
INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

Hendrik Decker
Instituto Tecnoĺogico de Inforḿatica, UPV, Campus de Vera 8G, Valencia, Spain

Keywords: Inconsistency tolerance, knowledge assimilation, integrity maintenance, view updating, repair, databases.

Abstract: A recently introduced notion of inconsistency tolerance for integrity checking is revisited. Two conditions
that enable an easy verification or falsification of inconsistency tolerance are discussed. Based on a method-
independent definition of inconsistency-tolerant updates, this notion is then extended to a family of knowledge
assimilation tasks. These include integrity maintenance, view updating and repair of integrity violation. Many
knowledge assimilation approaches turn out to be inconsistency-tolerant without needing any specific knowl-
edge about the given status of integrity of the underlying database.

1 INTRODUCTION

Knowledge assimilation (abbr.:KA) is the process of
integrating new data into a body of information such
that the latter’s integrity remains satisfied (Kowalski,
1979; Miyachi et al, 1982; Decker, 1998; Kakas et al,
1998). For instance,KA takes place in data warehous-
ing, decision support, diagnosis, quality assurance,
content management, machine learning, robotics, vi-
sion, natural language understanding etc.

Also in more commonplace systems,KA is a very
important issue. In databases, for example, a common
instance ofKA is integrity maintenance, i.e., when up-
dates of relational tables are rejected or modified in
order to preserve integrity. For example, the deletion
of a row r in table T1 may not be possible without
further ado if the primary key ofT1 is referenced by
a foreign key constraint of tableT2. For maintaining
the postulated referential integrity, the delete request
for r either necessitates the deletion of each row inT2
that referencesr or the insertion of a new or modified
row r ′ into T1 with the same primary key values as in
the referenced rowr.

A somewhat more involved task ofKA which sub-
sumes integrity maintenance isview updating, i.e., the
translation of a request for updating a virtual table
of rows derivable from the view’s defining query, to
changes in the queried base tables. The goal ofKA
for view updating is to compute integrity-preserving
translations for realizing update requests. Transla-
tions that would violate integrity are filtered out by

KA. However, if, for some reason, integrity is vio-
lated, KA is called for to repair the violated con-
straints. Repairs that would violate other constraints
are not valid. For instance, the deletion of referenced
rows and the insertion ofr ′ in the preceding example
are possible repairs for maintaining integrity.

All approaches to consistency-preservingKA em-
ploy some integrity checking mechanism, for making
sure that the assimilation of a new piece of knowledge
will not violate any constraint, i.e., that integrity sat-
isfaction is an invariant of database state transitions.
Usually, KA methods require that each constraint be
satisfied by the underlying database before assimilat-
ing new knowledge, i.e., that integrity satisfaction is
total. As shown in (Decker and Martinenghi, 2006b),
many methods ensure that all consistent parts of the
database remain consistent even when the strict re-
quirement of total integrity satisfaction is waived. So,
it comes as no surprise that this requirement can be
abandoned forKA in general.

In section 2, we revisit definitions and results for
inconsistency-tolerant integrity checking. In section
3, we discuss two conditions that ensure inconsis-
tency tolerance. In section 4, we generalize the def-
initions and results of sections 2 and 3 to integrity
maintenance, view updating and inconsistency repair.
In the concluding section 5, we also address related
work and look out to future research. Throughout, we
use terms and notations of standard database logic.

198
Decker H. (2007).
INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 198-205
DOI: 10.5220/0001331701980205
Copyright c© SciTePress



2 INCONSISTENCY-TOLERANT
INTEGRITY CHECKING

Recall that integrity constraints are well-formed sen-
tences of first-order predicate calculus. W.l.o.g., we
assume they are represented in prenex form (i.e.,
roughly, all quantifiers explicitly or implicitly ap-
pear outermost), which subsumes prenex normal form
(i.e., prenex form with all negations innermost) and
denial form (i.e., clauses with empty conclusion). In
each database state, they are required to besatisfied,
i.e. true in, or at least consistent with that state. Oth-
erwise, they are said to beviolatedin D.

An integrity theoryis a finite set of integrity con-
straints. It issatisfiedif each of its members is satis-
fied, andviolatedotherwise. LetIC optionally stand
for an integrity constraint or an integrity theory, and
D be a database. WithD(IC) = sat, we express that
IC is satisfied inD, andD(IC) = vio that it is violated.
Moreover, for an updateU , letDU denote the database
obtained from executingU on D; D andDU then are
referred to asold andnewstate, respectively.

Different integrity checking methods use different
notions to define and determine integrity satisfaction
and violation. Abstracting away from such differ-
ences, each integrity checking methodM can be for-
malized as a function that takes as input a database,
an integrity theory and an update (i.e., a bipartite fi-
nite set of database clauses to be deleted and inserted,
resp.). It outputs the valuesat if it has concluded that
integrity will remain satisfied in the new state, and
outputsvio if it has concluded that integrity will be
violated in the new state. Thus, the soundness and
completeness ofM can be stated as follows.

Definition 1 An integrity checking methodM is
soundif, for each databaseD, each integrity theory
I such thatD(I ) = satand each updateU , the follow-
ing holds.

If M (D, I ,U) = sat thenDU (I) = sat. (1)

Completeness ofM can be defined dually to
def. 1, by the only-if half of (1). Note that both defini-
tions are impartial to the question whethersatandvio
are the only values that could be output byM (D, I ,U)
(another value could be, e.g.,unknown). However, for
simplicity, we do not consider any semantics of in-
tegrity that would have values other than “satisfied”
and “violated” for integrity.

Def. 1 and its dual apply to virtually any integrity
checking method in the literature. Of course, each
of them is defined for certain classes of databases,
constraints and updates (e.g., relational or stratified
databases, range-restricted constraints and transac-
tions consisting of insertions and deletions of base

facts). So, whenever we say “each” (database, in-
tegrity theory, update), we mean all those for which
the respective methods are defined at all. From now
on, each methodM is assumed to be sound.

For significant classes of databases and integrity
theories, soundness and completeness has been shown
for methods in (Nicolas, 1982; Decker, 1986; Lloyd
et al, 1987; Sadri and Kowalski, 1988; Christiansen
and Martinenghi, 2006) and others; also their termi-
nation, as defined below, can be shown. Other meth-
ods, e.g., (Gupta et al, 1994; Lee and Ling, 1996),
are only sound, i.e., they provide sufficient conditions
that guarantee the integrity of the updated database.
If these conditions do not hold, further checks may be
necessary. For later (theorem 4), also the termination
of methods is of interest.

Definition 2 An integrity checking methodM is said
to be terminating if, for each databaseD, each in-
tegrity theoryI and each updateU , the computation
of M (D, I ,U) halts and outputs eithersator vio.

Note that by def. 2, the computation ofM (D, I ,U)
terminates, no matter whetherD(I) = sat or not.
Thus, such anM is complete, although it is clear that
complete methods are not necessarily terminating.

Definitions 1 and 2 are independent of the di-
versity of criteria by which methods often are dis-
tinguished, e.g., to which classes of databases, con-
straints and updates they apply, how efficient they
are, which parts of the data in (D,U , I ) are actually
accessed, whether they are complete or not, whether
constraints are “soft” or “hard”, whether integrity is
checked in the old or the new state, or whether sim-
plification steps are pre-compiled at schema specifi-
cation time or taken at update time. Such distinctions
are studied, e.g., in (Martinenghi et al, 2006b; Decker
and Martinenghi, 2007) but do not matter much in this
paper, except when explicitly mentioned.

Common to all methods is that they requiretotal
integrity satisfaction, i.e., before each update, each
constraint must be completely satisfied. In (Decker
and Martinenghi, 2006b), we have shown how this
requirement can be relaxed. Informally speaking, it
is in fact possible to tolerate (i.e., live with) individ-
ual inconsistencies in the database, i.e., hopefully mi-
noritarian cases of violated constraints, while trying
to make sure that updates do not cause any new cases
of integrity violation, i.e., that the cases of constraints
that were satisfied in the old state remain satisfied in
the new state. The following definitions revisit previ-
ous ones in (Decker and Martinenghi, 2006b) for for-
malizing what we mean by “case” and “inconsistency
tolerance” of integrity checking.

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

199



Definition 3 Let C be an integrity constraint. The
variables inC that are∀-quantified but not dominated
by any∃ quantifier (i.e.,∃ does not occur left of∀)
are calledglobal variables of C. For a substitutionσ
of the global variables ofC, Cσ is called acaseof C.

For convenience, a case of some constraint in an
integrity theoryI is shortly called acase of I.

Note that cases have themselves the form of in-
tegrity constraints, and need not be ground. In partic-
ular, each constraint is a case of itself.

We remark that the following definition is some-
what more succinct than its equivalent in (Decker and
Martinenghi, 2006b).

Definition 4 An integrity checking methodM is
inconsistency-tolerantif, for each databaseD, each
integrity theory I , each caseC of I such that
D(C) = sat, and each updateU , the following holds.

If M (D, I ,U) = sat thenDU (C) = sat. (2)

In general, inconsistent cases may be unknown
or not efficiently recognizable. However, by def. 3,
inconsistency-tolerant methods are able to blindly
cope with any degree of inconsistency. They guar-
antee that all cases of constraints that were satisfied
in the old state will remain satisfied in the new state.
Running such a methodM means to compute the very
same function as if total satisfaction were required.
SinceM does not need to be aware of any particu-
lar case of violation, no efficiency is lost, whereas the
gains are immense: transactions can continue to run
even in the presence of (obvious or hidden, known or
unknown) violations of integrity (which is rather the
rule than the exception in practice), while maintain-
ing the integrity of all satisfied cases. RunningM
means that no new cases of integrity violation will be
introduced, while existing “bad” cases may disappear
(intentionally or even accidentally) by committing up-
dates that have successfully passed the integrity test.

As shown in (Decker and Martinenghi, 2006b), in-
consistency tolerance is available off the shelve, since
most, though not all known approaches to database in-
tegrity are inconsistency-tolerant. The following ex-
amples illustrate this.

Example 1 Let C=← b(x,y)∧b(x,z)∧y 6= z be the
constraint that no two entries with the sameISBN x
in the relationb about books must have different ti-
tles y andz. SupposeU is to insertb(11111, logic).
The simplificationC′=← b(11111,y)∧ y 6= logic is
generated and evaluated by most methods, with out-
put sat if the queryC′ returns the empty answer, and
vio otherwise. With the traditional prerequisite of to-
tal integrity satisfaction, this output says thatDU sat-

isfies or, resp., violates integrity. Now, suppose that
b(88888, t1) and b(88888, t2) are in D, possibly to-
gether with many other facts inb. Clearly, the case
← b(88888, t1) ∧ b(88888, t2) ∧ t1 6= t2 of C is vio-
lated inD, i.e., integrity is not totally satisfied. How-
ever, the insertion ofb(11111, logic) is guaranteed not
to cause any additional violation as long as the evalu-
ation ofC′ yields the outputsat, i.e., as long as there
is no other entry inb with ISBN 11111.

Before, or instead of, evaluating simplified in-
stances of relevant constraints, some methods, e.g.
(Gupta et al, 1994), may reason on the integrity theory
alone for detecting the possible invariance of integrity
satisfaction by given updates. That, however, may fail
to be inconsistency-tolerant, as illustrated below.

Example 2 ConsiderI = {← q(x), ← q(a), r(b)},
D = {q(a)} and U = insert r(b). Clearly, the case
← q(a) of← q(x) is violated while all other cases ofI
are satisfied. A typical simplification of← q(a), r(b)
(which, unlike← q(x), is relevant forU) is← q(a);
the conjunctr(b) is dropped becauseU makes it true.
Methods that reason with possible subsumptions of
simplifications by the integrity theory then easily de-
tect that the simplification above is subsumed by the
constraint← q(x). Using the intolerant assumption of
total integrity satisfaction in the old state then leads to
the faulty outputsat, by the following argument: The
constraint← q(x), which is assumed to be satisfied
in D, is not relevant wrtU . Thus, it can be assumed
to remain satisfied inDU . So, since this constraint
subsumes the simplification← q(a), integrity will re-
main satisfied. This argument, which is correct if in-
tegrity is totally satisfied in the old state, fails to be
inconsistency-tolerant since it fails to identify the vi-
olated case of← q(a), r(b) caused byU .

3 VERIFYING AND FALSIFYING
INCONSISTENCY TOLERANCE

To verify or falsify condition (2) of def. 4 for a given
method can be laborious. However, there are vari-
ous sufficient conditions by which inconsistency tol-
erance can be verified much more easily. Two of them
are presented in theorems 1 and 4, below. The first
has been used in (Decker and Martinenghi, 2006a,b)
to verify inconsistency tolerance of the methods in
(Nicolas, 1982; Decker, 1986; Lloyd et al, 1987;
Sadri and Kowalski, 1988). The second is new. It
also is a necessary condition, i.e., it also serves to fal-
sify inconsistency tolerance. It arguably is even more
apt to show or disprove the inconsistency tolerance of

ICSOFT 2007 - International Conference on Software and Data Technologies

200



the already mentioned and other methods. Theorem
1 states that inconsistency tolerance is entailed by the
first condition, labeled (3) below.

Theorem 1 A methodM for integrity checking is
inconsistency-tolerant if, for each databaseD, each
integrity theoryI , each caseC in I such thatD(C) =
sat, and each updateU , the following holds.

If M (D, I ,U) = sat thenM (D,{C},U) = sat (3)

Proof Clearly, (2) follows from the transitivity of (3)
and (4):

If M (D,{C},U) = sat thenDU (C) = sat (4)

where (4) obviously is a special case of (1).�

The second condition for verifying inconsistency
tolerance is based on def. 5 below. Parta) is inter-
esting also in itself because it provides a method-
independent notion of inconsistency tolerance. Note
that def. 5 does not require any constraint to be satis-
fied inD.

Definition 5
a) For a databaseD and an integrity theoryI , an up-
dateU causes violationif there is a caseC of I such
thatD(C) = satandDU (C) = vio. If, for each caseC
of I , D(C) = satentailsDU (C) = sat, thenU is called
inconsistency-tolerant.
b) For an integrity checking methodM , we say that
M recognizes violationif, for each databaseD, each
integrity theoryI and each updateU that causes vio-
lation,M (D, I ,U) = vio.

Theorem 2 below relates the two parts of def. 5a
and follows by definition. Theorem 3 is a corollary
of 5a and def. 4. It states that updates can be checked
for inconsistency tolerance by inconsistency-tolerant
integrity checking methods. Theorem 4 relates def. 5b
to def. 4.

Theorem 2 For a given database and a given integrity
theory, an updateU is inconsistency-tolerant if and
only if it does not cause violation.�

We remark that theorem 2 would not hold if the
semantics of integrity were not two-valued.

Theorem 3 For a databaseD, an integrity theory
I and an inconsistency-tolerant integrity checking
methodM , an updateU is inconsistency-tolerant if
M (D, I ,U) = sat. �

In general, the only-if half of theorem 3 does
not hold. For example, consider a viewp defined

by p(x,y) ← s(x,y,z) and p(x,y) ←q(x), r(y) in a
databaseD in whichq(a) andr(a) are the only tuples
that contribute to the natural join of relationsq andr.
Further, letI consist of the constraint← p(x,x), and
U be the insertion of the tuples(a,a,b). Clearly,U
does not cause violation, since the caseC=← p(a,a)
is already violated inD. Hence, by theorem 2,U is
inconsistency-tolerant. However, the inconsistency-
tolerant methods in (Lloyd et al, 1987; Sadri and
Kowalski, 1988) and others compute and evaluate the
simplification← p(a,a) of ← p(x,x) and thus out-
put vio. On the other hand, note that inconsistency-
tolerant methods which check for idle updates (e.g.,
the one in (Decker, 1986)) identifyp(a,a) as idle (i.e.,
a consequence of the update that is already true in the
old state) and hence outputsat.

Theorem 4 LetM be a terminating integrity check-
ing method. Then,M is inconsistency-tolerant if and
only if it recognizes violation.

Proof
If: Let M be a method that recognizes violation,U
an update such thatM (D, I ,U) = sat, andC a case
of a constraint inI such thatD(C) = sat. We have
to show thatDU (C) = sat. SinceM (D, I ,U) = sat,
it follows from theorem 2 thatU does not cause
violation, i.e., there is no case of any constraint in
I that is satisfied inD and violated inDU . Thus,
D(C) = sat impliesDU (C) = sat. �

Only if: Let M be inconsistency-tolerant and sup-
pose thatU causes violation. So, we have to show that
M (D, I ,U) = vio. SinceU causes violation, there
is a caseC such thatD(C) = sat and DU (C) = vio.
Hence, inconsistency tolerance ofM entails by def. 3
that M (D, I ,U) 6= sat. SinceM is terminating, it
follows thatM (D, I ,U) = vio. �

We remark that termination ofM is used only in
the proof of theonly-if half. However, the last steps
in each half of the proof rely on the assumption that
the semantics of integrity is two-valued.

4 GENERALIZATIONS FOR KA

As already indicated, our focus is on theKA tasks of
integrity maintenance across updates, satisfaction of
view update requests, and reparation of violated in-
tegrity constraints. Common to each of them and also
otherKA tasks is that they generate updates as can-
didate solutions where the integrity of the state ob-
tained by executing such an update is one of possi-
bly several filter criteria for distinguishing valid can-

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

201



didates. Other criteria typically ask for minimality of
(the effect of) updates, or use some additional prefer-
ence ordering, to select among valid candidates. For
instance, integrity maintenance may sanction a given
update after having checked it successfully for in-
tegrity preservation, or otherwise either reject or mod-
ify it so that integrity remains invariant.

Since integrity checking is an integral part ofKA ,
the requirement of total satisfaction of all constraints
has traditionally been postulated also by all methods
for tackling the mentioned tasks. However, this re-
quirement appears as unrealistic forKA in general as
for mere integrity checking. In fact, it can be aban-
doned just as well, as shown in theorem 5 below. The
latter relies on the following definition, which in turn
recurs of def. 5a.

Definition 6
A KA methodK is inconsistency-tolerantif each
update generated for tackling the task ofK is
inconsistency-tolerant.

Similar to definitions 1 and 4, def. 6 is as abstract
as to apply to virtually allKA methods in the litera-
ture. We repeat that such methods originally have not
been meant to be applied in case the current database
state is inconsistent with its constraints. Strictly
speaking, they are not even defined for such situa-
tions. However, the clue of inconsistency-tolerant
methods is that, by definition, they produce reliable
results even when they are run in situations for which
they originally have not been thought for. And the
justification for the definition of inconsistency toler-
ance is that many methods turn out to comply with it.
Thus, def. 6 provides a basis forKA to be applicable
also if the underlying database is not fully consistent
with its integrity constraints. In particular, the gener-
ated updates still are going to achieve what they are
supposed to achieve. More precisely, view updating
methods compute updates that make update requests
true, and repair methods turn violated cases of con-
straints into satisfied cases, while the overall state of
integrity is not exacerbated by the respective updates.

We remark that theorem 3 does not readily provide
a means to test a givenKA methodK for inconsis-
tency tolerance, because def. 6 asks thateachupdate
that ever might be generated byK have that prop-
erty. It might be said that def. 6 could be relaxed to
the extent that not all, but just one of the generated up-
dates would have to be inconsistency-tolerant. Then,
a further test by an inconsistency-tolerant integrity
checking method could act as a filter for eliminat-
ing updates that would cause violation. However, that
would in fact amount to the definition of a modified
KA method, extended by an inconsistency-tolerant in-

tegrity checking method. The following theorem re-
flects the usefulness of such integrity checking meth-
ods forKA .

Theorem 5 Each KA method that uses an
inconsistency-tolerant method to check updates
for not causing violation is inconsistency-tolerant.

Proof This result follows straightforwardly from
def. 6 and theorems 2 and 3.�

4.1 Inconsistency-tolerant View Updates

Theorem 5 serves to recognize several known view
update methods as inconsistency-tolerant, due to their
use of suitable integrity checking methods. Among
them are the view updating methods in (Decker, 1990;
Guessoum and Lloyd, 1990a,b), as stated in theorem
6 below. For convenience, let us name themD ecand
G L , respectively.

Theorem 6
a) The view update methodD ec is inconsistency-
tolerant.
b) The view update methodG L is inconsistency-
tolerant.

Proof
a) D ec uses the inconsistency-tolerant integrity
checking method in (Decker, 1986) for filtering out
generated update candidates that would cause viola-
tion. �

b) G L uses the inconsistency-tolerant integrity
checking method in (Lloyd et al, 1987) for filtering
out generated update candidates that would cause vi-
olation.�

A related method is described in (Kakas and Man-
carella, 1990a,b). For convenience, let us name it
K M . It does not use any integrity checking method
as a separate module, hence theorem 5 is not appli-
cable. However, the inconsistency tolerance ofK M
can be tracked down as outlined in the remainder of
this subsection.

For satisfying a given view update request,K M
explores a possibly nested search space of “ab-
ductive” derivations and “consistency” derivations.
Roughly, the goal of abductive derivations is to find
successful deductions of a requested update, by which
base table updates that satisfy the request are ob-
tained; consistency derivations check these updates
for integrity. Each update obtained that way consists
of a set of positive and a set of negative literals that are
all ground. Positive literals correspond to insertions,
negative ones to deletions of rows in base relations.

ICSOFT 2007 - International Conference on Software and Data Technologies

202



For more details, which are not included here for lack
of space, we refer the reader to the original papers as
cited above. It may suffice here to mention that, for
K M , all constraints are assumed to be represented by
denial clauses, so that they can be used as candidate
input in consistency derivations.

It is easy to verify that, for an update requestR,
each updateU computed byK M satisfiesR, i.e., R
is true inDU even if some constraint is violated inD.
What is at stake is the preservation of integrity inDU ,
for each case that is satisfied inD, while unknown or
irrelevant cases that are violated inD may remain to
be violated inDU . The following theorem states that
satisfied cases are preserved byK M .

Theorem 7 The view update methodK M is
inconsistency-tolerant.

Proof By theorem 2, it suffices to show that each
update computed byK M does not cause violation.
To initiate areductio ad absurdumargument, suppose
that, for some update request in some database with
some integrity theoryI , K M computes an update
U that causes violation. Then, by def. 2 and def. 5a,
there is a caseD′ of some constraintC in I such that
such thatD(C′) = satandDU (C′) = vio. Thus,a for-
tiori , D(C) = sat and DU (C) = vio. Hence, by the
definition of K M , there is a consistency derivation
δ rooted at one of the base literals inU , that uses
C as input clause in its first step and terminates by
deducing the empty clause. However, termination of
any consistency derivation with the empty clause sig-
nals inconsistency, i.e., constraint violation. Hence,
by definition,K M rejectsU , becauseδ indicates that
its root causes violation ofC. Thus,K M never com-
putes updates that would cause violation.�

4.2 Inconsistency-tolerant Repairs

Repairing a database that is inconsistent with its in-
tegrity constraints can be difficult, for several reasons.
For instance, there may be (too) many alternatives
of possible repairs, even if a lot of options are fil-
tered out by minimality or other selection criteria. To
choose suitable filtering criteria can be a significant
problem on its own already. Also, repairs can be pro-
hibitively costly, due to the complexity of constraints
and intransparent interactions between them and the
stored data; cf., e.g., (Lopatenko and Bertossi, 2007).
And, worse, the existence of unknown inconsistencies
(which is common in practice) may completely fore-
close the repair of known constraint violations, un-
der the traditional inconsistency-intolerant semantics
of clasical first-order logic.

To see this, suppose that, for a databaseD, C0 is
a case of some constraintC, the violation of which is
unknown, i.e., bothD∪{C0} andD∪{C} are incon-
sistent. Further,C1 be a known violated case of the
same or some other constraint, which is to be repaired.
In general, all integrity constraints need to be taken
into account for repairing violations, due to possible
interdependencies between them. However, classical
logic does not sanction any result of reasoning in an
inconsistent theory, since anything (and thus nothing
reliable at all) may follow from inconsistency. Thus,
no repair of any known inconsistency can be trusted,
unless it can be ensured that there is no unknown in-
consistency. So, since it is hard to know about the
unknown, repair may seem to be a hopeless task, in
general.

Fortunately, inconsistency tolerance comes to the
rescue. In the preceding example, an updateU1 such
that DU1(C1) = sat can be obtained by running any
inconsistency-tolerant view update method on the re-
quest to makeC1 true. Each terminating method will
produce such an updateU1, independent of the in-
tegrity status ofC0, while all other cases of constraints
that are satisfied inD remain satisfied inDU1.

For a databaseD, inconsistency-tolerant view up-
dating can in general be used either for repairing all
violated constraints in one go, or, if that task is too
big, for repairing violated (cases of) constraints in-
crementally, as follows. W.l.o.g., suppose that all con-
straintsC1,...,Cn (n> 1) are represented as denial-like
clauses of formviolated←Bi (1 ≤ i ≤ n), where
violatedbe a distinguished view predicate that is not
used for any relation inD, andBi is an existentially
closed formula with predicates defined inD. A con-
straint of that form is satisfied if and only ifBi is not
true in the given database state. So, to repair all vi-
olated constraints in one go, the view update request
∼violatedcan be issued inD∪{C1,...,Cn}, asking that
violatedbe not true (cf. (Decker at al, 1996). It is
easy to see that any terminating inconsistency-tolerant
view update method will return the required repair.

Otherwise, the following incremental approach
may be tried. For eachi at a time, the update re-
quest∼Bi be issued and satisfied, if possible, by an
inconsistency-tolerant view update method. Clearly,
the end result will in general depend on the sequence
of the Ci . Here, as with any policy for choosing
among alternative updates for satisfying a request,
application-specific considerations may help.

For instance, suppose the management of some
enterprise has decided to dissolve their research de-
partment. In the database of that enterprise, let a for-
eign key constraint of theworks-in(EMP,DEPT) rela-
tion ask for the occurrence of the second attribute’s

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

203



value of each tuple ofworks-in in the primary key’s
value of some tuple in thedeptrelation. To repair the
cases of this constraint that have become violated by
the deletion of the tupledept(research), the following
updates can be performed.

First, a downsized new research-oriented
department is established by inserting the fact
dept(investigation). No violation of any key con-
straint is caused by that. Then, for each employee
e of the defunct research department, the tuple
works-in(e, research) either is dropped (i.e.,e is
fired) or replaced byworks-in(e, investigation), or
replaced by works-in(e, development), for some
already existing departmentdevelopment.

As an aside, we remark that the last two of the
three alternaive repairs of this example, which is quite
typical for reorganizing enterprise departments, may
also serve to criticize the adequacy of the usual mini-
mality criteria in the literature, since they comply with
none of them.

More importantly, note that each such repair is not
acceptable by any inconsistency-intolerant method
that would insist on total integrity satisfaction, be-
cause some violated cases of constraints are likely
to survive across updates. However, each repair that
does not cause violation of any of the mentioned con-
straints is sanctioned by inconsistency-tolerant meth-
ods that check the preservation of all satisfied cases.

5 CONCLUSION

The semantic consistency of data is a major concern
of knowledge engineering. Consistency requirements
usually are expressed by integrity constraints. Knowl-
edge assimilation methods are employed for preserv-
ing constraint satisfaction across changes. To go for
total satisfaction, as most known approaches do, is
unrealistic. To relax that, we have revisited and ex-
tended a notion of inconsistency tolerance. We have
shown that it is possible to use existingKA methods
for checking and preserving integrity upon updates,
for satisfying view update requests and for repair-
ing violated constraints, even if the knowledge suffers
from inconsistencies.

Arguably, our concept of inconsistency tolerance
is less complicated and more effective than the one
associated to the field of consistent query answer-
ing (CQA) (Bertossi and Chomicki, 1999) and others,
as documented in (Bertossi et al, 2005). The latter
of course have several other merits of their own that
are not questioned by inconsistency tolerance as dis-
cussed in this paper. In fact, we expect that our work,
and in particular our notion of inconsistency-tolerant

repair, can be beneficial for the further development
of CQA. We intend to look into this in future research.
We also intend to investigate the capacity of incon-
sistency tolerance of advanced procedures such as in
(Dung et al, 2006).

ACKNOWLEDGEMENTS

The author wishes to thank Davide Martinenghi for
utterly useful discussions.

This work has been partially supported by FEDER
and the Spanish MEC grant TIN2006-14738-C02-01.

REFERENCES

Arenas, M., Bertossi, and Chomicki, J. (1999). Consistent
Query Answers in Inconsistent Databases.Proc. 18th
PODS, 68-79. ACM Press.

Bertossi, L., Hunter, A. and Schaub, T. (2005).Inconsis-
tency Tolerance. Springer LNCS vol. 3300.

Christiansen, H. and Martinenghi, D. (2006). On Simplifi-
cation of Database Integrity Constraints.Fundam. In-
form.71(4):371-417.

Decker, H. (1987). Integrity enforcement on deduc-
tive databases.Proc. EDS’86, 381-395. Ben-
jamin/Cummings.

Decker, H. (1990). Drawing Updates From Derivations.
Proc. 3rd ICDT, 437-451. Springer LNCS vol. 470.

Decker, H. (1998). Some Notes on Knowledge Assim-
ilation in Deductive Databases.Transactions and
Change in Logic Databases, 249-286. Springer LNCS
vol. 1472.

Decker, H. and Martinenghi, D. (2006a). Checking Viola-
tion Tolerance of Approaches to Database Integrity.
Proc. 4th ADVIS, 139-148. Springer LNCS vol. 4243.

Decker, H. and Martinenghi, D. (2006b). A Relaxed Ap-
proach to Integrity and Inconsistency in Databases.
Proc. 13th LPAR, 287-301. Springer LNCS vol. 4246.

Decker, H. and Martinenghi, D. (2007). Getting Rid of
Straitjackets for Flexible Integrity Checking.To ap-
pear in Proc. DEXA’07 Workshop FlexDBIST-07.

Decker, H., Teniente, E. and Urpı́, T. (1996). How to
Tackle Schema Validation by View Updating.Proc.
5th EDBT, 535-549. Springer LNCS vol. 1057.

Dung, P. M., Kowalski, R. A. and Toni, F. (2006). Dialectic
proof procedures for assumption-based, admissible ar-
gumentation.Artif. Intell. 170(2):114-159.

Guessoum, A. and Lloyd, J. (1990a) Updating Knowledge
Bases.New Generation Comput.8(1):71-89.

Guessoum, A. and Lloyd, J. (1990b) Updating Knowledge
Bases II.New Generation Comput.10(1):73-100.

ICSOFT 2007 - International Conference on Software and Data Technologies

204



Gupta, A., Sagiv, Y., Ullman, J. and Widom, J (1994).
Constraint checking with partial information.Proc.
13th PODS, 45-55. ACM Press.

Kakas, A. and Mancarella, P. (1990a). Database Updates
through Abduction.Proc. 16th VLDB, 650-661, Mor-
gan Kaufmann.

Kakas, A. and Mancarella, P. (1990b). Knowledge Assimi-
lation and Abduction.Truth Maintenance Systems, 54-
70. Springer LNCS vol. 515.

Kakas, A., Kowalski, R. A. and Toni, F. (1998). The Role
of Abduction in Logic Programming.Handbook of
Logic in Artificial Intelligence and Logic Program-
ming, 235-324. Oxford University Press.

Kowalski, R. A. (1979).Logic for Problem Solving. North-
Holland, 1979.

Lee, S. Y. and Ling, T. W. (1996) Further improvements on
integrity constraint checking for stratifiable deductive
databases.Proc. 22nd VLDB, 495-505. Morgan Kauf-
mann.

Lloyd, J., Sonenberg, L. and Topor, R. (1987). Integrity
constraint checking in stratified databases.J. Logic
Progr. 4(4):331-343.

Lopatenko, A. and Bertossi, L. (2007). Complexity of
Consistent Query Answering in Databases under
Cardinality-Based and Incremental Repair Semantics.
Proc. 11th ICDT, 179-193. Springer LNCS vol. 4353.

Martinenghi, D., Christiansen, H. and Decker, H. (2006).
Integrity Checking and Maintenance in Relational and
Deductive Databases and Beyond. In Zongmin Ma
(ed): Intelligent Databases: Technologies and Appli-
cations, 238-285. Idea Group, 2006.

Miyachi, T., Kunifuji, S., Kitakami, H., Furukawa, K.,
Takeuchi, A. and Yokota, H. (1984). A Knowledge
Assimilation Method for Logic Databases.New Gen-
eration Comput.2(4):385-404.

Nicolas, J. M. (1982). Logic for improving integrity check-
ing in relational data bases.Acta Informatica18:227-
253.

Sadri, F. and Kowalski, R. A. (1988) A theorem-proving
approach to database integrity.Foundations of De-
ductive Databases and Logic Programming, 313–362.
Morgan Kaufmann.

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

205


