
RESOURCE SUBSTITUTION FOR THE REALIZATION OF
MOBILE INFORMATION SYSTEMS

Hagen Ḧopfner and Christian Bunse
International University in Germany

Campus 3; 76646 Bruchsal; Germany

Keywords: Resource Awareness, Software Engineering, Adaptivity, Mobile Information Systems.

Abstract: Recent advances in wireless technology have led to mobile computing, a new dimension in data communi-
cation and processing. Market observers predict an emerging market with millions of mobile users carrying
small, battery-powered terminals equipped with wireless connection, and as a result, the way people use in-
formation resources is predicted. However,the realization of mobile information systems (mIS) is affected by
the users need to handle complex data sets as well as the restrictions of used devices and networks. Hence,
software engineering has to bridge the gab between both worlds, and thus, has to balance given resources.
Extensive wireless data transmissions, that is expensive, slow, and energy intensive can - for example - be
reduced if mobile clients cache received data locally. In this short paper we discuss, which and how resources
are substitutable in order to enable more complex, more reliable and more efficient mIS. Therefore, we ana-
lyze the resources used for data management with mobile devices and show how they can be considered by
software development approaches in order to implement mIS.

1 INTRODUCTION

Due to the recent advent of wireless technologies
evolve, the mobile systems and especially mobile in-
formation systems (mIS) have an impact on numer-
ous facets of our daily lives and the way business is
conducted. According to (Gurun and Krintz, 2003)
mIS are aimed at providing important data in real time
to assist decision makers, will exert great influence
on communications between businesses and their cus-
tomers, and will or already has transformed the way
we live our lives.

In detail, mobile information systems are of-
ten client server information systems with mobile
clients.1 Mobile clients (e.g., laptops, PDAs, smart
phones, or even Java enabled mobile phones) connect
to static and powerful information system servers.
Since such devices are, on the one hand, widely used
but have, on the other hand, various limitations, this
paper focus on the usage of lightweight mobile de-
vices as information systems clients.

1In this short paper we do not address pure mobile peer-
to-peer approaches that are discussed in literature but do not
play a bigger role in real life at the moment.

When realizing information systems that use or
support mobile devices not only functionality but also
resources play a major role. Important resources
for mobile information systems (mIS) are: memory
/energy consumption, wireless communication, CPU
performance etc. These resources cannot be viewed in
isolation since they are often inter-related with each
other (e.g., extensive wireless communication has a
negative impact onto energy consumption). Thus, bal-
ancing strategies are required. These strategies can be
subsumed by the termresource substitution. A good
example is the implementation of data caches on cell
phones to avoid mass data transmissions. However,
this requires available memory. Thus systems, with
limited memory and CPU power might use means of
communication for handling complex data. But, wire-
less communication is energy intensive and results in
a reducing the availability of the device. Thus, re-
source substitution requires careful thinking.

This paper presents some initial ideas on how sup-
port static resource substitution at development time
as well as dynamic resource substitution at runtime
can be achieved. The idea of substituting resources is
not new. It was already discussed in (Rudenko et al.,

283
Höpfner H. and Bunse C. (2007).
RESOURCE SUBSTITUTION FOR THE REALIZATION OF MOBILE INFORMATION SYSTEMS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 283-289
DOI: 10.5220/0001332702830289
Copyright c© SciTePress



1998) with regard to the energy consumption and on
a more abstract level in (Buchmann, 2002). However,
addressing resource substitution as part of the soft-
ware development process in order to support static
and dynamic resource substitution has not been prop-
erly addressed yet.

The remainder of the paper is structured as fol-
lows: Section 2 gives a brief overview of typical re-
source characteristics. Section 3 shows how these re-
sources are used in mobile (client server) information
systems. Section 4 discusses their substitutability.
Section 5.1 includes issues regarding resource substi-
tution at development time. Section 5.2 presents our
ideas on how to dynamically substitute resources at
runtime. Section 6 summarizes the paper, provides
some conclusions as well as an outlook on future re-
search.

2 RESOURCES

Mobile devices have to be mobile! This implies that
they have to be portable, almost independent from
power sockets and wired network connectors. How-
ever, users want to use them for purposes compara-
ble to tasks supported by classical desktop computers.
Beside communicating via voice or SMS, users want
to access (distributed) information (König-Ries et al.,
2007). In order to implement software for mobile de-
vices that fits the users needs one has to consider the
resources provided by the mobile device and the envi-
ronment infrastructure. In the following we describe
such resources:

CPU: There are various CPUs for mobile devices
on the marked, e.g. XScale or other processors
based on the ARM architecture. Furthermore,
there exist mobile devices that have dual CPUs
like Nokias E90. (Marwedel, 2007)
In fact, the performance of mobile CPUs in-
creases. Samsungs SCH-i760, that will be re-
leased in June 2007, will use a 400 MHz Samsung
SC32442 CPU connected over an 100 MHz inter-
nal system bus.

Memory: Storing data on mobile devices is differ-
ent from storing data on classic computers. In
contrast to big hard-discs (secondary storage) or
DVD-drives (ternary storage) mobile devices typ-
ically use flash memory. Some PalmOS devices
use this media as main memory, too. Others, like
HP iPAQ hx4700 series Pocket PC, separate main
memory (SDRAM) and secondary storage (flash).
Nearly all current mobile devices allow the use of
additional storage media in form of memory cards

(e.g. CompactFlash or SmartMedia). However,
these specifications describe only the interfaces
and size of the media. In addition, there are also
“real” hard discs (e.g., IBMs Microdrive) that can
be plugged into a CompactFlash Typ-II slot. Such
devices can store up to 4GB of data.

Energy supply: Mobile devices are battery powered.
Their up-time mainly depends on the intensity of
usage (e.g., a Motorola Razor V3 has a standby
time of more than a week. Using it for surfing the
web or chatting via GPRS the battery has drained
out after less than one day). Current research tries
to solve this problem by improving hardware as-
pects (e.g., using fuel cells). Although, this seems
to be a step into the right direction there are limita-
tions. For example Nokia decided in 2005 to stop
all research in this direction due to legal issues.

Wireless networks: Data communication in mobile
information systems is wireless. Today, a mo-
bile device has basically network access almost
everywhere. Wireless local-area networks are
hotspoted networks with a reasonable speed.
GSM-networks (and extensions like GPRS) are
slower but widely available. UMTS-infrastructure
has been installed all over Europe but wide-area
coverage is far from existing. In addition to
its limited availability, wireless communication is
energy intensive (see above).

3 RESOURCE USAGE IN MOBILE
INFORMATION SYSTEMS

As mentioned in Section 1 mobile information sys-
tems typically are client-server information-systems
using mobile clients. Therefore, they have to query
data from a server, compute and display them on the
mobile client, and synchronize changes (if existing)
with the server. The first phase can be considered
to be a synchronization without client-side updates.
Hence, we are able to analyze the resources needed
for performing the remaining tasks:

If a client starts operation, it requests the required
data from the server. This can be done via replica-
tion, where the client stores the received data locally,
or by using simple query-answer approaches com-
parable to those of web browsing. Of course, lat-
ter can be supported by caching mechanisms. The
amount of required memory depends on whether data
has to be stored locally. Full replication, guaran-
teeing data availability, requires more memory than
caching received data using a cache replacement strat-
egy. Browser-like behavior does not require specific

ICSOFT 2007 - International Conference on Software and Data Technologies

284



memory for storing results, although in general each
computation requires memory.

Regarding the use of network facilities resource-
replication is one of the most efficient strategies.
Since all required data might be available on the mo-
bile device, only the delta needs to be transmitted.
Caches might replace certain data, thus, if data is re-
quested later, it has to be retransmitted. Without repli-
cation and caching, data has to be transmitted at any
time it is required. Therefore, this approach is net-
work, and indirectly energy, intensive.

However, if data must not be locally stored, CPU
usage can be minimal since local data must not be
filtered or stored locally. The replication of reused
date case requires that all data has to be available on
the mobile device and that requests are posted to the
local replication system. This increases CPU usage.
Concerning caching and especially semantic caching
complex algorithms are needed (Ren and Dunham,
2003). Since only fractions of requested data might be
available, the software system has (a) to find reusable
parts, (b) request missing data, and (c) combine them
parts. Unfortunately, some of these algorithms are
known to be NP-hard and therefore CPU intensive.

Storing data is energy intensive but requesting
data wirelessly requires even more energy. Hence,
browsing approaches require more energy than ap-
proaches that store data locally. However, they are not
always the “best” solution since the energy consump-
tion of memory and CPU has to be considered as well.
Experiments (Marwedel, 2007) show, that even com-
plex calculations consume less energy than accessing
the memory. Hence, caching seams to be more energy
efficient than replication. Nevertheless, missing data
must be retransmitted, which might countermand the
savings by caching.

In addition there are techniques that query and
cache data automatically with regard to user needs or
context. However, such hoarding or pre-fetching ap-
proaches have the nearly the same resource consump-
tions as replication and query-answer with caching.
The only difference being an increase in CPU usage
in order to do computations according to user needs
and context awareness.

4 SUBSTITUTABILITY OF
RESOURCES

In the Section 3 we have discussed, that different
techniques for handling data in mobile information-
systems have different resource consumptions. Ta-
ble 1 gives an general overview about possible sub-
stitutions that holds for all distributed systems, and

thus also for client/server information systems with
mobile clients. According to this table the resource
communication might be replaced by CPU or mem-
ory resources (e.g., do computations and store data
locally). Unfortunately, table 1 does not include en-
ergy as a separate resource due to its orthogonal na-
ture being affected by other resources. However, due
ever increasing functionality of mobile devices, lim-
ited battery capacities and environmental protection,
energy consumption has to be addressed too. In the
following we discuss in-depth the substitution pos-
sibilities regarding mobile information system (mIS)
with respect to energy consumption.

4.1 Cpu Vs. Communication

High CPU load can be substituted by data commu-
nication. CPU-intensive calculations might be out-
sourced to a server. Concerning replication or non-
caching approaches this is not relevant if not war-
ranted by the data-processing. However, there are sce-
narios where data processing is complex; e.g. (Ion
et al., 2007) prohibiting mobile phones to handle
them.

As mentioned earlier caching is a CPU-intensive
approach. (Ḧopfner, 2004) presents an approach for
migrating the task of finding reusable data in the
cache to the server. In addition, (Höpfner, 2006) an-
alyzes server site cache invalidation. Although, both
approaches require complex software operations on
the server, they drastically reduce client CPU load.
However, replacing communication by CPU load is
only applicable in modern systems given a low num-
ber of data changes concerning server and client. For
example mobile navigation systems do not need data-
communication since all required data is already lo-
cally available. However, most application scenarios
are of a more dynamic nature. Reducing communica-
tion by replication techniques then has an impact on
the resource memory.

4.2 Cpu Vs. Memory

From the database point of view the substitution of
CPU load by memory access and vice versa is the
question of materializing views in a database sys-
tem. Hence, the mobile client has to decide on stor-
ing temporary results. Solving this problem is not
easy (see also Section 2) out of the following rea-
sons: If the mobile device uses only flash memory
as primary (main memory) and secondary storage,
computed data is materialized anyway. If the mobile
device uses a (slow) microdrive materialization may
cause serious performance problems.

RESOURCE SUBSTITUTION FOR THE REALIZATION OF MOBILE INFORMATION SYSTEMS

285



Table 1: Substitutable resources (Buchmann, 2002).

substitute CPU Communication Memory
CPU - Migration of computations Materialization and re-usage

to the server of temporary results
Communication Local execution of - Local data storage

calculations
Memory Data compression and Data management on -

compact data structuresthe server only

In order to save CPU cycles on the mobile client
one can also think about using additional or improved
index structures to ease data localization. In the con-
text of caching approaches it makes sense to gen-
eralize cache-descriptions (Höpfner and Schallehn,
2004), or to introduce a hierarchical access path in
order to reduce the complexity of the required al-
gorithms. Furthermore, standard compression ap-
proaches might be used for saving memory.

4.3 Memory Vs. Communication

As mentioned in Section 3 replication and caching
provide mechanisms for reducing the amount of com-
munication. However, full replication reduces com-
munication, whereas the efficiency of caching de-
pends on the re-usability of cached data (Caracaş
et al., 2007). So, the benefit of caching depends not
only on the memory but also on the CPU. In general
one can say, data that is available on a mobile device
must not be transmitted. But, redundant data might be
outdated. Hence, replication and caching need syn-
chronization mechanisms that connect to a server or
receive updates via a broadcast channel.

In summary, the substitution of memory by
communication is obvious but not practicable since
wireless data-transmission is expensive. Interest-
ingly, there are approaches following this substitution
strategy (e.g., the internet message access protocol
(IMAP) allows to read email without prior download).

4.4 Energy Vs. CPU, Memory,
Communication

Energy consumption is typically correlated with hard-
ware properties. However, there are strategic issues
that can be addressed from the software point of view:

• Energy consumption associated with wireless
data-transmission is not negligible (Feeney and
Nilsson, 2001).

• Storing data locally requires less energy than

wireless transmissions depending on the data-
size, storage time, etc..

• CPU usage needs comparatively less energy than
memory storage (Marwedel, 2007).

With regard to mobile information systems this
means: Storage- or transmission-intensive ap-
proaches (e.g., replication and query-response) have
a higher energy consumption than caching. However,
this assumption can not be proven now but is a focus
of our current research.

5 SOFTWARE ADAPTABILITY
AND STATIC RESOURCE
SUBSTITUTION

The previous sections talked about resource substitu-
tion strategies in order to reduce the energy consump-
tion of a mIS. Systematic development of such sys-
tems requires sound engineering techniques that sup-
port system adaptation. In general, we have to ex-
amine when such an adaptation occurs and how the
adaptation is performed. As for the former, adapta-
tion can occur at development, compile/linking, load
time, and runtime. For the latter, adaptation can be
accomplished by a change in algorithms/behavior, by
a change of parameters or by a change of the software
composition. In the following we discuss static and
dynamic resource substitution in more detail.

5.1 Static Resource Substitution

Interestingly, research concerning the impact of soft-
ware onto energy-consumption puts a specific focus
at the later phases of software development. In detail
these are the algorithmic level (i.e., using the most
efficient algorithms and data structures) (Pakdeepai-
boonpol and Kittitornkun, 2006), high-level source
code transformations (Falk and Marwedel, 2005),
compiler optimizations (Chen et al., 2006), code-
compression (Barr and Asanovi, 2006), and operating

ICSOFT 2007 - International Conference on Software and Data Technologies

286



system support (Marwedel, 2007). Unfortunately, for
projects at this stage it is difficult and costly to change
or optimize a system (Boehm, 1981). Thus, energy
saving by resource substitution has to be addressed
already in the earlier phases of software development
(i.e., at the architecture or design level).

Software engineering research mostly focus on a
specific resource but does not properly address sub-
stitution strategies at development time. In order to
do so two major pre-requisites have to be fulfilled.
We need mechanisms to analyze a system concern-
ing its resource usage with respect to its target plat-
form. This includes the prediction of resource usage
as well as the indication of “weak-points” within the
system. In a second step, we then need optimization
mechanisms in form of patterns, anti-patterns or even
idioms. In the long run the vision should then be “ef-
ficient resource usage by construction”.

Concerning estimation (Eskanazi, ) presents a
methodology for estimating memory consumption of
systems built from source code components. He sug-
gests the use of an auxiliary “provides” interface for
each component to specify its memory consumption.
(de Jonge, 2003) presents an approach to memory es-
timation based on the runtime behavior of compo-
nents. The actual estimation is based on a careful
examination of sequence diagrams and the combina-
tion of memory claims and releases of each compo-
nent. (Murphy, 1998) presents an approach based on
information extracted from class diagrams. Concern-
ing energy consumption research mainly focused on
low-level optimization.

Unfortunately, existing approaches focus on a
specific property or resource and are not embedded
within a development methodology. We therefore,
have to extend existing methods such as the Unified
Process (Kruchten, 2000) or KobrA (Atkinson et al.,
2002). These approaches have to respect the iterative
and incremental nature of modern processes (i.e., pre-
diction has to become more exact as development pro-
ceeds), their use of modeling languages such as UML,
and the recursive structure of modern, component-
based systems. In summary, we need to know how
a resource might be represented in diagrams at the
design level. how resource interact, and how typical
patterns concerning resource look like.

The next step is then to address optimization, or
in other words how can we improve a system by in-
troducing resource substitution strategies. One such
approach is presented in (Balsamo, 2004). However,
the approach does not use prediction or analysis tech-
niques and does not take platform characteristics or
process issues into account. One solution is to define
patterns (solutions to recurring problems) on the ar-

chitecture, design, and code-level (i.e., idioms) com-
parable to those presented in (Gamma, 2004). Of
course, each pattern has to be evaluated in order to
create evidence concerning its effects. Based on iden-
tified weak-points suitable patterns can then be se-
lected and applied in order to establish resource sub-
stitution strategies within a system. In the long run
one might even think about a compiler that provides
options for optimizing code according to known con-
text factors and strategies.

5.2 Dynamic Resource Substitution

Section 5.1 discussed how resource substitution can
be realized at development or compile time. This
might even include a pre-selection of a specific strat-
egy. However, given the nature of mobile systems
this might not be the “best” solution. Optimization
of one resource (e.g., by using a specific substitution
strategy) might have unwanted side-effects. Thus,
improving energy consumption might increase CPU
load or vice-versa. Therefore, means have to be de-
veloped that allow systems to adapt themselves at run-
time. Run-time adaptation requires that a system is
aware of its context and status in order to select the
most appropriate strategy. To the extreme this might
also mean “graceful degradation”. Here a system is
degraded in such a manner that it continues to operate,
but provides a reduced quality/level of service rather
than failing completely.

In the context of model-based software develop-
ment, we have to examine the environment and its
varying context factors for defining the level of adapt-
ability a system needs. Therefore, the acquisition
of relevant information and flexible specification is a
major challenge. In a second step, the chosen mod-
eling language has to be adapted in order to sup-
port specification and translation of adaptive proper-
ties. Finally, standard mechanisms, including service
brokers, facilities for (semantic) lookup, specification
matching and service composition, context manage-
ment and specific QoS functionalities need to be de-
fined.

At the service-level (i.e., services are discretely
defined sets of contiguous and autonomous business
or technical functionalities) there must be an aware-
ness of available resources and other service at run-
time. Concerning self-adaptation there have to be
means for lookup, negotiation and composition of
services. Thus, the specification of a service has to
describe both, functional and non-functional proper-
ties. As for the functional specification, a widely
recognized specification technique is the component
interface definition language (CIDL) (management

RESOURCE SUBSTITUTION FOR THE REALIZATION OF MOBILE INFORMATION SYSTEMS

287



Group (OMG), 2001). A good survey on current
work in specification techniques for non-functional
properties can be found in (Jin and Nahrstedt, 2004).
In the web-service community the web services de-
scription language (WSDL) is widely used. In order
to automate the identification of the service capabil-
ities, matching of specifications and composition of
services, a semantic service specification is required.
This, however, also implies the need for correspond-
ing infrastructure mechanisms (i.e. semantic match-
making).

Following the ideas presented in (Bastide et al.,
2006) an approach is needed that supports the dy-
namic adaptation of system or component structures
while preserving their behavior and services. This is
especially useful when thinking about the dynamic re-
deployment of component services according to the
available resources (e.g. CPU, memory). Another ap-
proach might be the design of a reflective architec-
ture (Cazzola et al., 2004) in order to provides ob-
jects with the ability of dynamically changing their
behavior using design information. Although both ap-
proaches are a step into the right direction they focus
on adaptation mechanisms but do not provide support
to actually install resource substitution at runtime.

In summary, dynamic resource substitution re-
quires, beneath efficient strategies, systems that are
aware of their context and are able to adapt them-
selves while preserving functionality and/or a spe-
cific level service quality (QoS). From the software
engineering point of view we further have to think
about adaptable architectures, adaptability specifica-
tion, process integration, and quality assurance of
such systems.

6 SUMMARY, CONCLUSIONS,
AND OUTLOOK

Given the rising importance of computing systems
and especially mobile devices, energy consumption
becomes increasingly important. beneath extending
the up-time of mobile devices, an increase in the use
of natural resources should be avoided. Currents esti-
mates by EUROSTATSpredict that in 2020 10-35 per-
cent (depending on which devices are taken into ac-
count) of the global energy consumption is consumed
by computers and that this value will likely rise even
higher. Therefore, means have to be found to reduce
this value.

The focus of this short-paper is on resource sub-
stitution as a means for energy saving. Therefore,
the paper presented a selection of possible substitu-
tion strategies and discussed how to systematically

use these within software development. Here we dis-
tinguished between development (static) and runtime
(dynamic) approaches and presented initial ideas how
this goal can be achieved. A realization of these ideas
will lead to a significant energy saving which indi-
rectly will protect our environment.

As discussed we have presented some initial ideas.
Currently, we are preparing several projects in this re-
gard that are aimed at performing extensive research
in order to create evidence on the effectiveness of
the proposed strategies, as well as methods and tools
to support the development of energy-aware, mobile
systems.

REFERENCES

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laiten-
berger, O., Laqua, R., Muthig, D., Paech, B., Wüst,
J., and Zettel, J. (2002).Component-based product
line engineering with UML. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

Balsamo, S. (2004). Model-based performance prediction
in software development: A survey.IEEE Transac-
tions in Software Engineering, 30(5).

Barr, K. and Asanovi, K. (2006). Energy-aware lossless
data compression.ACM Transactions on Computer
Systems, 24(3).

Bastide, G., Seriai, A., and Oussalah, M. C. (2006). Dy-
namic adaptation of software component structures.
In Proceedings of the 2006 IEEE International Con-
ference on Information Reuse and IntegrationI, pages
404–409.

Boehm, B. (1981). Software Engineering Economics.
Prentice-Hall.

Buchmann, E. (2002). Konzeption und Implementierung
eines Speichermanagers für ein konfigurierbares, le-
ichtgewichtiges DBMS. Diplomarbeit, FIN, Otto-
von-Guericke Universiẗat Magdeburg, Magdeburg,
Germany. in German, supervised by Hagen Höpfner.

Caracaş, A., Ion, I., Ion, M., and Ḧopfner, H. (2007). To-
wards Java-based Data Caching for Mobile Informa-
tion System Clients. InProc. of the 2nd conference
of GI-Fachgruppe MMS, volume P-104 ofLNI, pages
97–101, Bonn, Germany. GI.

Cazzola, W., Ghoneim, A., and Saake, G. (2004). Soft-
ware Evolution through Dynamic Adaptation of Its
OO Design. In Ehrich, H.-D., Meyer, J.-J., and Ryan,
M. D., editors,Objects, Agents and Features: Struc-
turing Mechanisms for Contemporary Software, Lec-
ture Notes in Computer Science 2975, pages 69–84.
Springer-Verlag, Heidelberg, Germany.

Chen, G., Li, F., Kandemir, M., and Irwin, M. (2006). Re-
ducing NoC energy consumption through compiler-
directed channel voltage scaling. InProc. of the
2006 ACM SIGPLAN conference on Programming
language design and implementation.

ICSOFT 2007 - International Conference on Software and Data Technologies

288



de Jonge, M. (2003). Scenario-based prediction of run-time
resource consumption in component-based software
systems. InProceedings of the th ICSE Workshop on
Component-Based Software Engineering: Automated
Reasoning and Prediction.

Eskanazi, E. Estimation of static memory consumption for
systems built from source code components. InPro-
ceedings of the 9th IEEE Conference on Engineering
Computer-Based Systems.

Falk, H. and Marwedel, P. (2005).Source Code Optimiza-
tion Techniques For Data Flow Dominated Embedded
Software. Kluwer.

Feeney, L. M. and Nilsson, M. (2001). Investigating the en-
ergy consumption of a wireless network interface in an
ad hoc networking environment. InProc. of the IEEE
Conference on Computer Communications (IEEE In-
foCom), Anchorage, USA.

Gamma, E. (2004). Design patterns. Addison-Wesley,
Boston [u.a.].

Gurun, S. and Krintz, C. (2003). Addressing the energy cri-
sis in mobile computing with developing power aware
software. Technical Report 2003-15, University of
California, Santa Barbara.

Höpfner, H. (2004). Serverseitige Auswertung von Indexen
semantischer, clientseitiger Caches in mobilen Infor-
mationssystemen. InINFORMATIK 2004, Band 1,
volume P-50 ofLNI, pages 298–302, Bonn. GI. in
German.

Höpfner, H. (2006). Update Relevance under the Multiset
Semantics of RDBMS. InMobile Informationssys-
teme, volume P-76 ofLNI, pages 33–44, Bonn, Ger-
many. GI.

Höpfner, H. and Schallehn, E. (2004). Anfragegeneral-
isierung zur komprimierten Repräsentation von In-
dexen semantischer Caches auf mobilen Endgeräten.
In Proc. of the Workshop on Foundations and Applica-
tions of mobile information technology, number 4/04
in Preprints der FIN, pages 63–70. Uni Magdeburg. in
German.

Ion, I., Caracaş, A., and Ḧopfner, H. (2007). MTrainSched-
ule: Combining Web Services and Data Caching on
Mobile Devices. Datenbank-Spektrum. accepted for
publication, to appear.

Jin, J. and Nahrstedt, K. (2004). Qos specification lan-
guages for distributed multimedia applications: A sur-
vey and taxonomy.IEEE MultiMedia, 11(3):74–78.

König-Ries, B., T̈urker, C., and Ḧopfner, H. (2007).
Informationsnutzung und -verarbeitung mit mobilen
Ger̈aten – Verf̈ugbarkeit und Konsistenz.Datenbank-
Spektrum. in German. accepted for publication, to ap-
pear.

Kruchten, P. (2000).The Rational Unified Process: An In-
troduction, Second Edition. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

management Group (OMG), O. (2001). Corba components
- volume 1. Technical Report orbos/99-07-01, OMG.

Marwedel, P. (2007).Embedded System Design. Springer.

Murphy, G. (1998). Predicting memory use from a class
diagram using dynamic information. InProceedings
of the First International Workshop on Software and
Performance.

Pakdeepaiboonpol, P. and Kittitornkun, S. (2006). Low
energy optimization for MPEG-4 video encoder on
ARM-based mobile phones. InProc. of the 1st Inter-
national Symposium on Wireless Pervasive Comput-
ing.

Ren, Q. and Dunham, M. H. (2003). Semantic caching and
query processing.Transactions on Knowledge and
Data Engineering, 15(1):192–210.

Rudenko, A., Reiher, P., Popek, G., and Kuenning, G.
(1998). Saving Portable Computer Battery Power
through Remote Process Execution.Mobile Comput-
ing and Communications Review, 2(1):19–26.

RESOURCE SUBSTITUTION FOR THE REALIZATION OF MOBILE INFORMATION SYSTEMS

289


