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Abstract: One of the most challenging concerns in the development of enterprise software systems is how to manage
effectively and efficiently available resources. Object pooling service as a resource management facility signif-
icantly improves the performance of application servers. However, tuning object pool services is a complicated
task that we address here through a predictive automatic approach. Based on dynamic markov models, which
capture high-order temporal dependencies and locally optimize the required length of memory, we find pat-
terns across object invocations that can be used for prediction purposes. Subsequently, we propose an effective
automatic tuning solution, with reasonable time costs, which takes advantage of past and future information
about activities of object pool services. Afterwards, we present experimental results which demonstrate the
scalability and effectiveness of our novel tuning solution, namely predictive automatic tuning service.

1 INTRODUCTION

One of the most challenging concerns in the develop-
ment of enterprise software systems is how to manage
effectively and efficiently available resources and re-
alize user requirements. Resource management must
be applied across both low-level resources (i.e., CPU
time, memory usage) and high-level resources (i.e.,
database connections) (Jordan et al., 2004). Con-
sequently, to improve the performance of resource
management, applicable techniques, such as resource
pooling (Kircher and Jain, 2004) and distributed re-
source allocation (Raman et al., 2003) have been in-
troduced. Here we are interested in resource pooling
which not only improves scalability through sharing
the cost of resource initialization but also allows accu-
rate tuning of memory usage (Crawford and Kaplan,
2003). Enterprise application servers (Oberle et al.,
2004) as sophisticated middlewares significantly take
advantage of this technique to accelerate access to
resources such as persistent resources, database con-
nections and execution threads. In particular, object-
oriented application servers provide object pool ser-
vices as a special case of resource pooling. For ex-
ample, IBM WebSphere as a J2EE application server

prepares object pool service for entity beans (Ander-
son and Anderson, 2002).

However, object pool service tuning is a compli-
cated task which has not been addressed precisely.
Each object pool service contains a set of object pools
whose sizes should be tuned efficiently. Manual tun-
ing of object pools is extremely diffcult, and because
of its static nature it can not adapt itself with the
changing characteristics of workloads over time (Sul-
livan et al., 2004). In contrast, automatic tuning can
be developed in a dynamic way that is adaptive con-
sidering the variable nature of workloads. A tradi-
tional automatic tuning solution works only accord-
ing to past information (Barrera, 1993) and ignores
the future information that can be extracted from the
workload model.

In this paper, we propose a novel solution, namely
Predictive Automatic Tuning Service (PATS), for ob-
ject pooling. PATS takes into consideration past
and future information. In other words, we show
that tuning through prediction of object behaviors
achieves higher performance comparing to traditional
approaches. Different types of Markov models have
been used to study stochastic processes and it is
shown that they are efficient tools for modeling and
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Figure 1: Integration of PATS into the middleware-based enterprise application architecture. This proposed integration
approach lets PATS monitor requests sent from each client to differentSession Facade Components (SFCs). Monitoring
incoming requests is a prerequisite to extract clients behavioral patterns.On the other hand, placing PATS inside the business
logic layer is a necessity to be able to send tuning signals to the object pooling service.

predicting users’ behavior (Deshpande and Karypis,
2004). Thus, here for prediction purposes, we use
Dynamic Markov Modeling (DMM) (Cormack and
Horspool, 1987). DMM, which has been introduced
in Dynamic Markov Compression (DMC) method
(Cormack and Horspool, 1987), is a variant of Vari-
able Length Markov Model (VLMM) (Stefanov et al.,
2005). Thanks to DMM, we model the sequence of
callings on different objects which use a given object
pool service. Through this modeling process, we find
patterns across object invocations that can be used as a
prediction tool. PATS is fully implemented with Java
(a total of 2,000 lines of code). In this paper, we con-
duct several experimentations to demonstrate the ef-
fectiveness of PATS in practice.

The rest of this paper is structured as follows.
Section 2 describes how PATS can be integrated into
enterprise applications. Section 3 introduces our be-
havior prediction approach based on DMM. Section
4 explores the detailed design of our automatic tuning
approach. Section 5 illustrates the results of workload
simulation that evaluates the performance of PATS.
Finally, Section 6 concludes the paper with some fu-
ture directions.

2 PATS INTEGRATION INTO
ENTERPRISE APPLICATIONS

The integration of PATS into enterprise applications is
an important issue that we address here (cf. Figure 1 ).
Most current enterprise applications are composed of
four logical layers (Ebner et al., 2000): client-side
and server-side presentation layers, business logic
layer and data layer. In middleware-based enterprise
applications, the business logic layer is generally im-
plemented inside an application server. This layer is
composed of many business components which inter-
act with object pools. However, many business pro-
cesses involve complex manipulation of these busi-
ness components. Therefore, Session Facade Pat-
tern (Alur et al., 2001) should be used as a higher-
level business abstraction that encapsulates interac-
tions among lower-level business components. In
other words, clients must only access application fea-
tures through Session Facade Components (SFCs)
which implement Session Facade Pattern.

According to our integration approach, object
pooling services must assign a specific part of the
object pool, namely Object Pooling Region (OPR),
with a specific size and replacement policy to each
SFC. So, objects which are being manipulated by
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each SFC can use assigned regions for object pool-
ing purposes. The determination of replacement pol-
icy for each OPR has been already successfully ad-
dressed by others (Guo and Solihin, 2006). In this pa-
per, we focus exclusively on tuning the size of each
OPR. This is a necessary task that significantly af-
fects the applicability of object pooling service, and
increases the performance of enterprise applications.

As shown in Figure 2, PATS is composed of three
major components: (a) monitoring interface which
passively receives incoming calls to SFCs; (b) clients’
behavior pattern modeling engine which builds each
client’s behavior pattern according to its callings on
SFCs; and (c) tuning analyzer which decides about
the size of each OPR according to built behavior pat-
terns.

Figure 2: The internal architecture of PATS. Monitoring
interface component provides the clients’ behavior pattern
modeling engine with incoming requests from each client.
Then this engine according to the sequences of incoming
requests, builds and updates the behavior pattern of each
client as a separate markov model. The tuning analyzer
component uses these markov models to generate efficient
tuning signals which will be sent to the associated object
pooling service.

As our tuning solution, PATS monitors requests
sent from each client to SFCs. In a real-time man-
ner, it builds and updates the dynamic behavioral pat-
tern of each client according to requests being sent
to SFCs. Using those behavioral patterns, we pre-
dict the future workloads which are more probable
to be sent to different SFCs. Through the prediction
of workloads on each SFC, our proposed tuning ana-
lyzer dynamically tunes the size of available OPRs in
the object pooling service. However, the object pool-
ing service is responsible to apply new size restric-
tions defined by the tuning analyzer (i.e. releasing
extra objects loaded to each OPR). Also, the tuning
analyzer reports the new size of each OPR in terms
of a fraction of the total size of memory available for
object pooling purposes. In other words, the size of
objects loaded to each OPR does not affect the tuning

computation process. In the next section, we present
our prediction approach which is based on DMM.

3 BEHAVIOR PREDICTION

We are interested in building models of behavior
which are able to support the prediction of future
actions. We define the sequence of callings each
client sends to different SFCs as its behavior. Markov
model as a simple, yet efficient prediction mechanism
is widely used to capture the sequential dependence
and constraints of behavioral patterns (Galata et al.,
1999). According to the definition (Eirinaki et al.,
2005), the n-order Markov model is a directed graph
with attached probabilities to each of its edges. The
transition probabilities of each state in this graph only
depend on ‘n’ previous states.

Using a fixed order Markov model needs us to
know the length of required memory for prediction
(Galata et al., 1999). However, because of the dy-
namic and variable nature of the workload that we are
going to model (i.e., the requests being sent to SFCs
by each client), using fixed order Markov models is
not applicable. In contrast, a Variable Length Markov
Model (VLMM) (Stefanov et al., 2005) not only cap-
tures high-order temporal dependencies but also lo-
cally optimizes the required length of memory (Galata
et al., 1999).

Dynamic Markov Compression (DMC) (Cormack
and Horspool, 1987) has taken advantage of VLMM
to figure out the probabilities of occurrences of fu-
ture symbols within compressing/decompressing data
streams. Here we replace the symbols of data stream
with the calling sequence that each client sends to dif-
ferent SFCs, and using DMC approach we build a
Dynamic Markov Model (DMM) to predict the future
SFC callings (cf. Figure 3). So, our prediction engine
updates Markov models as follows:

1. Receives the next SFC request from monitoring
interface component.

2. Finds the target Markov model according to the
identity of client.

3. Updates the target Markov model using DMC
approach.

And for prediction purposes, we extract the re-
quired client’s associated model from the prediction
engine. The probability of each transition from the
current state shows the probability of calling on the
attached SFC to that transition. Therefore, the num-
ber of transitions from each state of our Markov mod-
els equals to the total number of SFCs associated with
the object pool service.
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Figure 3: A sample DMM built according to calling se-
quences sent to SFCs. i.e. when the prediction engine is
in state 1, then it will be aware of the fact that the prob-
abilities of incoming calls for SFC1, SFC2, and SFC3 are
10%, 70%, and 20% respectively. Consequently, when the
prediction engine sees the next call is SFCx, it moves on the
edge that is labeled SFCx. Then, the probabilities for next
incoming calls will be extracted from the new current state
of the engine.

4 AUTOMATIC TUNING

In PATS architecture, tuning analyzer component is
responsible for determining the optimal size of each
OPR for a given state of the system. This tuner
as an effective automatic tuning solution (Sullivan,
2003) meets the following design criteria with rea-
sonable time costs: running without human interven-
tion, adapting to workload variations, and responding
to previously unseen workloads.

To tune the size of each OPR, we must figure out
the probable workloads which are going to be gener-
ated by each client for a SFC connected to the given
OPR. For this purpose, we use the associated Markov
model with each client. Each Markov model adapts
itself with workload changes, so our tuner works con-
sidering workload variations. Also we can extract
behavior patterns from each Markov model, so our
tuner is applicable for unseen workloads. On the other
hand, because all the parameters of each Markov
model is being tuned automatically, no human inter-
action is required. Subsequently, we explain the de-
tails of our tuning approach to show its accuracy and
time costs.

To predict the most probable workloads which are
going to be generated by each client, we can use two
different approaches with different time costs:

1. Finding the most probable path (i.e., a SFC call-
ing sequence) with a specific lengthT, for a given
Markov model from the current state. This re-
quires to solve the following problem: given a

Markov modelλ composed of states, each of them
having N transitions (i.e. the total number of
available SFCs), how do we choose a calling se-
quenceS= S1,S2, ...,ST so thatP(S|λ), the prob-
ability of occurence of the calling sequence with
length T, is maximized. As this search space
containsNT different solutions, searching all of
the space results in a time complexity ofO(NT).
However, we can use greedy algorithms (Cormen
et al., 2001) which finds an optimum solution, not
the best, with time complexity ofO(N ∗T). This
latter in each state chooses the transition with the
highest probability, moves to the next state using
that transition and repeats this processT times.
Although the greedy algorithm is more efficient
than the non-greedy one, it suffers from a major
issue: when it arrives at a state whose transition
with the highest probability is connected to the
same state, it does not move to other states any-
more and ignores the random nature of those tran-
sitions probabilities.

2. Generating a random workload, with a specific
lengthT, according to a given Markov modelλ
composed of states each of them havingN tran-
sitions (i.e., the total number of available SFCs).
This approach uses an algorithm to generate ran-
dom numbers (i.e., numbers which are mapped
to SFCs) with given probability distributions (i.e.,
probability distribution of SFC callings from each
state of the given Markov model.). There are
techniques available for this purpose such as the
alias method proposed by Walker (Westlund and
Meyer, 2002) with initialization time complex-
ity of O(N ∗ log(N)) and generation time com-
plexity of O(1). However, there is also a vari-
ation of Walker’s original model by Vose (Vose,
1991) whose initialization time complexity is lin-
earO(N) and generation time is the sameO(1).
Consequently, exploiting this latter to generate a
random workload with lengthT requiresO(N +
T) time.

According to the time costs of the two approaches
mentioned above and the real-time nature of request
processing in application servers, we use the second
approach which offers a linear time complexity to pre-
dict the future workload of each client. Subsequently,
using the predicted workloads of all clients, we can
predict the Future Workload Ratio (FWR) of each
OPR as follows:

FWR(OPRI ) =
∑C

c=1seqnc(OPRI )

C∗T
whereI is the index of an OPR,C the total num-

ber of clients,T the length of predicted workload

A PREDICTIVE AUTOMATIC TUNING SERVICE FOR OBJECT POOLING BASED ON DYNAMIC MARKOV
MODELING

41



sequences for each client, andseqnu(OPRI ) the to-
tal number of requests within predicted workload se-
quence which is going to be sent toOPRI by client
c.

Although now we can use FWRs as future infor-
mation to tune the size of OPRs, we need to take into
consideration past information that give us a feed-
back about past efficiency of the tuning service. Here
we propose a variation of IPCM (Sadaoui and Shari-
fimehr, 2006) which tunes the size of object pools ac-
cording to the past information. IPCM calculates the
size of each OPR according to its past information
including Hit Ratio1 (HR) and Activity Ratio2 (AR)
through the following formulas:

BaseSize(OPRI ) = AR(OPRI )∗C

− HR(OPRI )∗AR(OPRI )∗C

Size(OPRI ) = BaseSize(OPRI )

+
∑N

j=1HR(OPRI )∗AR(OPRI )∗C

N
where I is the index of an OPR,AR a function

which returns the activity ratio of a given OPR,HR a
function which returns the hit ratio of OPR,C the to-
tal size of the object pool, andN the number of OPRs
available in the object pool.

In fact IPCM relies on hit ratios to avoid the oc-
curence of starvation for each OPR, and uses activity
ratios to divide object pool capacity in a fair manner.
However, both of these two factors are related to the
past information gathered from object pool activities.
Therefore, we define a new concept namely Workload
Ratio (WR) which contains both Future Workload Ra-
tio (FWR) and activity ratio which from now on we
call it Past Workload Ratio (PWR):

WR(OPRI ) =
λ∗PWR(OPRI )+ω∗FWR(OPRI )

λ+ω
whereλ and ω are parameters which separately

tune the effect of FWR and PWR on the total amount
of WR. Generally, we set equal values for bothλ and
ω which means FWR and PWR have equal influence
on the calculation of WR. Subsequently, we replace
AR with WR in IPCM’s formulas as follows:

BaseSize(OPRI ) = WR(OPRI )∗C

− HR(OPRI )∗WR(OPRI )∗C

1The percentage of all accesses that are satisfied by the
loaded objects into an OPR.

2The percentage of all accesses that are processed
through a specific OPR.

Size(OPRI ) = BaseSize(OPRI )

+
∑N

j=1HR(OPRI )∗WR(OPRI )∗C

N

Therefore, according to these new formulas, we
consider both past and future information to figure
out the size of each OPR. However, in order to use
these formulas efficiently we must address an impor-
tant issue. As a matter of fact, we need to determine
an appropriate interval between tuning of OPRs. For
this sake, at first we evaluate the performance of our
workload prediction in terms of Root Mean Square
Error (RMSE):

RMSE=

√

∑N
i=1(WRi −WR′i)

2

N

WhereN is the number of OPRs available in the
object pool,WRi the predicted Workload Ratio for
SFCi , andWR′i the calculated Workload Ratio accord-
ing to the generated workload during the last time
window of workload measurement. Then, we use a
tuning trigger based on a RMSE threshold that auto-
matically runs the tuning process on OPRs whenever
the calculated value of RMSE is bigger than a speci-
fied threshold. In this way, we make sure that PATS is
working with a managed level of error.

5 EVALUATION RESULTS

We conduct our experimentations using synthetic
workload models defined by RUBiS (Cecchet et al.,
2002) to evaluate both scalability and performance of
PATS. These workload models are designed accord-
ing to standards introduced in TPC-W (Garcia and
Garcia, 2003) which model an online bookstore (see
clauses 5.3.1.1. and 6.2.1.2 of the TPC-W v1.6 spec-
ification (Council, 2001)). We develop an applica-
tion with SUN’s JDK 1.5.008 containing 15 SFCs
based on RUBiS proposed benchmark architecture.
We use a machine equipped with PIV 2.80 GHz CPU,
1 GB of RAM. Also we use MSSQL Server 2000 as
the backend DBMS running on MS Windows Server
2003 Service Pack 1.

To evaluate the performance of PATS, we mea-
sure the average size of OPRs for PATS, IPCM, and
static approach (i.e. the size of all OPRs are equal
and fixed.). We carry out this evaluation for different
numbers of clients generating different types of work-
loads for several times. Figure 4 shows the result of
this experiment for 10 clients (cf. Figure 4.(a)), 20
clients (cf. Figure 4.(b)), 50 clients (cf. Figure 4.(c)),
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Figure 4: Comparing the average size of OPRs for PATS, IPCM, and static approach for different numbers of clients generating
different types of workloads for several times. Diagrams a, b, c andd show the result of this experiment for 10, 20, 50 and 100
clients respectively. In each test case, we keep the number of clients fixed and only change the number of workload repitition.
As shown the efficiency of PATS increases after more repitition of workload models and takes over two other approaches
significantly.

and 100 clients (cf. Figure 4.(d)). As shown the ef-
ficiency of PATS increases by passing the time. The
period of time in which the efficiency of PATS is in-
creasing is called the learning period. In other words,
PATS needs time to learn the workload model of each
client. So, after passing the learning period which re-
sults in DMMs with a stable prediction accuracy, the
performance of PATS takes over two other approaches
significantly.

To evaluate the required learning period for differ-
ent workload models, we generate workloads based
on same workload models for repeated times and
measure the mean true prediction after each repeti-
tion. True prediction means that the prediction en-
gine predicted the next incoming call was going to be
sent to SFCx and the next incoming call did go to the
SFCx. The result of this experiment for twelve dif-
ferent workload models is shown in Figure 5. With
respect to acquired results, it can be seen that the ac-
curacy of prediction in most of test cases gets stabi-
lized after ten repetitions.

To measure the relationship between the maxi-

mum size of DMMs (i.e. the maximum number of
available nodes in DMMs) and the prediction accu-
racy of PATS, we generate workloads based on the
same workload models with different allowed maxi-
mum size of DMMs. Figure 6 shows the impact of in-
creasing the size of DMMs on the prediction accuracy
of PATS for twelve different workload models. Inter-
estingly, increasing the size of DMMs improves the
prediction accuracy only for a while. In other words,
the prediction accuracy of PATS becomes stable with
a limited maximum size of DMMs.

6 CONCLUSIONS AND
PROSPECTS

In this paper, we have presented a novel predictive
automatic tuning service (PATS) for object pool ser-
vices. Integration of PATS into enterprise applications
has been considered by offering detailed architectural
requirements. Our proposed approach is based on Dy-
namic Markov Modeling for the prediction of future
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Figure 5: The prediction accuracy versus the number of workload repetition for twelve different workload models. In each
test case, a specific workload model has been repeated 50 times. During this repetition, the learner Markov model has been
evolving to prepare better prediction accuracy. The prediction accuracy shows the percentage of true predictions made by
each Markov model. As shown in this figure, the prediction accuracy of most of Markov models have been stabilized between
30% and 40% only after 10 repetitions.
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Figure 6: The prediction accuracy versus the maximum size of a DMM (i.e. the maximum number of available nodes in a
DMM) for twelve different workload models. As shown in figure above,increasing the size of DMMs improves the prediction
accuracy only for a while. In other words, using only a limited amount of memory space, Morkov models prepare a proper
level of prediction accuracy which is between 30% and 40%.
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probable workloads. We have elaborated our tuning
approach and discussed its time costs. Finally, us-
ing RUBiS benchmark workloads, we have conducted
some experiments and evaluations. The results of our
evaluations prove the scalability and effectiveness of
using PATS in enterprise applications. The next goal
of our research is to investigate how context-oriented
approaches can be used to precise the workload mod-
eling. Another goal is to provide the capability to con-
sider the descriptive characteristics of workloads for
accelerating the process of workload model learning.
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