 8 public datasets (real software 
applications) obtained from NASA MDP Repository 
in our experiments (Nasa, 2007) (See Table 1). 
Sample sizes of the projects vary from 125 to 5589 
modules, which enables experiments in a range of 
both small and large datasets. Each dataset has 38 
features representing static code attributes. Modules 
with error counts greater than zero are assumed to be 
defective.  

We have used probability of detection (pd) and 
probability of false alarm (pf) as the performance 
measures following the research by Menzies et.al. 
(2007). Formal definitions for these performance 
criteria are given in Equations 11 and 12 
respectively and they are derived from the confusion 
matrix given in Table 2. pd is a measure of accuracy 
for correctly detecting the defective modules. 
Therefore, higher pd's are desired. pf is a measure 
for false alarms and it is an error measure for 
incorrectly detecting the non-defective modules. pf 
is desired to have low values. Since we need to 
optimize two parameters, pd and pf, a third 
performance measure called balance is used to 
choose the optimal (pd, pf) pairs. balance is defined 
as the normalized Euclidean distance from the 
desired point (0,1) to (pd, pf) in a ROC curve 
(Menzies et.al., 2007).  

We have compared the standard Naïve Bayes 
classifier with the three Weighted Naïve Bayes 
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classifiers constructed by using the three heuristics 
described in Section 3. We have also reproduced the 
experiments that are reported in Menzies et.al. 
(2007) for comparison.  

Table 1: Datasets from NASA Repository. 

Name 
# 

Features 
#Modules DefectRate(%) 

CM1 38 505 9 
PC1 38 1107 6 
PC2 38 5589 0.6 
PC3 38 1563 10 
PC4 38 1458 12 
KC3 38 458 9 
KC4 38 125 4 
MW1 38 403 9 
 
We have used 10-fold cross-validation in all 

experiments. That is, datasets are divided into 10 
bins, 9 bins are used for training and 1 bin is used 
for testing. Repeating these 10 folds ensures that 
each bin is used for training and testing while 
minimizing the sampling bias. Each holdout 
experiment is also repeated 10 times and in each 
repetition the datasets are randomized to overcome 
any ordering effect and to achieve reliable statistics. 
To summarize, we have performed 10x10=100 
experiments for each dataset and our reported results 
are the mean and standard deviations of these 100 
experiments for each dataset. We have applied t-test 
with α=0.05 in order to determine the statistical 
significance of results. All implementations are done 
in MATLAB environment. Mean results of 100 
experiments for each dataset are tabulated in Table 
3. Statistically significant results are indicated in 
bold face.  

Table 2: Confusion Matrix. 

 Estimated 

Real Defective Non-defective 

Defective A C 

Non-defective B D 
 

pd = (A) / (A+C) (11) 
  

pf = (B) / (B+D) (12) 
 

First thing to notice is that the standard Naïve 
Bayes and PCA based heuristic are outperformed by 
other methods. Both methods show statistically 
significantly worse performances than others in all 
datasets. They also perform similar behaviours to 
each other. From this observation, we conclude that 
Naïve Bayes is innately capable of discovering the 
linear relative importance of features, i.e. lesser 
weighted features already contribute less to the 
computation of posterior probabilities.  

Other heuristics based on InfoGain and 
GainRatio estimates feature weights in a nonlinear 
fashion. In 3 cases (PC1, PC3, KC3), they perform 
equivalently and they are statistically significantly 
better than other methods. In other 3 datasets (PC2, 
KC4, MW1) there is no statistical difference 
between the performances of these heuristics and 
IG+NB. In one case (PC4) our proposed heuristic  
based on InfoGain outperforms all other methods. 
This is also the case for IG+NB in one case (CM1). 

InfoGain and GainRatio heuristics achieve 
higher pd and pf values compared to IG+NB. We 
argue that the projects that require high reliability 
should have higher pd values. The datasets in this 
research come from NASA’s critical systems.  
Therefore, InfoGain and GainRatio based heuristics 
may be preferred over IG+NB.  

Table 3: Results of 10x10=100 hold-out experiments. 

WNB+H1 (%) WNB+H2 (%) WNB+H3 (%) NB (%) IG+NB (%) 
Data 

pd pf bal pd pf bal pd Pf Bal pd pf bal pd pf Bal 

CM1 82 39 70 82 39 70 51 50 50 48 46 51 83 32 74 
PC1 69 35 67 69 35 67 41 38 51 41 38 51 40 12 57 
PC2 72 15 77 66 20 72 31 27 47 30 26 47 72 15 77 
PC3 80 35 71 81 35 72 46 41 52 46 40 52 60 15 70 
PC4 88 27 79 87 24 81 43 35 52 43 35 52 92 29 78 
KC3 80 27 76 83 30 76 45 38 53 41 35 52 48 15 62 
KC4 77 35 70 78 35 71 60 57 51 57 53 52 79 33 72 
MW1 70 38 66 68 34 67 54 51 51 42 40 51 44 07 60 

Avg: 77 31 72 77 32 72 46 42 51 44 39 51 65 20 61 
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Overall evaluation yields 6 wins for InfoGain 
and GainRatio heuristics and 4 wins for IG+NB. 
These results indicate that our approach yields 
comparable and in some occasions better results than 
the ones reported on these datasets so far. Let us use 
a simple ranking scheme for comparing these 
methods: Distribute 3 points (since it is the 
maximum number of concurrent winners) evenly 
among winners in each case, i.e. 3 points to single 
winner, 1.5 points for each in two winners case, and  
1 point for each in three winners case. Then our 
InfoGain based heuristic receives 9.5 points, 
GainRatio based heuristic receives 8 points and 
IG+NB receives 6.5 points.  

In Figure 1, we have plotted the relative weights 
of 38 metrics available in the datasets. Figure 1 
shows the cumulative metric weight sums over 8 
datasets. The plot on the left shows these values for 
InfoGain based heuristic and the plot on the right 
plots values for GainRatio based heuristic. 
Examining Figure 1, we see that metrics enumerated 
with 17 and 36 are never used. These metrics are 
‘Global Data Density’ and ‘Pathological 
Complexity’. (For a complete list of metrics, see 
(Nasa, 2007). An analysis of datasets shows that 
these metrics have a unique value for all modules for 
most of the datasets. Thus, they do not have any 
discriminative power and they are eliminated. Also 
metrics enumerated with 15 and 16 (‘Parameter 
Count’ and ‘Global Data Complexity’) are used only 
in PC4 and KC3 where similar observations are 
valid. The general trend of weight assignment by 
both heuristics is similar. Metrics enumerated by 3, 
12, 29, 33, 35 ,38 which are ‘Call Pairs’, ‘Edge 
Count’, ‘Node Count’, ‘Number of Unique 
Operands’, ‘Total Number of Lines’ and ‘Total 
Number of Line of Code’ respectively, are 
consistently selected by these heuristics. This 
collective set of software metrics are in total 

accordance with the ones that Menzies et. al. (2007) 
reported for subset selection.  

5 CONCLUSIONS 

This paper presented an application of defect 
prediction built on weighted features. We have used 
three heuristics in order to estimate the weights of 
features based on their relative importance. Two 
novel heuristics are introduced for this purpose. We 
have evaluated our approach on Weighted Naïve 
Bayes predictor, which is an extension of standard 
Naïve Bayes. To the best of our knowledge, the 
weighted features approach is a novel one in defect 
prediction literature. We observed linear methods for 
feature weighting lack the ability to improve the 
performance of Naïve Bayes, while non-linear ones 
give promising results. Our results indicated that the 
proposed approach may produce statistically 
significantly better results for defect prediction.  

From a software practitioner’s point of view, 
these results may be useful for detecting defects 
before proceeding to the test phase. Additionally, 
many companies in the software market develop 
their standards or make use of the best practices 
from industry, to determine the thresholds for 
software metrics in order to guide developers during 
implementation. Weights related to these metrics can 
be investigated for sensitivity analysis. Our results 
indicate that the impact of changes in software 
metrics, to the defect rate of the final product should 
vary for different metrics. Since many software 
metrics are in different scales, such an analysis can 
establish units of change for these metrics. All these 
ideas can be implemented as a tool that performs the 
mentioned analysis and offers recommendations to 
developers for overall quality. 
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