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Abstract: In order to solve problems that the usage a human-managed test process caused, the reference company for 
this paper - Italian branch of a multinational organization which works in the domain of large safety-critical 
systems - evaluated the opportunity, as offered by major technology that the market provides, of using 
automatic test management. That technology resulted not sufficiently featured for the company’s quality 
and productivity improvement goals, and we were charged for investigating in deep and eventually 
satisfying the company’s test-management needs of automation. Once we had transformed those goals in 
technical requirements and evaluated that it was possible to realize them conveniently in a software system, 
we passed to analyze, construct, and eventually evaluate in field the “Automatic Test Management” system, 
ATM. This paper is concerned with the ATM subsystem’s Common Core, CC. This allows the behavioral 
emulation of hard-soft components - as part of a distributed real components scenario placed under one or 
more Unix standard operative systems - once we describe those behaviors by using the Unified Modeling 
Language. This paper reports on the ATM-CC’s distinctive characteristics and architecture overview. 
Results from a case study show that, in order to enact a given suite of tests by the ATM-CC, the amount of 
time required is more or less the same for the first test run, but it becomes around ten times less for the 
following test runs, than the time required for managing the execution of those tests by hand. 

1 INTRODUCTION 

The development of safety critical software in an 
industrial environment cannot be apart from the 
execution of a careful testing activity. Before 
designing a safety-critical real-time distributed 
system, a specification of the required behavior of 
the whole system should be produced and reviewed 
by domain experts.  

Additionally, when a test-driven software 
process model is assumed, the well-timed planning 
and early execution of validation and verification 
activities assure a key guidance for the overall 
software development process, the initial phases 
included (Horgan, 1994).  

The goal of the present paper is concerned with: 
(i) Expressing the reference company needs of 

testing safety-critical distributed systems in terms of 
expected behavior (sequence of actions) in response 
to a specific stimulus (sequence of inputs); (ii) 
Developing an engine subsystem that meets those 
needs; (iii) Characterizing that engine, and accepting 
it in field by a case study. 

In the remaining of the paper, Section 2 sketches 
on the Model-Based Testing (MBT). Section 3 
transforms the reference organization’s needs and 
goals in required features for a testing-support 
system. Section 4 presents the philosophy, 
architecture, and functionalities of the Automatic 
Test Management – Common Core (ATM-CC), our 
prototype system, which is based on those features, 
and is the focus of this paper. Section 5 shows the 
results from a case study, which compares the use of 
ATM-CC with the usual manner of enacting 
software test at our reference company. Section 6 
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presents some conclusions, and points to the future 
work. 

2 MODEL-BASED TESTING 

The goal of testing is detection of failures, i.e. 
observable differences between the behaviors of an 
implementation and what is expected on the basis of 
the related requirements specification.  

Model-Based Testing (Apfelbaum, 1997), MBT, 
is a testing approach that relies on explicit behavior 
models, which encode the intended behavior of a 
system and possibly the behavior of its environment 
(Utting, 2007). In the MBT approach, based on 
software requirements, it is possible to derive a test 
data model, which is made by test tuples, i.e. pairs of 
“input” and “output”. The input elements are 
interpreted as test cases for the implementation; the 
output elements are the expected output of the 
system under test (SUT) (Vienneau, 2003). 

Our reference organization works in the safety-
critical domain; hence, some kinds of structural 
testing have to be applied to products. Because these 
are conformant to standard component-based 
message-passing only domain architecture, it is 
possible to map MBT test cases, as derived from the 
system requirements, into test cases concerning the 
behaviors of the architectural components, i.e. 
related interactions. The application of model based 
testing ensures great benefits when the target system 
is a complex system (sometimes called with Flow 
Testing) (Dalal, 1999). 

Let us consider now two types of state-of-the-art 
methods and technologies that may be useful in 
improving the effectiveness of MBT. 
• Formal requirements specification–based 

methods and technologies: in this case, testing 
experts are requested to provide a formal 
specification of some sort of the requirements, 
e.g. as simple as a text file, to an MBT 
technology. This automatically generates suites 
of test cases, i.e. behavioral models of the 
application system, and eventually executes 
those tests. Hence, test-engineering are involved, 
who are able to translate the complexity of the 
application system into a text. 

• CASE-based methods and technologies: in this 
case, testing people are requested to provide a 
formal representation of test cases. Formalisms 
for such a representation include: Software Cost 
Reduction (Hager, 1989), Unified Modeling 
Language, UML (Booch, 2000), Specification 
and Description Language (SDL, 2007), Entity-
Relationship Diagrams (Bagui, 2003), Extended 
Modeling Language, XML (Harold, 2004). The 

successful usages of these formalisms are 
reported by the staffs of significant projects 
(SPEC, 2007), (ConformiQ, 2007), (SAMSTAG, 
2007), (Telelogic, 2007), (ASML, 2007). Let us 
also note that it is different from those named 
above, the formalism that some other projects 
utilized, respectively (DTT, 2007), (GOTCHA, 
2007), (MulSaw, 2007), (Boyapaty, 2002). 
 
Many of the available CASE tools require a 

supplementary activity for writing the test model. 
Additionally, few of those tools base themselves on 
UML (Offut, 1999), and, in case, often they rely on 
a type of diagram for describing a test models, 
which belongs to the UML static view: the 
Statechart Diagram. 

In the remaining of this paper we present a new 
model that relate to the CASE-based method. 

3 TEST-FEATURES 

Based on the expected use cases and the resulting 
requirements, a list of test-features follows, which 
tries to characterize a MBT subsystem, and is able to 
satisfy the needs that our reference organization 
expressed: (1)Emulation of the behavior for one or 
more hard-software components, as part of a 
dynamic scenario. (2)Definition of a basic pattern 
for the description of a component to emulate. 
(3)Simple definition, for each emulated component, 
of its “behavioral chains” (see Section 4.3 for 
details). (4)Parallel processing of the emulated 
components’ behavioral chains. (5)Sequential 
processing of each behavioral chain. (6)Support of 
the conversion to a common exchange language of 
the languages that the real components utilize for 
communicating with their own external world. 
(7)Support of the reuse of previous configuration 
files in the definition of a new test scenario. 
(8)Support for not intrusive recording of meaningful 
activities, as carried out during a test. (9)Support for 
not intrusive recording of the traffic through 
input/output communication links. (10)Creation of 
an interface and related protocol for the remote test 
execution. (11)Support for communication between 
participants to a test scenario upon UDP-IP or TCP-
IP logic links. (12)Support for repetition of single 
test cases or set of them (test suites) in order to 
confirm previous test results, e.g. following 
hard/software changes, or product acceptance tests 
to run at any deployment site. 

AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL SYSTEMS: THE COMMON CORE - Behavioural
Emulation of Hard-soft Components

151



 

4 ATM-COMMON CORE 

ATM-CC is a complex testing subsystem that deals 
with emulating the behavior of a component, as part 
of a dynamic scenario.  

ATM-CC and ATM-Console compose the ATM 
system. The latter subsystem is in the responsibility 
of validating each executed test, and works on test 
data that the ATM-CC collects from the 
communication lines and records into repository. 
The ATM-Console is object of another study (Accili 
et al., 2007) and is not further considered in the 
present paper.  

It is a distinctive feature of the ATM-CC MBT 
subsystem, the usage, as test model, of a kind of 
diagram that should belong to the software 
documentation of each component: the UML 
Activity Diagram. The lifecycle of an ATM-CC is 
composed by the sequence of three states: 
• Configuration: the Common Core loads the 

set of specific directives that concerns the real 
components to test, their communication lines, 
and characteristics of the messages exchanged. 

• Test: the Common-Core carries out all the 
activities needed to emulate the behavior, as 
expected by each emulated component, in the 
scenario that a set of loadable configuration 
files describes. 

• Store: the Common-Core manages the 
recording of simulation data in a persistent 
repository. 

This is to allow the reuse of specific test cases or test 
suites at a later time for testing one more versions of 
the same system, deployments, or other target 
system. These data are also utilized for test 
validation (Accili et al., 2007). 

4.1 Architecture 

The ATM-Common Core is build-up by five macro-
units (see Figure 1): 
• Core Unit: represents the core of the 

subsystem; it is in the responsibility of 
processing the behavioral chains, which 
describe the behaviors that each emulated 
component performs in the test scenario. 

• Configuration Unit: for each component to 
emulate this unit loads a specific configuration; 
in case, it detects lacks of consistency. 

• Recorder Unit: records test data; it also 
records and manages test related data, allowing 
the reuse of test scenarios. 

• Communication Unit: is in the responsibility 
of enabling and managing communication 
between any emulated component and other 
components that participate in the test scenario. 

• Console Interface Unit: exports services for 
the remote control and validation of a test 
scenario. Services exported are divided into 
two categories: 
 Input Services: they allow to load a custom 

configuration for the test scenario 
execution; 

 Output Services: they allow the exporting 
of data useful for test scenario monitoring 
and validation. 

 
Figure 1: The ATM-Common Core subsystem, and its 
architecture and position in ATM-System. 

4.2 Description of Hard-Soft 
Components for Emulation  

It is a novel key feature of the ATM-CC, a new 
pattern that we defined for describing hard-software 
components for their emulation. This pattern is made 
up by three points of view: 
• Behavioral perspective: wraps all the 

behavioral chains; this perspective concerns the 
response of an emulated component to specific 
sequences of inputs. 

• Semantic perspective: wraps all the 
communication languages that any emulated 
component is able to use; this perspective 
allows interaction between components that 
takes place into a test scenario. 

• Topological perspective: wraps all the 
information assuring the correct localization of 
an emulated component into a test scenario; 
this perspective also includes the external 
world’s knowledge, as owned by each 
emulated component. 

4.3 Behavioral Perspective 

The set of behavioral chains compose the behavioral 
perspective. In order to ensure that, in the response 
time available, the emulator carries out all the 
responsibilities that any emulated component owns, 
the emulator has to execute concurrently those 
chains, while emulating the component behavior.  

ICSOFT 2007 - International Conference on Software and Data Technologies

152



 

An UML Activity Diagram (Booch, 2000) 
represents the behavioral perspective in the 
subsystem ATM-CC. Figure 2 shows two very 
simple behavioral chains, which are composed of 
one node each. Figure 2, left side shows the relevant 
elements of a behavioral chain, as it would appear 
by using the generic version of UML 1.5. Figure 2, 
right side shows the semantic specialization of those 
generic elements to the ATM-CC context.  

 
Figure 2: Behavioral Abstraction, a simple example. 

The UML1.5’s Swimlane is used to translate an 
ATM-CC behavioral chain (or “tasklist”) into UML. 
Each chain can be thought as a list of one or more 
ATM-CC “nodes” to be processed in a sequential 
flow. A node is represented by its “firing conditions” 
and “actions”. The UML 1.5’s Action State is used 
to express a node.  

A firing condition of a node can be viewed as a 
clause that enables the node to process its actions 
(i.e. Wait for something). Signal Receipt of the UML 
Activity Diagram’s formalism is utilized to express 
the semantics of an ATM-CC firing condition.  

An action can be viewed as a capability to 
determine observable effects, like sending messages 
to components, tracing a message, starting/stopping 
a tasklist, jumping to a node (i.e. Do something). In 
the Activity Diagram’s formalism, the UML Signal 
Sending is utilized to represent the semantics of an 
ATM-CC action.  

The ATM-CC semantics considers three kinds of 
nodes (see Figure 3): And-node, Or-node, and Cond-
node, which differences are made up by the type of 
relationship between the firing condition set and the 
action set. The actions, as an “And-node” owns, are 
executed when it is completely satisfied (join-bar) 
the set of the node’s firing conditions; the actions, as 
owned by an “Or-node”, are executed as soon as any 
firing condition is satisfied for the node (fork bar). 
The semantic hidden by a “Cond-node” is quite 
different: there are subsets of firing conditions that 
enable subsets of actions, respectively. 

 
 
 

Figure 3: Kind of nodes in a behavioral abstraction. 

4.4 Semantic Perspective 

It composes the semantic perspective of any 
emulated component, the set of the communication 
languages that such a component is able to use. 

A separate XML file provides the definition of 
an allowed communication language. This is made 
on a set of message patterns. Using an ad-hoc syntax 
to fill in XML files allows specifying patterns of 
messages. Such a message is structured as: f ie lds 
(each typed), i tera t ions  (a fixed sequence of fields, 
which occurs one or more times in the message), and 
var iants  (a variable sequence fields, which occurs 
one or more times in the message).  

In order to execute a single test scenario, i.e. a 
certain suite of test cases, it is possible to load 
different communication languages from the XML 
files, so allowing the emulated components to utilize 
multiple communication languages. 

4.5 Topological Perspective 

The topological perspective is represented by a set 
of XML files describing the context of the test’s 
scenario, and the knowledge that each emulated 
component owns. There are separate files for 
instructing ATM-CC about (i) connections to set up, 
(ii) messages to send on the logical lines, (iii) events 
to recognize, (iv) traces to emit, (v) operator-
consents to explicitly ask for, and (vi) triggers to 
activate.  

The knowledge, as the end-users put into 
configuration files, belongs to all the presented 
perspectives. That knowledge is requested to be 
correct, complete, and consistent. Correctness, 
completeness, and consistency are tied by the 
information’ syntax, the coverage of all the 
necessary aspects and the check of information 
reciprocally linked, respectively.  

5 CASE-STUDY 

Let us present now results from a case study that we 
conducted in field to analyze the effectiveness and 
the efficiency of the ATM-CC. Because  they still 
managed tests by hand, there is no technology 
already in use at the reference organization that we 
might compare with the ATM-CC subsystem.  

And-Node Or-Node Cond-Node
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Consequently, in order to evaluate pros and cons 
of ATM-CC, our choice was to adopt a very large 
distributed safety critical application system, 
previously developed and tested by hand at the 
reference organization, as the case study object.  

The aim of our case study was to compare 
performances of hand-made and ATM-CC managed 
-based tests for the second and successive test runs. 
We did not consider the first test of the application 
system because this workflow includes the 
production of unique artifacts and the development 
of specific activities that do not occur further and 
which efforts are reused by all successive tests.  

Let us show now what we made in our case 
study: (1) interviewing the original testers to get 
information about the process enacted to conduct 
any test run except the first one for that system, and 
collecting data concerning the cumulative time they 
spent; (2) interviewing again the original testers to 
get information about test cases they had been 
running (Topological perspective); (3) choosing a 
many use-case of the application system to utilize in 
the case study; this use case models the system 
bootstrap, and includes a sequence of interactions 
between the end-user and the system through the 
graphical user interface of the emulated component; 
(4) obtaining the Sequence Diagrams-like 
description for that use case, which is already 
available at the company site (in fact, these diagrams 
are artifacts that resulted from the first test run of the 
application system, and its subsequent maintenance); 
(5) transposing those Sequence Diagrams into the 
XML Metadata Interchange (XMI) representation of 
an Activity Diagram, and describing the related 
instances of messages in XML notation (Behavioral 
perspective); (6) using the original design 
documentation of the case study system to obtain the 
communication languages, as used by the system 
components; (7) translating those languages to XML 
notation by constructing and eventually using a 
proper compiler (Semantic perspective); (8) 
representing the emulate component in terms of 
components’ 3-views; (9) configuring the ATM-CC, 
based on the given XML and XMI  files; (10) 
running automatic managed test of the application, 
and measuring time spent by the operator to execute 
the test (Automatic-Test);  (11)comparing the testing 
times as collected in the first and last points above.  

Concerning the hand-made, the testing duration 
time (tdt) of the case study’s use case (i.e. tdtHAND) 
amounted to fifty minutes,  while the time needed to 
execute the automatically the test for same use case 
(i.e. tdtATM-CC) amounts to five minutes.  

 
Expression 1: Ratio between test times without and with 
ATM-CC usage. 

 
In order to understand the result that Expression 

1 shows, in the remaining we reason on the factors 
that affect test management. In particular, we focus 
our reasoning on the impact that those factors have 
on the duration time of a test session. 

The set of factors – both objective, i.e. related to 
the object to test, and subjective, i.e. related to the 
experience of who performs the test – which mainly 
affects the overall testing time it’s quite larger, 
including: Inexperience of the tester (I), Number of 
Requisites that a test case (i) does cover (NRi), 
Number of Test cases (NT), and the kind (j) of each 
requisite, which the current test case impacts on 
(Kij).  

Let the Complexity index (C) of a test be a 
weighted average on those factors: 

 

 
Expression 2: Complexity index of test. 

Let us denote with td t(C)  a function to convert 
the Complexity index, as shown by Expression 2, 
into the duration time needed to enact the 
corresponding test session. We are still conducting 
empirical investigations about values to assign to 
C’s weights for hand-made and automatic tests, 
respectively. Additionally, we are still not ready to 
make proposals about the forms that the function 
td t(C)  could assume in those cases. However, it is 
our conjecture that both the following items depend 
on the level of automation that we are able to 
provide in support of testing conduction: (i) the C’s 
weights, and (ii) the forms of td t(C) .  

Concerning the former, some of the C’s weights 
tend to zero when ATM-CC is used to support test, 
including wKij; indeed, once that the ATM-CC has 
been configured for a test suite and launched, it is a 
machine rather than a human in control of the test 
run; consequently, the test execution tends to 
become independent from the human reaction time.  

Concerning the td t(C)  forms , the test duration 
time depends more than linearly, possibly 
exponentially, on the complexity index, in our 
expectation: when the test complexity grows, e.g. by 
factor of two, the automaton just will have to work 
two times as before, because of the growth of 
objective factors, while the human effort would 
grow more than two times, because of the additional 
effect caused by the greater influence both of 
human-related factors, like the number, and the 
relatively less experience, of the involved people.  

In conclusion, concerning td t(C) , our 
expectation is that both tdtA T M - C C(C)  and 
td tH A N D(C)  grow with C, but the former grows 
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light linearly, while the latter tends to grow 
exponentially. Our case study considered an 
application that represents the reference company’s 
typical products, which means that ATM-CC is 
expected to satisfy systematically the reference 
organization’s testing needs. However, based on the 
considerations above, moving our testing support 
system to other organizations should be carefully 
evaluated: in fact, there are software products of 
many kinds, for which hand-made test management 
should still be more convenient than introducing 
ATM-CC-like automatisms. 

6 CONCLUSIONS AND FUTURE 
WORK 

This paper first presented the philosophy, 
architecture, and features of a subsystem, ATM-CC, 
for providing automatic support to test management 
of safety-critical systems, and then briefed on the 
productivity of ATM-CC in comparison with the 
productivity shown by the hand-made approach, as 
still adopted at the reference organization for this 
study. Thanks to ATM-CC, test management at the 
reference organization promises to be no further a 
time and resource consuming heavy activity. 
Moreover, the adoption of ATM-CC allows reducing 
the rate of those many errors, which the involvement 
of human testers usually provokes. Furthermore, 
ATM-CC showed to be specially indicated for 
testing real-time interactive scenarios, where the 
target system strongly interacts with one or more 
human operators by complex graphical interfaces. 

Future works will address: (i) emulation of 
multiple components by the execution of a single 
ATM-CC instance; (ii) extension of the formalism 
for describing component behavior; (iii) introduction 
of capabilities for forking and joining the 
components’ behavioral chains. 
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