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Abstract: In this paper, we confront a variant of the cutting-stock problem with multiple objectives. It is an actual 
problem of an industry that manufactures plastic rolls under customers’ demands. The starting point is a 
solution calculated by a heuristic algorithm, termed SHRP that aims mainly at optimizing the two main 
objectives, i.e. the number of cuts and the number of different patterns; then the proposed multi-objective 
genetic algorithm tries to optimize other secondary objectives such as changeovers, completion times of 
orders weighted by priorities and open stacks. We report experimental results showing that the multi-
objective genetic algorithm is able to improve the solutions obtained by SHRP on the secondary objectives 
and also that it offers a number of non dominated solutions, so that the expert can chose one of them 
according to his preferences at the time of cutting the orders of a set of customers. 

1 INTRODUCTION 

This paper deals with a real Cutting-Stock Problem 
(CSP) in manufacturing plastic rolls. The problem is 
a variant of the classic CSP, as it is usually 
considered in the literature, with additional 
constraints and objective functions We have solved 
this problem in (Puente et al. 2005, Varela et al. 
2006 ) by means of a GRASP algorithm (Resende 
and Ribeiro, 2002) termed Sequential Heuristic 
Randomized Procedure (SHRP), which is similar to 
other approaches such as the SVC algorithm 
proposed in (Belov and Scheithauer, 2006). Even 
though SHRP tries to optimize all objective 
functions, in practice it is mainly effective in 
optimizing the main two ones: the number of cuts 
and the number of patterns. It is due to SHRP 
considering all objective functions in a hierarchical 
way that it pays much more attention to the first two 
ones than to the remaining. In this work we propose 
a Multi-Objective Genetic Algorithm (MOGA) that 
starts from a solution computed by SHRP algorithm 
and tries to improve it regarding three secondary 
objectives: the cost due to changeovers or setups, the 

orders’ completion time weighted by priorities and 
the maximum number of open stacks.  
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Figure 1: Working schema of the cutting-machine. 

The paper is organized as follows. Next section 
is devoted to briefly describe the production process 
of plastic rolls. In section 3, the problem formulation 
is given. As this formulation is rather complex, in 
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section 4 we have introduced an example to clarify 
both the formulation and the whole process of 
obtaining a solution. In section 3, the main 
characteristics of the proposed MOGA are 
described. In section 4, we report results from a 
experimental study. Finally, in section 5, we 
summarize the main conclusions and some ideas for 
future work.  

2 PRODUCTION PROCESS 

Figure 1 shows the schema of the cutting machine. 
A number of rolls are cut at the same time from a 
big roll according to a cutting pattern. Each roll is 
supported by a set of cutting knives and a pressure 
roller of the appropriate size. At each of the borders, 
a small amount of product should be discarded, 
therefore there is a maximum width that can be used 
from the big roll. There is also a minimum width, 
due to the capability of the machine to manage trim 
loss. Moreover, a maximum number of rolls can be 
cut at the same time. When the next cut requires a 
different cutting pattern, the process incurs in a setup 
cost due to changing cutting knives and pressure 
rollers. 

The problem has also a number of constraints 
and optimization objectives that make it different 
from conventional formulations. For example 
underproduction is not allowed and the only 
possibility for overproduction is a stock declared by 
the expert. Once a cut is completed, the rolls are 
packed into stacks. The stack size is fixed for each 
roll width, so a given order is composed by a 
number of stacks, maybe the last one being 
uncompleted. Naturally, only when a stack is 
completed it is taken away from the proximity of the 
cutting machine. So, minimizing the number of open 
stacks is also convenient in order to facilitate the 
production process. Moreover, some orders have 
more priority than others. Consequently the delivery 
time of orders pondered by the client priority is an 
important criterion as well.  

3 PROBLEM FORMULATION 

The problem is a variant of the One Dimensional 
Cutting-Stock Problem, also denoted 1D-CSP. In 
(Gilmore and Gomory, 1961) the first model is 
proposed for this problem. It is defined by the 
following data: (m, L, l=(l1,...,lm), b = (b1,...,bm)), 
where L denotes the length of each stock piece (here 

the width of the big roll), m denotes the number of 
piece types (orders) and for each type i=1,…,m, li is 
the piece length (roll width), and bi is the order 
demand. A cutting pattern describes how many 
items of each type are cut from a stock length. Let 
column vectors Aj=(a1j,…,amj) ∈ Ζ+

m, j=1,…,n, 
represent all possible valid cutting patterns, i.e. those 
satisfying 

∑=
≤

mi iij Lla
,...,1

 

where aij is the number of pieces of order i that are 
generated by one application of the cutting pattern 
Aj. Let xj, j=1,…,n, be the frequencies, i.e. the 
number of times each pattern is applied in the 
solution. The model of Gilmore and Gomory aims at 
minimizing the number of stock pieces, or 
equivalently minimizing the trim-loss, and is stated 
as following 

∑ =
− =

nj j
CSPD xz

,...,1
1 min  

mibxats inj jij ,...,1,..
,...,1

=≥∑ =
 

njx j ,...,1,Ζ =∈ +
 

From this formulation, the problem is usually 
solved by Linear Programming based methods 
(Umentani et al. 2003). However, this model is not 
directly applicable to our case mainly due to the 
non-overproduction constraint, but it can be easily 
adapted as we will see in the sequel. We start by 
giving a detailed formulation of the main problem; 
that considering all characteristics and optimization 
criteria relevant from the point of view of the 
experts. As the number of optimization criteria is too 
large to deal with all of them at the same time and 
the search space could be very large, we have opted 
by introducing a simplified problem; i.e. a problem 
with a lower number of objective functions and also 
with a smaller search space in general. Once the 
simplified problem is solved, the solution will be 
adapted to the original problem; in this process all 
the objectives will be considered. 

3.1 The Main Problem 

In order to clarify the problem definition, we present 
the data of the machine environment and the clients’ 
orders, the form and semantics of a problem 
solution, the problem constraints and the 
optimization criteria in the hierarchical order in 
which they are usually considered by the expert. 
Given 

• The set of parameters of the cutting machine: 
the maximum width of a cut Lmax, the minimum 
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width of a cut Lmin, the maximum number of 
rolls that can be generated in a cut Cmax, the 
minimum and the maximum width of a single 
roll, Wmin and Wmax respectively, and the 
increment of width ΔW between two 
consecutive permitted roll widths.  

• The setup costs. There is an elementary setup 
cost SC and some rules given by the expert that 
allows calculating the total setup cost from a 
configuration of the cutting machine to the next 
one. The setup cost is due to roller and cutter 
changes as follows. The cost of putting in or 
taking off a pressure-roller is SC; the cost of 
putting in an additional knife is 3SC, and the 
cost of dismounting a knife is 2SC.  

• The types of pressure-rollers PR = 
{PR1,…,PRp} and the mapping FPR from roll 
widths to pressure-rollers.  

• The mapping FST from roll widths to stack sizes 
or number of rolls in each stack unit. 

• The orders description given by (M={1,...,m},  
b = (b1,...,bm) , l=(l1,...,lm),  p=(p1,...,pm)) where 
for each order i = 1,…,m,  bi  denotes the 
number of rolls, li denotes the width of the rolls 
and  pi the order priority. 

• The stock allowed for overproduction  (S 
={m+1,...,m+s}, bs = (bm+1,...,bm+s), ls = 
(lm+1,...,lm+s)) where for each i=1,…,s, bm+i 
denotes the number of rolls of type m+i allowed 
for overproduction and lm+i denotes the width of 
these rolls. 

• The set of feasible cutting patterns, for the 
orders and stock given, A where each Aj∈A is, 
Aj=(a1j,…,amj,a(m+1)j,…,a(m+s)j) ∈ Ζ+

m+s and 
denotes that, for each i=1,…,m+s, aij rolls of 
order i are cut each time the cutting pattern Aj is 
applied. A cutting pattern Aj is feasible if and 
only if both of the following conditions hold 

∑
∪∈

≤=≤
SMi

iijj LlaLL maxmin
,   ∑

∪∈

≤=
SMi

ijj CaC max

being Lj and Cj the total width and the number 
of rolls of pattern Aj respectively. Dj = Lmax – Lj 
denotes the trim-loss of the cutting pattern.  

The objective is to obtain a cutting plan (Π, x), 
where Π=(A1,…,A|Π|)∈A|Π|  and x = (x1,...,x|Π|) ∈Ζ+

|Π| 
denotes the pattern frequencies.  The cutting patterns 
of Π are applied sequentially, each one the number 
of times indicated by its frequency. Aj

l, 0≤j≤|Π|, 

0≤l≤xj, denotes the lth cut corresponding to pattern 
Aj and CI(Aj

l) is the cut index defined as 

( ) ∑ −=
+=

1,...,1 jk kl
j lxACI  

Given an order i∈M its first roll is generated in cut 
Aj

1 such that Aj is the first pattern of Π with aij ≠ 0, 
this cut is denoted CUstart(i). Analogously, the last 
roll of order i is generated in cut Ak

xk so that Ak is the 
last pattern of Π with aik ≠ 0, this cut is denoted 
CUend(i). 

As we have considered feasible cutting patterns, 
the only constraint that should be required to a 
solution is the following  
• The set of rolls generated by the application of 

the cutting plan (Π, x) should be composed by 
all rolls from the orders and, eventually, by a 
number of rolls from the stock. That is, let si

  is 

the number of rolls of stock i∈S in the solution 

∑=∈∀
∈

jiji xasSi ,
ΠA j

Then, the constraint can be expressed as 
follows: 

 

∑
∈

=∈∀
ΠA

ijij
j

bxaMi ,  
ii bsSi ≤≤∈∀ 0,

Regarding objective functions, as we have remarked, 
we consider two main functions  

1. Minimize the number of cuts, given by 
∑j=1,…,|Π|xj. The optimum value is denoted 
z1D-CSP. 

2. Minimize the setup cost, given by ∑j=1,…,|Π| 
SU(A j-1, A j), where SU(Aj-1, Aj) denotes the 
setup cost from pattern Aj-1 to pattern Aj 
calculated as it is indicated above.  
Configuration A0 refers to the situation of the 
cutting machine previous to the first cut. 

And two secondary functions  

3. Minimize the completion times of orders 
weighted by their priorities given by 

( )( )∑∈Mi endi iCUCIp  

4. Minimize the maximum number of open stacks 
along the cut sequence. Let R(i,Aj

l) denote the 
number of rolls of order i generated from the 
beginning up to completion of cut Aj

l 

( ) laxaAiR ij
jk

kikl
j += ∑

−= 1,..,1
,  

and let OS(i,Aj
l) be 1 if after cut Aj

l there is an 
open stack of order i and 0 otherwise. Then, the 
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maximum number of open stacks along the cut 
sequence is given by 

( )∑∈=Π= Mi l
j

xlj AiOS
j

,max ,...,0|,|,...,1
 

3.2 The Simplified Problem 

In the main problem, as formulated in the previous 
section, it is often the case that two or more orders 
have the same width or a stock has the same width 
as one of the orders. So, from the point of view of 
the cutting process, two cutting patterns Ai and Aj are 
equivalent if both patterns define the cutting of the 
same number of rolls of the same sizes, i.e. given the 
set of widths L = {le, e∈M∪S}, with cardinal |L|= 
ms, ms≤m+s we have 

 
LlaaAA

llsmk kjllsmk ki
ji

kk
∈∀=⇔≡ ∑∑ =+==+=

,
,...,0,,...,0

 

 
Now the simplified problem can be stated as 

follows. Given 
• The set of parameters of the cutting machine, 

the setup costs, the types of pressure-rollers and 
mapping FPR: as they are in the main problem 
and the mapping function FST  as they are in the 
main problem. 

• The simplified orders description given by 
(M’={1,...,m’},  b’ = (b’1,...,b’m’) , 
l’=(l’1,...,l’m’)), where for each order i = 1,…,m’,  
b’i  denotes the number of rolls and l’i∈L 
denotes the width of the rolls. The simplified 
orders list b’ are obtained from the original 
order list b so as  

∑ ==
=

ik llmk ki bb
',...,1

'  

• The stock allowed for overproduction (S’ 
={m’+1,...,m’+s}, bs’ = (b’m’+1,...,b’m’+s), ls’ = 
(l’m’+1,...,l’m’+s)) where for each i=1,…,s, b’m’+i = 
bm+i denotes the number of rolls of type m’+i 
allowed for overproduction and l’m’+i = lm+i∈L 
denotes the width of these rolls (notice that two 
different stock orders cannot have the same 
width). Here both l’ and ls’ are lists with no 
repeated elements, so they can be seen as sets 
such that l’∪ls’=L, although, it is possible that 
l’∩ls’≠∅. In what follows, we assume L to be 
ordered, beginning with l’1,...,l’m’ followed by 
the elements from ls’ that do not belong to l’. 
L=(l’1,….., l’ms), ms≤m’+s. 

• The set of simplified feasible cutting patterns 
for the simplified orders and stock given, E, 
obtained from the set of feasible cutting patterns 

for the original problem A, |E|≤|A|, where 
every Ej∈ E is Ej=(e1j,…,emsj) ∈ Ζ+

ms meaning 
that, for each i=1,…,ms, eij rolls of width l’i are 
cut each time the cutting pattern Ej is applied. In 
other words, each element of E is an 
equivalence class of the quotient set of A with 
the above relation, so it is a simplified 
representation of a number of cutting patterns of 
A. 

The objective is to obtain a simplified cutting plan 
(Π’,x’), where Π’=(E1,…,E|Π’|)∈ E|Π’| and 
x’=(x’1,...,x’|Π’|)∈Ζ+

|Π’| denotes the pattern 
frequencies.  

As all the simplified cutting patterns are feasible, 
the only constraint that should be requited to a 
solution is the following  
• The set of rolls generated by the application of 

the simplified cutting plan (Π’, x’) should be 
composed by all rolls from the orders and, 
eventually, by a number of rolls from the stock. 
That is, let  s’i

   the number of rolls of stock of 
width l’i in the solution, being 0 if there is no 
m’+k ∈S’ such that l’i=l’m’+k,  

∑
∈

=+∈∀
'

''},,..,1'{
ΠE

jiji
j

xesmsmi  

Then, the constraint can be expressed as 
follows: 

∑
∈

+=∈∀
'

''','
ΠE

iijij
j

sbxeMi , 

  0≤ s’i≤b’m’+k  

The objective functions are 

1. Minimize the number of cuts calculated by 
 ∑ j=1,…,|Π’| x’j. 

2. Minimize the number of simplified cutting 
patterns |Π’|. 

3. Maximize the amount of stock generated, that is 
∑i=1,..,ms l’is’i, so the trim-loss is minimized for a 
given number of cuts. 

Now let us to clarify how a solution of the simplified 
problem can be transformed in a solution to the main 
problem. To do so, we have to map each simple cut 
from a simplified pattern Ej to any of the cuts of 
pattern Ak of the equivalence class defined by Ej. In 
doing so, we can consider different orderings in the 
simplified cutting plan, and also different orderings 
between the single cuts derived from a simplified 
cutting pattern, in order to satisfy all the 
optimization criteria of the main problem. As we can 
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observe, objectives 1 and 3 are the same in both 
problems, but objective 2 is different. The reason to 
consider objective 2 in the simplified problem is that 
minimizing the number of patterns |Π’| it is expected 
that the setup cost of the main problem is to be 
minimized as well. This is because the setup cost 
between two consecutive cuts Ak and Al of the main 
problem is null if both Ak and Al belongs to the same 
equivalence class Ej. 

To solve this simplified problem, in (Puente et al. 
2005 and Varela et al. 2007) we have proposed a 
GRASP algorithm. Then, the solution given by this 
algorithm is transformed into a solution to the main 
problem by a greedy algorithm that assigns items to 
actual orders so as to optimize objectives 2, 3, and 4 
in hierarchical order, while keeping the values of the 
first two objectives. To be more precise, we clarify, 
in the next section, how a simplified solution is 
transformed into an actual solution by means of an 
example. 

4 AN EXAMPLE 

In this section we show an example to clarify the 
whole process of obtaining a cutting plan for the 
main problem and, in particular, how a simplified 
solution is transformed in a solution to the main 
problem by MOGA. The problem data and final 
results are displayed as they are by the application 
program. Figure 2 shows an instance and the 
corresponding simplified problem. A real instance is 
given by a set of orders, each one defined by a client 
name, a client identification number, the number of 
rolls, the width of the rolls and the order priorities. 
Additionally, the maximum and minimum allowed 
width of a cut should be given, in this case 5500 and 
5700 respectively and also a stock description to 
choose a number of rolls from if it is necessary to 
obtain valid cutting patterns. In this example up to 
10 rolls of each width 1100, 450 and 1150 could be 
included in the cutting plan. Furthermore, some 
other parameters (not shown in Figures) are 
necessary, for instance, two additional data should 
be given to evaluate the number of open stacks and 
setup cost: the number of rolls that fit in a stack 
(mapping FST) and the correspondence between the 
size of pressure rollers and the width of the 
supported rolls (mapping FPR). Here we have 
supposed that every stack contains 4 rolls and that 
the correspondence between pressure roller types 
and width rolls is the following: type 1 (0-645), type 
2 (650-1045), type 3 (1050-1345), type 4 (1350-
1695). All the allowed widths are multiples of 5 and 
the minimum width of a roll is 250 while the 

maximum is 1500. Finally, the maximum number of 
rolls in a pattern is 10. 

 
a) 

 
b) 

Figure 2: An example of problem data (main and 
simplified instance). 

As we can observe in Figure 1, the main instance 
with 10 orders is reduced to a simplified instance 
with only 6 orders. This is a conventional 1D-CSP 
instance with two additional constraints: the 
maximum number of rolls in a pattern and the 
minimum width of a pattern. Figure 2 shows a 
solution to the simplified problem with 21 cuts and 4 
different patterns, where 3 stock rolls have been 
included in order that the last pattern to be valid. 
Figure 3 shows the final solution to the main 
problem. The figure shows the order identifiers, 
where 0 represents to the stock. A solution is a 
sequence of cutting patterns, where each pattern 
represents not only a set of roll widths, but also the 
particular order the roll belongs to. The actual 
solution is obtained from a simplified solution by 
means of a greedy algorithm that firstly considers 
the whole set of individual cuts as they are expressed 
in the simplified solution. Then it assigns a customer 
order to each one of the roll widths in the simplified 
cuts, and finally considers all different actual 
patterns maintaining the order derived from the 
simplified solution. The MOGA proposed in this 
paper starts from this solution and tries to improve it 
by considering different ordering of the cutting 
patterns. 
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Figure 3: A cutting plan for the problem of Figure 2. 

The changeover of each pattern refers to the cost 
of putting in and out cutting knives and pressure 
rollers from the previous pattern to the current one. 
As we can observe, the first pattern has a 
changeover cost of 28 because it is assumed that it is 
necessary to put in all the 7 cutting knives and 7 
pressure rollers before this pattern. In practice, this 
is not often the case as a number of cutting knives 
and pressure rollers remain in the machine from 
previous cuts. Regarding open stacks, each column 
shows the number of them that remain incomplete in 
the proximity of the machine from a cut to the next 
one, i.e. when a stack gets full after a cut, or it is the 
last stack of an order, it is not considered.  

5 MULTIOBJECTIVE GENETIC 
ALGORITHM 

According to the previous section, the encoding 
schema is a permutation of the set of patterns 
comprising a solution. So, each chromosome is a 
direct representation of a solution, which is an 
alternative to the initial solution produced by the 
greedy algorithm. The initial solution is the one of 
Figure 3 which is codified by chromosome (1 2 3 4 5 
6 7 8 . . . 21), i.e. each gene represents a single cut. 
As objectives 2, 3 and 4 depend on the relative 
ordering of patterns and also on their absolute 
position in the chromosome sequence, we have used 
simple genetic order based operators (Goldberg, 
1989, chap. 5) that maintain these characteristics 
from parents to offsprings.  

The algorithm structure is quite similar to a 
conventional single GA: it uses generational 
replacement and roulette wheel selection. The main 

differences are due to its multi-objective nature. The 
MOGA maintains, apart from the current population, 
a set of non dominated chromosomes. This set is 
updated after each generation, so that it finally 
contains an approximation of the pareto frontier for 
the problem instance. 

In order to assign a single fitness to each 
chromosome, the whole population is organized into 
dominant groups as it follows. The first group is 
comprised by the non dominated chromosomes. The 
second group is comprised by the non dominated 
chromosomes from the remaining population and so 
on. The individual fitness is assigned so that a 
chromosome in a group has a larger value than any 
chromosome in the subsequent groups. Moreover, 
inside each group, the fitness of a chromosome is 
adjusted by taking into account the number of 
chromosomes in its neighbourhood in the space 
defined by the three objective functions. The 
chromosomes’ neighbors are those that are in the 
chromosome’s niche count. The evaluation 
algorithm is as it follows. 

 
Step 0. Set F to a value sufficiently large 

Step 1. Determine all non-dominated chromosomes 
Pc from the current population and assign F to 
their fitness. 

Step 2. Calculate each individual’s niche count mj: 

( )∑
∈

=
cPk

jkj dshm  

where 

( ) ( )
⎩
⎨
⎧ <−

=
otherwise0

 if1 2
sharejksharejk

jk
dddsh σσ  

and djk is the phenotypic distance between two 
individuals j and k in Pc and σshare is the 
maximum phenotypic distance allowed between 
any two chromosomes of Pc to become 
members of a niche. 

Step 3. Calculate the shared fitness value of each 
chromosome by dividing it fitness value by its 
niche count. 

Step 4. Create the next non dominated group with 
the chromosomes of Pc, remove these 
chromosomes from the current population, set F 
to a value lower than the lowest fitness in Pc, go 
to step 1 and continue the process until the 
entire population is all sorted. 

This evaluation algorithm is adapted from (Zhou and 
Gen, 1999). In their paper, G. Zhou and M. Gen 
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propose a MOGA for the Multi-Criteria Minimum 
Spanning Tree (MCMSP). In the experimental study 
they consider only two objective functions. 

In order to compute djk and σshare values we 
normalize distances in each one of the three 
dimensions to take values in [0,1]; this requires 
calculating lower and upper bounds for each 
objective. The details of these calculations are given 
in (Muñoz, 2006). Also, we have determined 
empirically that σshare = 0,5 is a reasonable choice. 

6 EXPERIMENTAL STUDY 

In this section we present results from some runs of 
a prototype implemented in (Muñoz, 2006) for the 
problem instance of Figure 2. The program is coded 
in Builder C++ for Windows and the target machine 
was Pentium 4 at 3,2 Ghz. with HT and 1Gb of 
RAM. 

Table 1: Summary of results from three runs of MOGA 
starting from the solution of Figure 3 for the problem of 
Figure 1. Parameters of MOGA refer to /Population 
size/Number of generation/, the remaining Crossover 
probability/Mutation probability/σshare are 0,9/0,1/0,5. 
Each cell shows the cost of  /changeovers/weighed 
times/maximum open stacks. 

Run 1 2 3 
Pars. /200/200/ /500/500/ /700/700/ 

Time(s.) 37 649 1930 
49/188/6 47/176/6 39/172/6 (*) 
49/186/7 47/184/5 (*) 47/184/5 (*) 

44/196/5 (*) 39/179/7  

 
Pareto  
frontier  
reached 

 45/184/6  
(*) These values represent solutions non-dominated by 
any other reached in all three runs 

 In the first set of experiments, the MOGA starts 
from the solution of Figure 2. Table 1 summarizes 
the values of the three objective functions 
(changeovers, weighed time and maximum open 
stacks) for each of the solutions in the approximate 
pareto frontier obtained in three runs with different 
parameters. As we can observe, the quality of the 
solutions are in direct ratio with the processing time 
given to the MOGA. The values of objective 
functions for the initial solution of Figure 3 are 
47/188/5, which is dominated by some of the 
solutions of Table 1. So, it is clear that it is possible 
to improve on secondary objectives in solutions 
obtained by procedure SHRP. 

Table 2: Summary of results of MOGA starting from 9 
different simplified solutions to the instance of Figure 2a 
with the same values of number of cuts (21) and patterns 
(4), except solution 6 which has 3 patterns, with different 
amount of stock generated. For each instance, two runs 
have been done with parameters /500/500/0,9/0,1/0,5, the 
first (Normal) in the same conditions as before; while in 
the second, the niche count is not computed but it is taken 
as 1 in all cases. 

Inst. Initial Normal Niche c. = 1 
1 39/184/5 38/174/5 (*) 55/188/6 
  38/197/4 (*)  42/212/8 
   48/199/6 
   50/197/5 
   49/190/6 
   52/190/5 
   48/201/5 

2 39/187/5 38/174/5 (*) 38/174/5 (*) 
  38/197/4 (*)  

3 43/187/5 42/174/5 (*) 42/174/5 (*) 
  42/197/4 (*)  

4 46/185/5 43/185/5 (*) 55/177/5 (*) 
    

5 56/185/5 55/177/5 (*) 54/194/7 (*) 
   63/182/6 

6 36/186/5 38/177/5 (*) 38/177/5 (*)  
7 56/192/5 50/188/5 (*) 50/203/5 
   50/197/6 
   50/195/7 

8 55/213/5  61/193/5  56/181/5 (*) 
  63/179/6 (*) 52/182/5 (*) 
  70/188/5  67/173/5 (*) 
  71/179/5  63/179/6 (*) 
  60/180/6 (*)  62/180/6 
  71/178/6   
  61/193/5   

9 42/201/6 (*) 54/180/6 51/177/7 (*) 
  46/181/5 (*) 52/176/7 (*) 
  55/180/5  44/181/6 (*) 
  44/182/5 (*) 53/172/7 (*) 
  60/179/6  54/169/7 (*) 
  59/183/4 (*) 54/173/5 (*) 

(*) These values represent solutions non-dominated by 
any other reached from the same simplified solution 

In the second set of experiments, we have taken 
9 more simplified solutions, different from that of 
Figure 2b, and have applied MOGA to each of them 
with the same parameters as in the second run of 
Table 1. In these experiments, we have considered 
also the MOGA without fitness adjustment, i.e.  by 
considering a niche count equal to 1 in all cases. The 
results are summarized in Table 2. As we can 
observe, in general, MOGA reaches better solutions 
with fitness adjustment, even though it takes a larger 
time (about 640 s. versus 600 s.). Only for instances 
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8 and 9 is the version without fitness adjustment 
equal or better. On the contrary, for instance 1 the 
results without fitness adjustment are clearly much 
worse. These results show that MOGA is able to 
reach solutions better than the initial one. Here it is 
important to remark that the initial solution is not 
included into the initial population of MOGA and 
that this population is completely random; i.e. all 
cuts are randomly distributed, what usually 
translates into a very high changeover cost. In 
practice, good solutions tend to aggregate equal cuts 
consecutively in order to minimize changeovers. 
This fact could be exploited when generating the 
initial population in order to reduce the computation 
time required by MOGA. 

Also, these results suggest that the neighborhood 
strategy should be reconsidered, in particular that a 
static value for parameter σshare is not probably the 
best choice. 

7 CONCLUSIONS 

In this paper we have proposed a multi-objective 
genetic algorithm (MOGA) which aims to improve 
solutions to a real cutting stock problem obtained 
previously by another heuristic algorithm. This 
heuristic algorithm, termed SHRP, focuses mainly 
on the two main objectives and considers them 
hierarchically. Then, the MOGA tries to improve 
other three secondary objectives at the same time, 
while keeping the values of the main objectives.  We 
have presented some results over a real problem 
instance showing that the proposed MOGA is able to 
improve the secondary objective functions with 
respect to the initial solution, and that it offers the 
expert a variety of non-dominated solutions.  

As future work, we plan reconsidering the 
MOGA strategy in order to make it more efficient 
and more flexible so that it can take into account the 
preferences of the experts with respect to each one 
of the objectives. In order to improve efficiency we 
will try to devise local search techniques and 
initialization strategies based on heuristic 
dispatching rules. Also, we will consider alterative 
evolution strategies for multi-objective optimization 
(Goldberg, 1985, Chapter 5) and other multi-
objective search paradigms such as exact methods 
based on best first search (Mandow and Pérez-de-la-
Cruz, 2005). In this way we could compare different 
strategies for this particular problem. 
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