
A MODEL BASED APPROACH FOR DEVELOPING ADAPTIVE
MULTIMODAL INTERACTIVE SYSTEMS

Waltenegus Dargie, Anja Strunk
Technical University of Dresden, Faculty of Computer Science, Chair of Computer Networks

Matthias Winkler
SAP Research

Bernd Mrohs
Fraunhofer Institute for Open Communication Systems, Competence Center Smart Environments

Sunil Thakar, Wilfried Enkelmann
DaimlerChrysler AG, Group Research and Advanced Engineering

Keywords: Multimodality, model driven architecture, software engineering, context-aware computing transformation.

Abstract: Currently available mobile devices lack the flexibility and simplicity their users require of them. To start
with, most of them rigidly offer impoverished, traditional interactive mechanisms which are not handy for
mobile users. Those which are multimodal lack the grace to adapt to the current task and context of their
users. Some of the reasons for such inflexibility are the cost, duration and complexity of developing
adaptive multimodal interactive systems. This paper motivates and introduces a modelling and development
platform – the EMODE platform – which enables the rapid development and deployment of adaptive and
multimodal mobile interactive systems.

1 INTRODUCTION

At present, the way users interact with a plethora of
devices while being mobile and/or carrying out other
impending activities – such as driving, attending a
child, holding a presentation, etc. – can be a
potential challenge to the vision of ubiquitous
computing. Besides the inconveniency of managing
those devices, often interaction takes place via
impoverished traditional input and output systems
which require considerable attention and
engagement.

Multimodal interactive systems significantly
reduce the obtrusiveness mobile devices impose by
increasing the communication bandwidth between
the user and the devices with which he interacts. A
gain in a communication bandwidth may offer
flexibility and freedom, allowing the eyes to focus

on and hands to be free to operate or to handle other
objects while an interaction with a device takes
place. Having said this, present multimodal
interactive systems do not exhibit the grace to adapt
to the social and conceptual settings in which they
operate, both to offer optimal flexibility and to
guaranty privacy.

Developing adaptive multimodal interactive
systems is a costly and time consuming process.
This is partly because of the inherent complexity of
interactive systems, but also because of the absence
of standardized methodology and integrating toolkits
which can be employed during the development
process. Within the EMODE project, we are tackling
these issues by developing a methodology as well as
a development and runtime support for multimodal
adaptive interactive Systems. In this paper, we will
give an overview of the EMODE platform and
discus its methodology.

73
Dargie W., Strunk A., Winkler M., Mrohs B., Thakar S. and Enkelmann W. (2007).
A MODEL BASED APPROACH FOR DEVELOPING ADAPTIVE MULTIMODAL INTERACTIVE SYSTEMS.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 73-79
DOI: 10.5220/0001334300730079
Copyright c© SciTePress

 The remaining part of this paper is organized as
follows: in section 2, we will discuss related work;
in section 3, we will introduce the EMODE
methodology; in section 3, we will present the
EMODE development environments; in section 4,
we will introduce the In Car Adaptive Travel
Assistant we are planning to develop by using the
EMODE platform; and finally in section 5, we will
give concluding remarks and outline future work.

2 RELATED WORK

Single authoring approaches enable service authors
to create their services regardless of the way the
services will be accessed (Mandyam, 2002); authors
merely describe the user interfaces of their services,
and an adaptation engine takes care of the
transformation to specific target devices and
platforms.

Figure 1: The EMODE Conceptual Architecture.

The ADAPT framework (Steglich, 2004)
employs a device independent UI description
language for applications to produce their output in a
format called the Generic User Interaction Mark-up
Language, an XML based user interface description,
which will eventually be transformed into device
specific output formats such as HTML, WAP or
VoiceXML. ADAPT also supports the
transformation of a user’s input into application
input parameters. The Renderer Independent
Markup Language (W3, 2002) and the Device-
independent Multimodal Markup Language (Hu
2005) provide similar support, but lack the support
for graphical UI interfaces. The SISL (Ball, 2000)
approach supports interaction based on natural-
language processing, both for speech and text, and
integrates those user interfaces with web and touch-
tone interfaces on the basis of common service logic.
While SISL describes how to realize a service logic

that can be interfaced by different user interfaces, it
does not specify how these user interfaces should
automatically be generated from a common source.

The Device-Independent Web Engineering
Framework (Kirda, 2002) creates flexible and
extensible multi-device services, supporting the
availability of web applications on resource-limited
devices such as PDAs and mobile phones. It allows
mobile access to web content and describes
XML/XSL based techniques and software tools for
web developers to implement services that are
device independent. The disadvantage of DIWE is
that it focuses on and limits itself to a web
developers’ view.

A model-based approach to user interface design
is presented in (Grolaux, 2001), which is based on
the Oz programming language, focusing on
graphical user interfaces. Multimodality and
adaptation of the UI to contextual changes, however,
is not supported. Similarly, Dery-Pinna et al. (Dery-
Pinna, 2004) present a development environment
based on components. The UI is considered as a
technical service of a business component just like
security or persistence. The dialog between UI and
business components is managed by an
interaction/coordination service that allows the
reconfiguration of components without modifying
them. A UI component merging service handles
dynamic assembly of corresponding UI components.
Calvary et al. (Calvary, 2002) propose a reference
process to enable the modelling of user interfaces
that keep their usability in different settings. The
changing settings include the hardware and software
platform as well as environmental factors, such as
noise and lighting. While the main focus of this
work is the preservation of plasticity, the major
focus in EMODE is to facilitate the development
process of multimodal interactive systems by
creating an integrated development and runtime
platform to improve the cost efficiency of the entire
creation process. In this way, the reference process
provides a basis upon which the EMODE platform
builds.

A work similar to ours is the Adaptive User
Interface Generation framework proposed by
Hanumansetty (Hanumansetty, 2004). This
framework introduces three concepts: firstly, a
formalisation for representing a context is
introduced. Secondly, a user interface generation life
cycle is studied and a context model is defined on
top of a task model, to introduce contextual
conditions into the user interface generation process.
This is useful for the user interface designer to
specify contextual requirements and the effect of

ICSOFT 2007 - International Conference on Software and Data Technologies

74

these requirements on the user interface. Thirdly,
context-aware adaptation of user interfaces is
achieved by mapping context specifications to
various levels of user interface generation life cycle.

The work, however, does not discuss how
modality and context are modelled and how model
transformation takes place.

3 THE EMODE APPROACH

In the final analysis, the usefulness of an application
is judged by how best it meets the needs of its user,
regardless of the underlying technology. This makes
it necessary to develop adaptive and flexible
applications and interactive systems. This is of
particular importance in a pervasive computing
environment, as the context and activity of the user
potentially change over time, making it infeasible to
foresee at design time the type of devices, networks,
platforms, and modalities involving an interaction.

The model-driven architecture approach meets
this requirement, enabling the designer of an
adaptive multimodal interactive system to model the
application’s logic along with other non-functional
aspects such as the activities of the user and
environmental settings without actually specifying
any particular platform or device. Platform specific
aspects and behaviours, such as the type of
modalities suitable for a given interaction setting,
device capability, display type, communication
bandwidth, etc., can be described by a
transformation policy which guides the mapping of
the platform independent model into a platform
dependent model, from which a part of the actual
software code can eventually be produced. The
semi-automation of the transformation of the
platform independent model to a platform dependent
model and the platform dependent model into a
software code enables the efficient and fast
development of adaptive multimodal interaction
systems.

Figure 2: Sample Goal Model.

3.1 Methodology

An integrated approach is necessary for the
development of adaptive multimodal interactive
systems by keeping the focus on both issues: the
user interface and the applications functionality.
Several methodologies with focus on either software
engineering or user interface development exist.
They are, however, limited in that one field does not
consider the concern of the other field. The EMODE
methodology exploits the experiences learned both
in software engineering and multimodal user
interface design to facilitate the development of
adaptive multimodal interaction systems. It also
exploits the context of interaction (virtual and real
environments, persons, devices, etc.) supporting
runtime adaptation.

The EMODE methodology comprises three
entities: a project team, a process model, and a
conceptual architecture.

Our project team consists of users, developers,
and designers. The user of the final application is the
main source of domain knowledge and specific
requirements information. The developers are
responsible for developing the application logic and
the designers deal with user interface development.
Through an integrated development environment,
these three parties are linked together.

Our process model defines a number of phases
and related artefacts throughout the development
process. These phases comprise the gathering of
requirements, performing high-level goal modelling
and model transformations and finally the
implementation. During these phases a number of
models describing different aspects of adaptive
multimodal interactive systems are manually created
using metamodels while other models are created by
a model to model transformation process. We also
support model to code transformation to partly
enable the generation of code. Although
transformations ease the development process, we
do not aim at fully automating code generation.
There will always be remaining work for refining
the code.

 The conceptual architecture describing the
infrastructure and tool support for the development
process is shown in Figure 1.

3.2 Architecture

The EMODE architecture consists of a repository, a
suite of metamodels, a model editor, a
transformation engine and a deployment
environment.

A MODEL BASED APPROACH FOR DEVELOPING ADAPTIVE MULTIMODAL INTERACTIVE SYSTEMS

75

Since we are following a model-based approach,
a repository holding the model information forms
the base of the conceptual architecture. The model
management layer is represented by the EMODE
meta-models and languages. These are needed to
perform application modelling and transformations
during the modelling. An overview on the meta-
model and the transformations will be given in the
following section. The modelling and programming
infrastructure is built on top of the repository and the
model management layer. It consists of a number of
modelling editors which enable developers to model
user and system tasks, abstract user interfaces, and
context. A transformation engine transforms one
model into another model, such as a goal model into
a task model or an abstract user interface description
into a concrete modality such as voice or graphic.
The conceptual architecture is currently being
implemented as the EMODE tool chain. A first
prototypical version of the tool chain is currently
being tested.

3.2.1 Metadata

To model different aspects of multimodal adaptive
interactive systems, we define a suite of meta-
models. These include the Goal model supporting
the modelling of functional and non-functional goals
and the Task model for modelling the overall task
flow consisting of user, system, and interaction
tasks. The Concept model is used to model data
concepts for the application. The AUI model and
Modality model provide the means for describing
abstract user interfaces and modality profiles of
devices that will finally render the modelled UIs.
Also of importance are the Context model and the
Functional Core Adapter model by which service
calls to backend application logic are modelled.
During the development process, models based on
these meta-models are either created by the
developer directly or through a transformation from
an existing model.

Figure 3: Sample Task Diagram with User Task,
Interaction Tasks, and System Task.

To illustrate the usage of the meta-model and
transformations, we will now provide a short
example outlining the interplay of the different
models.

At design time, a developer starts to model the
goals of a new application from the user’s
perspective. Goals are divided into functional goals
(the application’s functionality) and non-functional
goals (for example, the support of a speech modality
for an interaction). Both types of goals are the
outcome of a requirements-analysis phase. While the
goal model is the entry point in the modelling
process, the requirements-analysis phase is not
supported by EMODE at present. Figure 2
demonstrates a user’s (such as a tourist) intention to
get detailed information about a particular sight. The
intention is modelled as a higher-level goal. The
application developer divides this goal into the sub-
goals: “Request Detailed Information”, “Retrieve
Information”, and “Display Information”. While the
sub-goal “Retrieve Information” refers to a goal
accomplished by the application, the others represent
interaction between the user and the system.
Obviously, the higher-level goal entails non-
functional goals related to interaction. An interaction
can be carried out with the support of multiple
modalities, for example, voice and GUI modality.

Each sub-goal will be translated into a more
concrete task using concepts specific to the
application. Subsequently, tasks are separated into
the user’s tasks, the system’s task and an interaction
task. A user’s task describes the responsibility of the
user to accomplish his goal; the system’s tasks are
those executed by the system regardless of the
interaction type; and an interaction task is a task
carried out by a modality service which is
responsible for providing the necessary input for a
system task and the necessary output to the user. A
task diagram is generated semi-automatically by
transforming the goal model.

Figure 3 displays a task diagram corresponding
to the above goal diagram. A traveller triggers the
information retrieval by interacting with the system;
the system fetches the information, and displays it to
the user in a manner consistent with the user’s
context.

In the next design phase, an abstract user
interface is created by the AUI model editor. The
AUI model is generated from the Task model and
further refined by the developer. The transformation
of the AUI model to code produces an adaptive,
multimodal dialog description in the XML-based
D3ML document format. In our approach, D3ML is
utilized as an intermediate format which cannot
directly be rendered but is transformed into a target

ICSOFT 2007 - International Conference on Software and Data Technologies

76

language such as VoiceXML or XHTML. Building
modality-specific document formats from D3ML is
a four phase process.

The first phase comprises the semantic
adaptation of the D3ML dialog by evaluating inline
annotations that contain conditions over context
information. Semantic adaptation encompasses
layout selection for each target modality with respect
to the properties of the rendering device, for
example, the screen size available to a visual
modality output. Furthermore, UI controls whose
context conditions are not satisfied are pruned from
the dialog.

In the second phase, the previously selected
modality-specific layouts are filled with content
from the D3ML dialog, producing D3ML code that
is structured according to the target modalities. This
structure is the basis for the dialog fission phase that
decomposes the D3ML dialog into separate adapted
and modality-specific D3ML fragments.

Finally, the D3ML fragments are transformed
into code understood by the particular renderers and
recognizers of the target modalities. These
transformations are purely syntactic mappings of
mark-up code.

From a technological point of view, the first
three phases are implemented by operations on the
Document Object Model (DOM) tree of the D3ML
dialog. For the transformations in the final phase, we
pursue two approaches. The first approach utilizes
declarative XSL transformation rules, which provide
flexibility and easy extensibility, but come at the
cost of low performance which makes them
unsuitable on low-end devices. The second approach
is an imperative implementation of the
transformation rules over the D3ML DOM tree,
which overcomes the performance issues of the XSL
solution, but offers less flexibility. Despite this
shortcoming, only the later allows us to perform
D3ML adaptation on low-end, low-performance
devices such as a PDA.

3.3 Development Environment

The EMODE development environment (figure 4)
presents modelling tools and editors as well as
transformation engines. The model editors integrate
the EMODE meta-models and support the definition
of various models, namely, goals, tasks, contexts,
functional core adaptors, and various interactive
modalities. The transformation engines provide the
infrastructure support to specify and execute
transformations. It includes, in more detail, a
transformation language, a transformation editor,
and a transformation front-end. The transformation
front-end provides support for the user to control

and prepare the execution of transformations. Apart
from the above tools, our development environment
integrates coding tools and management tools. The
coding tools are used to complete, modify, compile
and test the generated source code whereas the
management tools are used to manage several
repositories which are responsible for storing a large
number of artefacts: models, transformations, source
code and transformation traces. The model editors
and the transformation front-end are developed as
Eclipse 3.2 Plug-Ins.

Figure 4: The EMODE development Environment.

3.3.1 Transformation

Transformations play an important role within the
EMODE tool chain. They support the user while
modelling an application by creating new models,
which are derived from existing models. Thus,
models can help to reduce the amount of work
necessary to model applications as well as avoid
modelling mistakes.

Two types of transformations were implemented
within EMODE: model-to-model transformations
and model-to-code transformations. The former ones
are used to derive a task model from an existing goal
model and an AUI model (Abstract User Interface)
and FCA model (Functional Core Adapter) from a
task model. These transformations are described in a
declarative QVT syntax and executed by a
prototypical QVT transformation engine.

Model-to-code transformations are used to
generate a significant body of an application
automatically. In most cases the developer will have
to add additional code to implement the application
logic. Within the EMODE project we implemented a
transformation that generates Java AWT code using
JET (Java Emitter Templates). A second
transformation based on the XML Template
Language (XTL) generates D3ML (Device-
independent Multimodal Markup Language)
dialogues.

Transformation Engine

Model
Editors IDE

Model
Repository

Code
Repository

Transformation
Repository

Transformation
 Front-End

Transformation
Editor

Models Code

Trace
Repository

Trans.
Traces

Trans.
Defintion

Transformation
Langauge

EMODE Meta
Model

Programming
Language

A MODEL BASED APPROACH FOR DEVELOPING ADAPTIVE MULTIMODAL INTERACTIVE SYSTEMS

77

EMODE applications comprise different parts
which are generated from the different models. At
present, the EMODE development environment
supports the following model/code mappings:

 The concept model is used to generate the code
that implements the data types used
throughout the application;

 The code implementing the overall application
workflow is generated from a task model;

 From the functional core adapter model method
stubs are generated that make up the interface
to the application’s business logic;

 The abstract UI and modality model are the
source for generating the nodes which
describe the application’s user interface;
currently, we support two different
transformation targets for UI: plain Java/AWT
and D3ML. The latter will eventually be
transformed into different modality-specific
dialogue descriptions such as XHTML or
VoiceXML; and,

 The context model is used to automatically
generate context provider descriptions.

Model-to-code transformations in EMODE

currently use Java SE as target platform. They can,
however, easily be adapted to support other target
platforms, such as .NET. The transformations are
implemented using Java Emitter Templates.

4 FUTURE WORK

We are developing two demonstrators using the
EMODE tool chain. The first demonstrator, the in-
car travel assistant, is already developed with
standard tools; our future aim is to produce it with
the EMODE tool support. This will enable us to
compare our methodology with existing standard
approaches in terms of efficiency of developing
adaptive multimodal interaction systems. The
second demonstrator is a mobile maintenance
application which provides support for maintenance
workers to access relevant information and compile
a report regarding their present task. In this paper,
we will briefly introduce the in-car travel assistant
only.

4.1 In-Car Travel Assistant

The in-car travel assistant is an adaptive multimodal
interactive system. It provides personalised,
situation-adapted information during a trip. The
situation context can be acquired by different

sensors and data sources. Some of these are data
available in the vehicle over the CAN bus, such as
speed, fuel tank level, outside and inside
temperature, and the current geographical position.
Additional sources of a context are the mobile
devices available inside the car.

tour.xml

file

Figure 5: Architecture of the current in-car version of
Travel Assistant.

The in-car travel assistant acquires and uses a
context to support two aspects of adaptations:
adaptation of the application’s business logic and
adaptation of the way information is delivered by
and to the user, i.e., adaptation of the modalities
employed. Adaptation of the application logic takes
place when travel information is selected, filtered,
and presented to the user based on the user’s current
situation (mostly location) and preferences.
Modality adaptation takes place by combining
different input and output modalities and operating
possibilities depending on the user’s situation. For
example, to announce a point of interest by a speech
modality while the user is talking on the mobile
phone is irrelevant or even obtrusive; hence, the
system selects an appropriate modality to present a
point of interest less obtrusively. Additional
constraints for the selection of appropriate
modalities are privacy policy and environmental
context (ambient noise and surrounding light
intensity, etc.).

On-trip travel information (point of interest) is
made available on portable devices of heterogeneous
nature, such as a smart phone or a PDA or an
embedded display device. At the same time,
available multimodal services expose their services
by advertising them so that the travel assistant can
dynamically discover and bind to them.

The travel assistant is a device independent
application. Depending on the preferred device or
the context of use, it employs a web browser

ICSOFT 2007 - International Conference on Software and Data Technologies

78

(HTML) component to dynamically plan or alter
trips; select points of interests and present
information en-route to its users as text or image. It
also possesses a map-based interaction mode. The
architecture for the current version is shown in
Figure 5.

In our current version, the travel assistant gets
live position data (coordinates) either from the
NaviServer, which in turn gets the live data from a
GPS, or interactively by clicking on a map.
NaviServer can also record and read the position
data from a database containing previously recorded
position coordinates. Additionally, the NaviServer
can process the data coming from the ADAS-RP
(Advanced Driver Assistance System – Research
Platform), which is in itself connected to a GPS and
typically provides map data, matched coordinates
and additional information such as road types and
road names.

The travel assistant has a link to POI-information
system to provide the user all the detailed
information regarding POIs selected during the pre-
trip planning. As an output, the travel assistant, en-
route a pre-planned trip, delivers information about
the current position of a vehicle, POI-information
and all the POIs in the vicinity of current position, in
form of POI-view or Map-view or as combination of
both (POI/Map) on a single screen.

5 SUMMARY

The EMODE methodology integrates software
engineering concepts with user interface design
approaches and adopts the model-driven architecture
(MDA) to develop adaptive multimodal interactive
systems. To define platform independent models and
to support model-to-model as well as model-to-code
transformation, we define a suite of meta-data for a
goal model, a task model, a context model, a
modality model and a functional core adaptor model.
Whereas separating the platform independent
aspects of an interactive system from those which
are platform dependent enables a design time
adaptation, the inclusion of context information
throughout the modelling process of both the
application business logic and the abstract user
interface enables a runtime adaptation.

To quantitatively compare the EMODE
methodology with existing standard approaches, we
are developing two demonstrators: the in-car travel
assistant and the mobile maintenance application. A
first version of the travel assistant which is
developed by standard tools is now fully functional;

work is in progress to produce it with the EMODE
tool chains, and to perform the comparison.

ACKNOWLEDGEMENTS

The EMODE project is partially funded by the
German Federal Ministry of Education and Research
(BMBF). We would like also to acknowledge the
contribution of René Neumerkel and Gerald Hübsch
to this paper.

REFERENCES

Mandyam, S., Vedati, K., Kuo, C., and Wang, W., 2002.
User Interface Adaptations: Indispensable for Single
Authoring. Position Paper of W3C Workshop on
Device Independent Authoring Techniques, SAP
University, St. Leon-Rot, Germany.

Steglich, S., and Mrohs, B., 2004. A Markup Language for
Generic User Interaction, The 2004 International
Conference on Internet Computing (IC'04), Las Vegas,
Nevada, USA.

http://www.w3.org/2002/07/DIAT/posn/nokia-ibm-
sap.html.

Hu, T.-Y., Park, D.–H., Moon, K.-D., 2005. Device-
Independent Markup Language. Fourth Annual ACIS
International Conference on Computer and
Information Science (ICIS'05), 2005.

Ball T., and Sisl, 2000. Several Interfaces, Single Logic,
Microsoft Research.

Kirda, Engin, 2005. Engineering Device-Independent Web
Services, Ph. D. Thesis.

Delgado, R.L. and Araki, M., 2005. Spoken, Multilingual
and Multimodal Dialogue Systems. John Wiley and
Sons, Ltd.

Grolaux, D., Van Roy, P., Vanderdonckt, J., 2001. QTk:
An Integrated Model-Based Approach to Designing
Executable User Interfaces, Lecture Notes in
Computer Science, vol. 2254, Springer Verlag.

Dery-Pinna, A. and Fierstone, J., 2004. User interface
development environment based on components:
assets for mobility. In Proceedings of the 1st French-
Speaking Conference on Mobility and Ubiquity
Computing. ACM Press, New York, NY.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Souchon, N., Bouillon, L., Florins, M., Vanderdonckt,
J., 2002. Plasticity of User Interfaces: A Revised
Reference Framework, TAMODIA, 2002, pp. 127-
134.

Hanumansetty, R. 2004. Model Based Approach for
Context Aware and Adaptive user Interface
Generation, MSc. Thesis.

A MODEL BASED APPROACH FOR DEVELOPING ADAPTIVE MULTIMODAL INTERACTIVE SYSTEMS

79

