INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

Hendrik Decker
Instituto Tecnddgico de Inforntica, UPV, Campus de Vera 8G, Valencia, Spain

Keywords: Inconsistency tolerance, knowledge assimilation, integrity maintenance, view updating, repair, databases.

Abstract: A recently introduced notion of inconsistency tolerance for integrity checking is revisited. Two conditions
that enable an easy verification or falsification of inconsistency tolerance are discussed. Based on a method-
independent definition of inconsistency-tolerant updates, this notion is then extended to a family of knowledge
assimilation tasks. These include integrity maintenance, view updating and repair of integrity violation. Many
knowledge assimilation approaches turn out to be inconsistency-tolerant without needing any specific knowl-
edge about the given status of integrity of the underlying database.

1 INTRODUCTION KA. However, if, for some reason, integrity is vio-
lated, KA is called for torepair the violated con-
Knowledge assimilation (abbrikA) is the process of straints. Repairs that would violate other constraints
integrating new data into a body of information such are not valid. For instance, the deletion of referenced
that the latter’s integrity remains satisfied (Kowalski, rows and the insertion af in the preceding example
1979; Miyachi et al, 1982; Decker, 1998; Kakas et al, are possible repairs for maintaining integrity.
1998). For instancesA takes place in data warehous- All approaches to consistency-preservikg em-
ing, decision support, diagnosis, quality assurance, ploy some integrity checking mechanism, for making
content management, machine learning, robotics, vi- sure that the assimilation of a new piece of knowledge
sion, natural language understanding etc. will not violate any constraint, i.e., that integrity sat-
Also in more commonplace systenk is a very isfaction is an invariant of database state transitions.
importantissue. In databases, for example, a commonUsually, KA methods require that each constraint be
instance oKA is integrity maintenance, i.e., when up- satisfied by the underlying database before assimilat-
dates of relational tables are rejected or modified in ing new knowledge, i.e., that integrity satisfaction is
order to preserve integrity. For example, the deletion total. As shown in (Decker and Martinenghi, 2006b),
of a rowr in table T; may not be possible without many methods ensure that all consistent parts of the
further ado if the primary key of; is referenced by database remain consistent even when the strict re-
a foreign key constraint of tabl®. For maintaining quirement of total integrity satisfaction is waived. So,
the postulated referential integrity, the delete requestit comes as no surprise that this requirement can be
for r either necessitates the deletion of each roflpin ~ abandoned foKA in general.

that references or the insertion of a new or modified In section 2, we revisit definitions and results for

row r’ into T; with the same primary key values as in inconsistency-tolerant integrity checking. In section

the referenced row. 3, we discuss two conditions that ensure inconsis-
A somewhat more involved task &R which sub- tency tolerance. In section 4, we generalize the def-

sumes integrity maintenancevigw updating, i.e., the initions and results of sections 2 and 3 to integrity
translation of a request for updating a virtual table maintenance, view updating and inconsistency repair.
of rows derivable from the view’s defining query, to In the concluding section 5, we also address related
changes in the queried base tables. The go&lfof work and look out to future research. Throughout, we
for view updating is to compute integrity-preserving use terms and notations of standard database logic.
translations for realizing update requests. Transla-

tions that would violate integrity are filtered out by

198

Decker H. (2007).

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION.

In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 198-205
DOI: 10.5220/0001331701980205

Copyright © SciTePress

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

2 INCONSISTENCY-TOLERANT facts). So, whenever we say “each” (database, in-
INTEGRITY CHECKING tegrity theory, update), we mean all those for which

the respective methods are defined at all. From now
Recall that integrity constraints are well-formed sen- ©N. €ach method is assumed to be sound.
tences of first-order predicate calculus. W.l.o.g., we For significant classes of databases and integrity
assume they are represented in prenex form (i.e.,theories, soundness and completeness has been shown
roughly, all quantifiers explicitly or implicitly ap- for methods in (Nicolas, 1982; Decker, 1986; Lloyd
pear outermost), which subsumes prenex normal formet al, 1987; Sadri and Kowalski, 1988; Christiansen
(i.e., prenex form with all negations innermost) and and Martinenghi, 2006) and others; also their termi-
denial form (i.e., clauses with empty conclusion). In nation, as defined below, can be shown. Other meth-
each database state, they are required tsabtisfied ods, e.g., (Gupta et al, 1994; Lee and Ling, 1996),
i.e. true in, or at least consistent with that state. Oth- are only sound, i.e., they provide sufficient conditions
erwise, they are said to héolatedin D. that guarantee the integrity of the updated database.

An integrity theoryis a finite set of integrity con- If these conditions do not hold, further checks may be
straints. It issatisfiedif each of its members is satis- necessary. For later (theorem 4), also the termination
fied, andviolatedotherwise. LeiC optionally stand of methods is of interest.
for an integrity constraint or an integrity theory, and
D be a database. With(IC) =sat we express that Definition 2 An integrity checking methodr is said
IC is satisfied irD, andD(IC) = vio that it is violated. to beterminatingif, for each databas®, each in-
Moreover, for an updatd, letDY denote the database tegrity theoryl and each update, the computation
obtained from executing onD; D andDV then are of a¢ (D,1,U) halts and outputs eitheator vio.
referred to a®ld andnewstate, respectively.

Different integrity checking methods use different Note that by def. 2, the computation®f (D, 1,U)
notions to define and determine integrity satisfaction terminates, no matter wheth@(l) = sat or not.
and violation. Abstracting away from such differ- Thus, such ams is complete, although it is clear that
ences, each integrity checking methmdcan be for- complete methods are not necessarily terminating.
malized as a function that takes as input a database, pefinitions 1 and 2 are independent of the di-

an integrity theory and an update (i.e., a bipartite fi- ety of criteria by which methods often are dis-
nite set of database clauses to be deleted and inse”edcinguished e.g., to which classes of databases, con-

resp.). It outputs the valugatif it has concluded that ¢t3ints and updates they apply, how efficient they
integrity will remain satisfied in the new state, and are, which parts of the data ilD(U, I) are actually
olutputsv!o if it has concluded that integrity will be accessed, whether they are complete or not, whether
violated in the new state. Thus, the soundness andqqonstraints are “soft” or “hard”, whether integrity is
completeness ai(can be stated as follows. checked in the old or the new state, or whether sim-
plification steps are pre-compiled at schema specifi-
cation time or taken at update time. Such distinctions
are studied, e.g., in (Martinenghi et al, 2006b; Decker
and Martinenghi, 2007) but do not matter much in this

Definition 1 An integrity checking methodv is
soundif, for each databasP, each integrity theory
| such thaD(l) = satand each updatd, the follow-

ing holds. paper, except when explicitly mentioned.

If a7 (D,1,U) =sat thenD” (1) =sat (1) Common to all methods is that they requicgal

Completeness ofwr can be defined dually to integrity satisfactioni.e., before each update, each
def. 1, by the only-if half of (1). Note that both defini- constraint must be completely satisfied. In (Decker
tions are impartial to the question whetlsatandvio and Martinenghi, 2006b), we have shown how this
are the only values that could be outputdsy(D, |,U) requirement can be relaxed. Informally speaking, it
(another value could be, e.gnknown. However, for is in fact possible to tolerate (i.e., live with) individ-
simplicity, we do not consider any semantics of in- ual inconsistencies in the database, i.e., hopefully mi-
tegrity that would have values other than “satisfied” noritarian cases of violated constraints, while trying
and “violated” for integrity. to make sure that updates do not cause any new cases

Def. 1 and its dual apply to virtually any integrity of integrity violation, i.e., that the cases of constraints
checking method in the literature. Of course, each that were satisfied in the old state remain satisfied in
of them is defined for certain classes of databases,the new state. The following definitions revisit previ-
constraints and updates (e.g., relational or stratified ous ones in (Decker and Martinenghi, 2006b) for for-
databases, range-restricted constraints and transacmalizing what we mean by “case” and “inconsistency
tions consisting of insertions and deletions of base tolerance” of integrity checking.

199

ICSOFT 2007 - International Conference on Software and Data Technologies

Definition 3 Let C be an integrity constraint. The isfies or, resp., violates integrity. Now, suppose that
variables irC that arev-quantified but not dominated b(88888t;) and b(88888t,) are inD, possibly to-

by any 3 quantifier (i.e.,3 does not occur left of/) gether with many other facts in Clearly, the case
are calledglobal variables of C For a substitutioro — b(88888t1) A b(88888ty) At #tp of Cis vio-
of the global variables o, Ca is called acaseof C. lated inD, i.e., integrity is not totally satisfied. How-

_ o ever, the insertion df(11111 logic) is guaranteed not
For convenience, a case of some constraint in anto cause any additional violation as long as the evalu-

integrity theoryl is shortly called aase of | ation ofC' yields the outpusat i.e., as long as there
Note that cases have themselves the form of in- is no other entry ib with ISBN 11111.

tegrity constraints, and need not be ground. In partic-
ular, each constraint is a case of itself. Before, or instead of, evaluating simplified in-
We remark that the following definition is some- stances of relevant constraints, some methods, e.g.
what more succinct than its equivalent in (Decker and (Gupta et al, 1994), may reason on the integrity theory
Martinenghi, 2006b). alone for detecting the possible invariance of integrity
satisfaction by given updates. That, however, may fail
Definition 4 An integrity checking method is o be inconsistency-tolerant, as illustrated below.
inconsistency-toleranif, for each databas®, each
integrity theory I, each caseC of | such that Example 2 Considerl ={« q(x), < q(a),r(b)},
D(C) = sat and each updatg, the following holds. D={q(a)} and U =insert r(b). Clearly, the case
_ Uiy — g(a) of — q(x) is violated while all other cases bf
If a¢(D,1,U) =satthenD"(C) =sat (2) are satisfied. A typical simplification ef q(a),r(b)
In general, inconsistent cases may be unknown (which, unlike— q(x), is relevant folJ) is < q(a);
or not efficiently recognizable. However, by def.3, the conjunct(b) is dropped becauss makes it true.
inconsistency-tolerant methods are able to blindly Methods that reason with possible subsumptions of
cope with any degree of inconsistency. They guar- simplifications by the integrity theory then easily de-
antee that all cases of constraints that were satisfiedtect that the simplification above is subsumed by the
in the old state will remain satisfied in the new state. constraint— q(x). Using the intolerant assumption of
Running such a methad means to compute the very total integrity satisfaction in the old state then leads to
same function as if total satisfaction were required. the faulty outpusat by the following argument: The
Sincea does not need to be aware of any particu- constraint— g(x), which is assumed to be satisfied
lar case of violation, no efficiency is lost, whereas the in D, is not relevant wrtJ. Thus, it can be assumed
gains are immense: transactions can continue to runto remain satisfied iY. So, since this constraint
even in the presence of (obvious or hidden, known or subsumes the simplificatior- q(a), integrity will re-
unknown) violations of integrity (which is rather the main satisfied. This argument, which is correct if in-
rule than the exception in practice), while maintain- tegrity is totally satisfied in the old state, fails to be
ing the integrity of all satisfied cases. Running inconsistency-tolerant since it fails to identify the vi-
means that no new cases of integrity violation will be olated case of- q(a),r(b) caused byJ.
introduced, while existing “bad” cases may disappear
(intentionally or even accidentally) by committing up-
dates thr?t have(succlfssfulg/ passed thﬁ integritt)))/ test. 3 VVERIEYING AND FALSIEYING
As shown in (Decker and Martinenghi, 2006b), in-
consistency tolerance is available off the shelve, since INCONSISTENCY TOLERANCE
most, though not all known approaches to database in-
tegrity are inconsistency-tolerant. The following ex- To Verify or falsify condition (2) of def. 4 for a given
amples illustrate this. method can be laborious. However, there are vari-
ous sufficient conditions by which inconsistency tol-
Example 1 LetC =« b(x,y) Ab(x,z) Ay # zbe the erance can be verified much more easily. Two of them
constraint that no two entries with the sams8N x are presented in theorems 1 and 4, below. The first
in the relationb about books must have different ti- has been used in (Decker and Martinenghi, 2006a,b)
tlesy andz. SupposéJ is to insertb(11111logic). to verify inconsistency tolerance of the methods in
The simplificationC’ = < b(11111y) Ay # logic is (Nicolas, 1982; Decker, 1986; Lloyd et al, 1987;
generated and evaluated by most methods, with out-Sadri and Kowalski, 1988). The second is new. It
put satif the queryC’ returns the empty answer, and also is a necessary condition, i.e., it also serves to fal-
vio otherwise. With the traditional prerequisite of to- sify inconsistency tolerance. It arguably is even more
tal integrity satisfaction, this output says tidt sat- apt to show or disprove the inconsistency tolerance of

200

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

the already mentioned and other methods. Theoremby p(X,y) < s(x,y,2) and p(x,y) < q(x),r(y) in a
1 states that inconsistency tolerance is entailed by thedatabas® in whichq(a) andr(a) are the only tuples
first condition, labeled (3) below. that contribute to the natural join of relatioggndr.
Further, letl consist of the constraint- p(x,x), and
Theorem 1 A method s for integrity checking is U be the insertion of the tupls(a,a,b). Clearly,U
inconsistency-tolerant if, for each databd3eeach does not cause violation, since the cdse — p(a,a)
integrity theoryl, each cas€ in | such thatD(C) = is already violated irD. Hence, by theorem 2) is
sat and each updaté, the following holds. inconsistency-tolerant. However, the inconsistency-
. . tolerant methods in (Lloyd et al, 1987; Sadri and
If a0 (D,1,U) =satthena (D, {C},U) =sat (3) Kowalski, 1988) and others compute and evaluate the
simplification < p(a,a) of — p(x,x) and thus out-
Proof Clearly, (2) follows from the transitivity of (3) putvio. On the other hand, note that inconsistency-
and (4): tolerant methods which check for idle updates (e.g.,
If a¢ (D,{C},U) =satthenDY(C) =sat (4) the one in (Decker, 1986)) identifya, a) as idle (i.e.,
) i _ a consequence of the update that is already true in the
where (4) obviously is a special case of (). old state) and hence outpsst

The second condition for verifying inconsistency Theorem 4 Let a7 be a terminating integrity check-

tolerance is based on def.5 below. Payts inter- g method. Thengr is inconsistency-tolerant if and
esting also in itself because it provides a method- only if it recognizes violation.

independent notion of inconsistency tolerance. Note
that def. 5 does not require any constraint to be satis- pygqf

fied inD. If: Let a be a method that recognizes violatids,
an update such thaw (D,I,U) = sat andC a case

Definition 5 S
. . of a constraint inl such thatD(C) = sat We have
a) For a databasBb and an integrity theory, an up- to show thatD! (C) — sat Sin((:egM (D,1,U) = sat

dateU causes violatiorif there is a cas€ of | such it follows from theorem 2 that) does not cause
_ V() — vi
thatD(C) = satand[_) (CL’J)_V'O' It, for eac_h case violation, i.e., there is no case of any constraint in
of 1, D(C) :satelntallsD C)=satthenU iscalled |yt is satisfied irD and violated inDY. Thus
inconsistency-tolerant D(C) — satimpliesDY (C) — '
: . : = pliesD” (C) =sat O
b) For an _mtegntyl citheﬂ?k;ng mewgﬂt, k\;ve gay th?‘t Only if: Let & be inconsistency-tolerant and sup-
M recognizes violatiomt, Tor eacggjdatabasiyeag pose thatl causes violation. So, we have to show that
integrity theoryl and each upghfid that gflises J1o- A, (D,I,U) = vio. SinceU causes violation, there
lation, 3£ (D, 1,U) = vio. is a caseC such thatD(C) = sat and DY (C) = vio.

Hence, inconsistency tolerancef entails by def. 3
Theorem 2 below relates the two parts of def. 5 that a7 (D,1,U) # sat Sinceas is terminating, it

and follows by definition. Theorem 3 is a corollary T
of 5a and def. 4. It states that updates can be checkedfonows thatas (D,1,U) = vio. O
for inconsistency tolerance by inconsistency-tolerant

integrity checking methods. Theorem 4 relates def. 5 We remark that tgrmination off Is used only in
to def. 4. the proof of theonly-if half. However, the last steps

in each half of the proof rely on the assumption that

Theorem 2 For a given database and a given integrity the semantics of integrity is two-valued.
theory, an updat& is inconsistency-tolerant if and
only if it does not cause violatior.

4 GENERALIZATIONS FOR KA

We remark that theorem 2 would not hold if the

semantics of integrity were not two-valued. o)
As already indicated, our focus is on tkia tasks of

Theorem 3 For a databas®, an integrity theory integrity maintenance across updates, satisfaction of

| and an inconsistency-tolerant integrity checking View update requests, and reparation of violated in-

methoda/ , an updatdJ is inconsistency-tolerant if ~ tegrity constraints. Common to each of them and also

a (D,I,U) =sat O otherKA tasks is that they generate updates as can-

didate solutions where the integrity of the state ob-

In general, the only-if half of theorem3 does tained by executing such an update is one of possi-
not hold. For example, consider a viewdefined bly several filter criteria for distinguishing valid can-

201

ICSOFT 2007 - International Conference on Software and Data Technologies

didates. Other criteria typically ask for minimality of tegrity checking method. The following theorem re-

(the effect of) updates, or use some additional prefer- flects the usefulness of such integrity checking meth-

ence ordering, to select among valid candidates. Forods forKA.

instance, integrity maintenance may sanction a given

update after having checked it successfully for in- Theorem 5 Each KA method that uses an

tegrity preservation, or otherwise either reject or mod- inconsistency-tolerant method to check updates

ify it so that integrity remains invariant. for not causing violation is inconsistency-tolerant.
Since integrity checking is an integral partko4,)]

the requirement of total satisfaction of all constraints Proof This result follows straightforwardly from

has traditionally been postulated also by all methods def. 6 and theorems 2 and 3.

for tackling the mentioned tasks. However, this re-

quirement appears as unrealistic ko in generalas 4.1 Inconsistency-tolerant View Updates

for mere integrity checking. In fact, it can be aban-

doned just as well, as shown in theorem 5 below. The Theorem 5 serves to recognize several known view

latter relies on the following definition, which in turn update methods as inconsistency-tolerant, due to their

recurs of def. & use of suitable integrity checking methods. Among

them are the view updating methods in (Decker, 1990;
Definition 6 Guessoum and Lloyd, 1990a,b), as stated in theorem
A KA method x is inconsistency-tolerantf each 6 below. For convenience, let us hame themcand
update generated for tackling the task af is G L, respectively.

inconsistency-tolerant.
Theorem 6

Similar to definitions 1 and 4, def. 6 is as abstract a) The view update methoa ec is inconsistency_
as to apply to virtually alkA methods in the litera- tglerant.
ture. We repeat that such methods Originally have not b) The view update metho@L is inconsistency_
been meant to be applied in case the current databaseg|erant.
state is inconsistent with its constraints. Strictly
speaking, they are not even defined for such situa- Proof
tions. However, the clue of inconsistency-tolerant a) pdec uses the inconsistency-tolerant integrity
methods is that, by definition, they produce reliable checking method in (Decker, 1986) for filtering out
results even when they are run in situations for which generated update candidates that would cause viola-
they originally have not been thought for. And the tion. O
justification for the definition of inconsistency toler- b) gr uses the inconsistency-tolerant integrity
ance is that many methods turn out to comply with it. checking method in (Lloyd et al, 1987) for filtering
Thus, def. 6 provides a basis f6A to be applicable out generated update candidates that would cause vi-
also if the underlying database is not fully consistent olation.
with its integrity constraints. In particular, the gener-
ated updates still are going to achieve what they are A related method is described in (Kakas and Man-
supposed to achieve. More precisely, view updating carella, 1990a,b). For convenience, let us name it
methods compute updates that make update requestsc ¢ . It does not use any integrity checking method
true, and repair methods turn violated cases of con-as a separate module, hence theorem 5 is not appli-
straints into satisfied cases, while the overall state of cable. However, the inconsistency tolerancexaf/
integrity is not exacerbated by the respective updates.can be tracked down as outlined in the remainder of

We remark that theorem 3 does not readily provide this subsection.
a means to test a givefA methodx for inconsis- For satisfying a given view update requegty
tency tolerance, because def. 6 asks #zthupdate explores a possibly nested search space of “ab-
that ever might be generated Ixy have that prop- ductive” derivations and “consistency” derivations.
erty. It might be said that def. 6 could be relaxed to Roughly, the goal of abductive derivations is to find
the extent that not all, but just one of the generated up- successful deductions of a requested update, by which
dates would have to be inconsistency-tolerant. Then, base table updates that satisfy the request are ob-
a further test by an inconsistency-tolerant integrity tained; consistency derivations check these updates
checking method could act as a filter for eliminat- for integrity. Each update obtained that way consists
ing updates that would cause violation. However, that of a set of positive and a set of negative literals that are
would in fact amount to the definition of a modified all ground. Positive literals correspond to insertions,
KA method, extended by an inconsistency-tolerant in- negative ones to deletions of rows in base relations.

202

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

For more details, which are not included here for lack To see this, suppose that, for a datab@s€ is

of space, we refer the reader to the original papers asa case of some constrai@f the violation of which is
cited above. It may suffice here to mention that, for unknown, i.e., bottb U {Co} andD U {C} are incon-

K M , all constraints are assumed to be represented bysistent. FurtherC; be a known violated case of the
denial clauses, so that they can be used as candidatsame or some other constraint, which is to be repaired.

input in consistency derivations. In general, all integrity constraints need to be taken
It is easy to verify that, for an update requést into account for repairing violations, due to possible
each updat®) computed byx & satisfiesR, i.e., R interdependencies between them. However, classical
is true inDY even if some constraint is violated logic does not sanction any result of reasoning in an
What is at stake is the preservation of integritydin, inconsistent theory, since anything (and thus nothing

for each case that is satisfiedn while unknown or reliable at all) may follow from inconsistency. Thus,
irrelevant cases that are violatedDhnmay remain to no repair of any known inconsistency can be trusted,
be violated inDY. The following theorem states that unless it can be ensured that there is no unknown in-
satisfied cases are preservedioys . consistency. So, since it is hard to know about the

unknown, repair may seem to be a hopeless task, in
Theorem 7 The view update methodx & is general.

inconsistency-tolerant. Fortunately, inconsistency tolerance comes to the
) i rescue. In the preceding example, an updhtsuch
Proof By theorem 2, it suffices to show that each DY1(C,) = sat can be obtained by running any
update computed by 4/ does not cause violation. j,consistency-tolerant view update method on the re-
To initiate areductio ad absurdu_rargument, SUPPOSe quest to make; true. Each terminating method will
that, for some update request in some database W'thproduce such an updat#, independent of the in-

some integrity theoryl, X/ computes an update ety status o€, while all other cases of constraints
U that causes violation. Then, by def.2 and def.5 hat are satisfied iB remain satisfied iV

there is a cas®’ of some constraint in | such that
such thaD(C') = satandDV (C') = vio. Thus,a for-
tiori, D(C) = satand DY (C) = vio. Hence, by the
definition of K # , there is a consistency derivation
0 rooted at one of the base literals th that uses

C as input clause in its first step and terminates by
deducing the empty clause. However, termination of
any consistency derivation with the empty clause sig-
nals inconsistency, i.e., constraint violation. Hence,
by definition, x & rejectdd, becaus@ indicates that

its root causes violation @&. Thus,x # never com-
putes updates that would cause violatinh.

For a databasB, inconsistency-tolerant view up-
dating can in general be used either for repairing all
violated constraints in one go, or, if that task is too
big, for repairing violated (cases of) constraints in-
crementally, as follows. W.l.0.g., suppose that all con-
straintCy,...,Cn (n > 1) are represented as denial-like
clauses of formviolated< B; (1 <i < n), where
violatedbe a distinguished view predicate that is not
used for any relation ilD, andB; is an existentially
closed formula with predicates definedin A con-
straint of that form is satisfied if and only i; is not
true in the given database state. So, to repair all vi-
olated constraints in one go, the view update request

4.2 Inconsistency-tolerant Repairs ~violatedcan be issued iDU{Cy,...,Cpn}, asking that
violated be not true (cf. (Decker at al, 1996). It is

Repairing a database that is inconsistent with its in- easy to see that any terminating inconsistency-tolerant

tegrity constraints can be difficult, for several reasons. ViEW update method will return the required repair.

For instance, there may be (too) many alternatives ~ Otherwise, the following incremental approach
of possible repairs, even if a lot of options are fil- may be tried. For eachat a time, the update re-
tered out by minimality or other selection criteria. To quest~B; be issued and satisfied, if possible, by an
choose suitable filtering criteria can be a significant inconsistency-tolerant view update method. Clearly,
pr0b|em on its own a|ready_ Also, repairs can be pro- the end result will in general depend on the sequence
hibitively costly, due to the complexity of constraints ©f the Ci. Here, as with any policy for choosing
and intransparent interactions between them and thedmong alternative updates for satisfying a request,
stored data; cf., e.g., (Lopatenko and Bertossi, 2007). application-specific considerations may help.

And, worse, the existence of unknown inconsistencies For instance, suppose the management of some
(which is common in practice) may completely fore- enterprise has decided to dissolve their research de-
close the repair of known constraint violations, un- partment. In the database of that enterprise, let a for-
der the traditional inconsistency-intolerant semantics eign key constraint of thevorks-iEMP,DEPT) rela-

of clasical first-order logic. tion ask for the occurrence of the second attribute’s

203

ICSOFT 2007 - International Conference on Software and Data Technologies

value of each tuple ofvorks-inin the primary key’s repair, can be beneficial for the further development
value of some tuple in théeptrelation. To repair the of CQA. We intend to look into this in future research.
cases of this constraint that have become violated byWe also intend to investigate the capacity of incon-
the deletion of the tupldep(research, the following sistency tolerance of advanced procedures such as in
updates can be performed. (Dung et al, 2006).

First, a downsized new research-oriented
department is established by inserting the fact
deptinvestigation. No violation of any key con- ACKNOWLEDGEMENTS
straint is caused by that. Then, for each employee
e of the defunct research department, the tuple
works-in(e, research either is dropped (i.e.ge is
fired) or replaced byworks-ine, investigation, or

replaced by works-ir(e,development for some this work has been partially supported by FEDER

already existing departmedévelopment and the Spanish MEC grant TIN2006-14738-C02-01.
As an aside, we remark that the last two of the

three alternaive repairs of this example, which is quite

typical for reorganizing enterprise departments, may

also serve to criticize the adequacy of the usual mini- REFERENCES

mality criteria in the literature, since they comply with

none of them. Arenas, M., Bertossi, and Chomicki, J. (1999). Consistent
More importantly, note that each such repair is not Sg%ré ’g‘g?%efg&ﬂ'gﬁg?smm Databadesic. 18th

acceptable by any inconsistency-intolerant method ’ :

that would insist on total integrity satisfaction, be- Bertossi, L., Hunter, A. and Schaub, T. (2008)consis-

cause some violated cases of constraints are likely ~ t€ncy ToleranceSpringer LNCS vol. 3300.

to survive across updates. However, each repair thatChristiansen, H. and Martinenghi, D. (2006). On Simplifi-

does not cause violation of any of the mentioned con- cation of Database Integrity Constrairfaindam. In-

straints is sanctioned by inconsistency-tolerant meth- ~ 1orm-71(4):371-417.

ods that check the preservation of all satisfied cases. Decker, H. (1987). Integrity enforcement on deduc-
tive databases.Proc. EDS'86 381-395. Ben-
jamin/Cummings.

The author wishes to thank Davide Martinenghi for
utterly useful discussions.

Decker, H. (1990). Drawing Updates From Derivations.
5 CONCLUSION Proc. 3rd ICDT, 437-451. Springer LNCS vol. 470.

Decker, H. (1998). Some Notes on Knowledge Assim-

The semantic consistency of data is a major concern ilation in Deductive DatabasesTransactions and
of knowledge engineering. Consistency requirements Change in Logic Database849-286. Springer LNCS
usually are expressed by integrity constraints. Knowl- vol. 1472.

edge assimilation methods are employed for preserv-pecker, H. and Martinenghi, D. (2006a). Checking Viola-
ing constraint satisfaction across changes. To go for tion Tolerance of Approaches to Database Integrity.
total satisfaction, as most known approaches do, is Proc. 4th ADVI$139-148. Springer LNCS vol. 4243.

unrealistic. To relax that, we have revisited and ex- pecker, H. and Martinenghi, D. (2006b). A Relaxed Ap-
tended a notion of inconsistency tolerance. We have proach to Integrity and Inconsistency in Databases.

shown that it is possible to use existikg methods Proc. 13th LPAR287-301. Springer LNCS vol. 4246.
for checking and preserving integrity upon updates, Decker, H. and Martinenghi, D. (2007). Getting Rid of
for satisfying view update requests and for repair- Straitjackets for Flexible Integrity Checkingo ap-
ing violated constraints, even if the knowledge suffers pear in Proc. DEXA'07 Workshop FlexDBIST-07
from inconsistencies. Decker, H., Teniente, E. and Urgl. (1996). How to
Arguably, our concept of inconsistency tolerance Tackle Schema Validation by View UpdatinBroc.

is less complicated and more effective than the one Sth EDBT, 535-549. Springer LNCS vol. 1057.
associated to the field of consistent query answer- Dung, P. M., Kowalski, R. A. and Toni, F. (2006). Dialectic
ing (CQA) (Bertossi and Chomicki, 1999) and others, proof procedures for assumption-based, admissible ar-
as documented in (Bertossi et al, 2005). The latter gumentationArtif. Intell. 170(2):114-159.

of course have several other merits of their own that Guessoum, A. and Lloyd, J. (1990a) Updating Knowledge

are not questioned by inconsistency tolerance as dis- BasesNew Generation Compu(1):71-89.
cussed in this paper. In fact, we expect that our work, Guessoum, A. and Lloyd, J. (1990b) Updating Knowledge
and in particular our notion of inconsistency-tolerant Bases IINew Generation Comput0(1):73-100.

204

INCONSISTENCY-TOLERANT KNOWLEDGE ASSIMILATION

Gupta, A., Sagiv, Y., Ullman, J. and Widom, J (1994).
Constraint checking with partial informatiofroc.
13th POD$45-55. ACM Press.

Kakas, A. and Mancarella, P. (1990a). Database Updates
through AbductionProc. 16th VLDB 650-661, Mor-
gan Kaufmann.

Kakas, A. and Mancarella, P. (1990b). Knowledge Assimi-
lation and AbductionTruth Maintenance Systenisi-
70. Springer LNCS vol. 515.

Kakas, A., Kowalski, R.A. and Toni, F. (1998). The Role
of Abduction in Logic ProgrammingHandbook of
Logic in Artificial Intelligence and Logic Program-
ming, 235-324. Oxford University Press.

Kowalski, R. A. (1979)Logic for Problem SolvingNorth-
Holland, 1979.

Lee, S.Y. and Ling, T. W. (1996) Further improvements on
integrity constraint checking for stratifiable deductive
databased?roc. 22nd VLDB495-505. Morgan Kauf-
mann.

Lloyd, J., Sonenberg, L. and Topor, R. (1987). Integrity
constraint checking in stratified databaséslogic
Progr. 4(4):331-343.

Lopatenko, A. and Bertossi, L. (2007). Complexity of
Consistent Query Answering in Databases under
Cardinality-Based and Incremental Repair Semantics.
Proc. 11th ICDT 179-193. Springer LNCS vol. 4353.

Martinenghi, D., Christiansen, H. and Decker, H. (2006).
Integrity Checking and Maintenance in Relational and
Deductive Databases and Beyond. In Zongmin Ma
(ed): Intelligent Databases: Technologies and Appli-
cations 238-285. Idea Group, 2006.

Miyachi, T., Kunifuji, S., Kitakami, H., Furukawa, K.,
Takeuchi, A. and Yokota, H. (1984). A Knowledge
Assimilation Method for Logic Databasedew Gen-
eration Comput2(4):385-404.

Nicolas, J. M. (1982). Logic for improving integrity check-
ing in relational data baseActa Informatical8:227-
253.

Sadri, F. and Kowalski, R.A. (1988) A theorem-proving
approach to database integrifoundations of De-
ductive Databases and Logic Programmi3d.3—-362.
Morgan Kaufmann.

205

