
LARGE SCALE RDF STORAGE SOLUTIONS EVALUATION

Bela Stantic, Juergen Bock
Institute for Integrating and Intelligent Systems, Griffith University, Brisbane, Australia

Irina Astrova
Institute of Cybernetics, Tallinn University of Technology, Tallin, Estonia

Keywords: Resource Description Framework - RDF, RDF storage, Sematic Web.

Abstract: The increasing popularity of the Semantic Web and Semantic Technologies require sophisticated ways to store
huge amounts of semantic data. RDF together with the rule base RDF Schema have proved themselves as
good candidates for storing semantic data due to the simplicity and high abstraction level. A number of large
scale RDF data storage solutions have been proposed. Several typical representative have been discussed and
compared in this work, namely Sesame, Kowari, YARS, Redland and Oracle’sRDF MATCHtable function. We
present a comparison of those approaches with respect to consideration of context information, supported
access protocols, query languages, indexing methods, RDF Schema awareness, and implementation. We also
identify applicability as well as discuss advantages and disadvantages of particular approach. Furthermore,
an overview of storage requirements and performance tests has been presented. A summary of performance
analysis and recommendations are given and discussed.

1 INTRODUCTION

Originally designed for storing meta-data on the web,
theResource Description Framework(RDF) became
increasingly popular for storing all different sorts of
data. This is due to the simple but expressive triple
structure, in which RDF data is organised. Typi-
cal RDF documents scale to millions of triples in
RDF representations of data, such present in Word-
Net (WordNet, 2007), UniProt (UniProt, 2007), or
Wikipedia3 (Wikipedia3, 2007).

Accessing large scale RDF data requires highly ef-
ficient storage and query management. There have
been a number of solutions presented in the litera-
ture for storing RDF data. While the majority of
presented methods have performance evaluation con-
ducted in isolation, not enough attention was directed
to compare different methods. In this work we eval-
uate the open-source solutions Sesame (Jeen Broek-
stra and Arjohn Kampman and Frank van Harme-
len, 2002), YARS (Andreas Harth and Stefan Decker,
2005), Kowari (David Wood and Paul Gearon and
Tom Adams, 2005), Redland (Dave J. Beckett, 2001)
as well as the commercial Oracle Spatial 10g Re-

lease 2 table function (Eugene Inseok Chong and
Souripriya Das and George Eadon and Jagannathan
Srinivasan, 2005) for RDF storage. In order to iden-
tify strengths and shortcomings of particular method
and future research direction we compare methods
with respect to low-cost solutions, space usage, repos-
itory independence and efficiency.

The remainder of this paper is organised as fol-
lows. Section 2 recalls some basic introduction of
RDF and RDF Schema. In section 3 several typical
representative of RDF storage systems are presented.
In section 4 we compare different approaches while
in section 5 we present experimental results and anal-
ysis. Finally, in section 6, we present our conclusions
and discuss possible future work.

2 BACKGROUND

The Resource Description Framework(RDF) has
been a key concept in Semantic Web technologies and
a W3C Recommendation since February 2004 (Frank
Manola and Eric Miller, 2004). It is based on
XML (Sperberg-McQueen et al., 2004) and designed

103
Stantic B., Bock J. and Astrova I. (2007).
LARGE SCALE RDF STORAGE SOLUTIONS EVALUATION.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 103-108
DOI: 10.5220/0001329001030108
Copyright c© SciTePress



to represent resources on the web in a triple struc-
ture. A triple consists of subject, predicate and ob-
ject, where subject and predicate must be Uniform
Resource Identifiers (URIs), and objects can be URIs
or values (RDF literals). This structure allows graph
representation of resources, if the object is used as an-
other subject.

Figure 1: RDF Schema.

RDF does not define reserved terms or a vocab-
ulary for the information represented. RDF Schema
overcomes these shortcomings by introducing classes
with sub-class relations, properties with domain and
range restrictions, amongst others. An RDF sample
with underlying Schema can be seen in Figure 1.

3 RDF STORAGE SOLUTIONS

Significant work has been directed towards solving
the problem of storing RDF data. In this section
we present some of the prominent solutions that have
been proposed in the literature.

3.1 Sesame

Sesame has been introduced in (Jeen Broekstra and
Arjohn Kampman and Frank van Harmelen, 2002).
It represents a repository-independent framework for
storing and querying RDF and RDF Schema data.
According to the authors Sesame is the “first pub-
licly available implementation of a query language
that is aware of the RDFS semantics”. This refers
in particular to the RQL (Gregory Karvounarakis
et. al., 2002) support, which has been designed for
interpreting RDF descriptions with respect to RDF
Schemata. Sesame exists in several variations, repre-
senting the storage paradigmsmemory, database, or
native. Sesame Memory manages data only in a ma-
chine’s main memory, where Sesame Database uses
any underlying DBMS to store RDF data persistently.
Sesame Native does not use a database, but its own
proprietary storage system, explicitly tailored to RDF.

The Sesame framework is designed to be inde-
pendent of the underlying database. It encapsulates

functionality to process RDF data manipulation and
querying requests, and handles communication with
multiple clients via HTTP, RMI or SOAP protocols.
The actual repository interface is implemented as
database-specific in a so-called SAIL (StorageAnd
InferenceLayer).

Sesame incorporates three different modules for
dealing with RDF data. TheQuery Module, which
handles queries in the supported query languages, the
Admin Moduleto manipulate data, such as insertion
or deletion, and theExport Module, which renders the
data as proper XML/RDF files. These modules are in-
voked by theRequest Handler, which itself commu-
nicates with theProtocol Handlersfor client interac-
tion.

3.2 Kowari

Kowari Metastore was introduced to handle large-
scale storage of RDF and OWL (David Wood and
Paul Gearon and Tom Adams, 2005). Instead of the
original RDF triple structure, the system provides a
native quad-store, where the fourth element in ad-
dition to the basic RDF triples represents a meta-
element indicating which RDF model the triple be-
longs to. Kowari stores RDF data in two tables, called
“Node Pool” and “String Pool”, where the former
contains IDs only, and the latter according mapping
to URIs, RDF Literals and XML Datatypes.

Query access to RDF data in the Kowari Metastore
is provided via a number of query languages. Apart
from Kowari’s native query language iTQL, other
access methods, such as SOFA (Simple Ontology
FrameworkAPI) (Alishevskikh, A., 2007), Java RDF,
Jena (Jena, 2007), RDQL (Andy Seaborne, 2004) and
SOAP are supported.

Kowari is designed to store hundreds of millions
of RDF triples while providing reasonably short re-
sponse time for queries, due to the the hybridisation
of indexing structure, more precisely, AVL trees and
B∗-trees. The main advantage of AVL trees is, though
they are binary and hence deeper, they contain less
overhead and therefore fit more likely in the memory
of adequate machines.

3.3 YARS

The main contribution of Harth and Decker intro-
duced an index structure tailored to RDF data (An-
dreas Harth and Stefan Decker, 2005). They further
proposed the RDF native storage framework YARS
(Yet AnotherRDF Store) which implements this in-
dex structure.

ICSOFT 2007 - International Conference on Software and Data Technologies

104



Storage in the YARS system is done similarly
to Kowari, where full string representation of RDF
graphs is provided by alexicon, where the actual
quads are stored as IDs in a quad table. For index-
ing aB+-Trees are used, adopted from JDBM (JDBM,
2007). The indexes cover all combinations of possible
access patterns to the quad store, and are combined to
reduce the actual number of indexes.

3.4 Redland

The Redland Framework was designed to be accessi-
ble from a number of applications with different in-
terfaces (Dave J. Beckett, 2001). It provides API ac-
cess for various languages, such asPerl, Python, orC.
Redland itself is implemented inC. The latest version
does not support access via HTTP, however, the inten-
tion is, that any web application could be developed
for its particular need and use Redland as an RDF
storage backend by API access.

The Redland RDF storage framework supports
RDQL (Andy Seaborne, 2004) and SPARQL (Eric
Prud’hommeaux and Andy Seaborne, 2006) query
languages. Internal storage in Redland is indexed
by three Hash indexes. Although Redland translates
RDFS vocabulary in proper RDF triples it does not
support any reasoning with RDFS rules.

3.5 RDF Support in Oracle

Oracle Spatial 10g provides sophisticated means to
store and query RDF data. The main contribution is
the newly introducedRDF MATCHtable function (Eu-
gene Inseok Chong and Souripriya Das and George
Eadon and Jagannathan Srinivasan, 2005) with the
following signature:

RDF_MATCH (
Pattern Varchar,
Models RDFModels,
RuleBases RDFRules,
Aliases RDFAliases

)
RETURNS AnyDataSet;

Pattern is an RDF Graph pattern in a
SPARQL-like syntax (Eric Prud’hommeaux and
Andy Seaborne, 2006),Models is a list of RDF
Models, where an RDF Model represents a “view”
to a triple table according to some user privileges.
RuleBases is an optional argument stating some user
defined rule bases. Note that RDF Schema is implic-
itly available as a rule base. Lastly,Aliases option-
ally include user defined namespace aliases. How-
ever, theRDFnamespace is implicitly available. The
return value ofRDF MATCHis of type AnyDataSet ,

since the number and types of the columns in the re-
turn table vary according to the graph pattern.

Similarly as for Kowari and Yars RDF data are
stored in two relational database tables. This general
approach has the advantage of storage efficiency for
repeatedly occurring URIs. Furthermore, simple IDs
can be indexed easier than bulky URIs. Oracle en-
sures high efficiency in querying RDF data, by chang-
ing its table function infrastructure to allow complete
translation of theRDF MATCHfunction into an SQL
query prior to execution.

4 COMPARISON

In this section we identify main factors that influence
quality and efficiency of any approach and discuss ad-
vantages and disadvantages of particular approach.

Context Information: Context information is im-
portant, when RDF data from different sources are
involved or user privileges have to be considered.
Kowari and YARS operate on quads, which is an aug-
mentation of the original RDF triple structure. The
additional component refers to this context. Oracle
provides RDF models to accommodate the idea of
contexts, and Redland provides an option, to enable
context information on demand. In contrast context
information is not supported in Sesame approach.

Query Languages: YARS only supports methods
to formulate queries by two extensions to the N3
notation. Kowari introduced the iTQL query lan-
guage, which accommodates features for Kowari’s
OWL support, as well as traditional RDF query fea-
tures. Kowari further implements subsets of RDQL
and SPARQL, which are also supported by Redland.
Oracle provides seamless integration of its table func-
tion in SQL, where the table function uses SPARQL-
like syntax to specify graph patterns. Sesame cur-
rently supports RQL, RDQL, and Sesame’s SeRQL
query language.

Access: The Kowari introduction paper (David Wood
and Paul Gearon and Tom Adams, 2005) somehow
does not distinguish between access protocols and
query languages. They are treated equivalently in so-
called Access APIs. These access methods include
SOAP, SOFA (Simple Ontology Framework API),
JRDF (JavaRDF, an API to access RDF data from
within JavaTM applications), Jena, a Java Server Pages
tag library and RDFS JavaBean. YARS supports only
HTTP as an access method, while Sesame provides
HTTP, SOAP and Java RMI. Oracle’s table function

LARGE SCALE RDF STORAGE SOLUTIONS EVALUATION

105



can be used by any means provided to access the
Oracle database, like the Oracle Application Server,
OBDC, etc. The Redland framework is not designed
as a standalone solution, which accepts common ac-
cess methods. It rather provides API interfaces for use
from within other applications.

Indexing method: Oracle implements two three-
columnB∗-Tree indexes on the triple table, based on
typical query patterns. The first one isPredicate, Sub-
ject, Object, the second one isPredicate, Object, Sub-
ject. While Sesame DB uses the underlying database
in an abstract manner, all storing and indexing issues
are handled by this database. However, Sesame’s na-
tive version uses separate indexes on subject, predi-
cate, and object respectively. Kowari uses a combi-
nation of AVL trees andB∗-Trees to incorporate ad-
vantages of both approaches. Frequently used subsets
of graph patterns are indexed directly. Redland uses
three Hash indexes, each mapping two triple elements
to the third one. YARS implementsB+-Tree indexes
for all combinations of quad patterns.

Implementation: Sesame, Kowari, and YARS are
all implemented in JavaTM , where Redland is imple-
mented inC. The Oracle table function, however, is
seamlessly integrated in the table function interface
of the Oracle Kernel.

RDFS Semantics: YARS does not support RDFS se-
mantics or other rule bases for reasoning on the RDF
data. Oracle implicitly supports RDF Schema rules,
but is able to load user defined rule bases in addition.
Kowari further supports OWL constructs. The Red-
land framework supports RDF Schema only in terms
of translation of specific vocabulary into pure RDF,
and does not support any RDFS reasoning.

In Table 1 we show an overview of the features
discussed in this section for all RDF large scale stor-
age approaches considered in this study.

5 PERFORMANCE EVALUATION

For testing RDF representation of UniProt data
(UniProt, 2007) are used, which scales up to 80 mil-
lion triples. Oracle’sRDF MATCHfunction (Eugene In-
seok Chong and Souripriya Das and George Eadon
and Jagannathan Srinivasan, 2005) has been tested
and demonstrated reasonable performance on large-
scale RDF data. The tests showed that the query per-
formance is highly scalable, since query runtime does
not change significantly for scaling the data size from
10 to 80 million triples. In fact, the longest runtime

in these tests took a query, matching 6 triples with
5 variables and results limited to 15,000 rows, which
returned the answer in about one second.

Testing of YARS, Sesame and Redland was per-
formed on 4 different queries representing typical
query patterns. The results show, that YARS gen-
erally outperforms the other approaches, except for
queries when simple Hash lookup is possible. In this
case, Redland has better performance, due to its Hash
indexing method. That means, that Redland is opti-
mised for getting the sources, getting the targets, or
getting the arcs in an RDF graph, provided all other
information. Note that only triples are considered in
this test, although YARS and Kowari operate on a
quad structure. This, however, only adds context in-
formation and can be regarded as constant for these
test purposes.

Because Kowari could not be implemented, per-
formance analysis can only be discussed in isolation
based on the authors’ testing results (David Wood
and Paul Gearon and Tom Adams, 2005). The test
consisted of building data and index structures for
up to 235 million triples, as well as simultaneous re-
quests by 250 simulated clients. The authors state
that Kowari compares with MySQL using a simplistic
schema. Apart from that, no comparison to competing
systems, and no qualitative query performance results
are given.

5.1 Analysis

Large scale testing has been carried out using the
UniProt (UniProt, 2007) data of about 80 million
triples. Oracle’sRDF MATCHfunction, YARS, Red-
land, Sesame MySQL, and Sesame Native were com-
pared. In Table 2 we present index space require-
ments for different approaches to store and manage
large scale RDF data. A reason for those differences
is that Sesame Native uses 4 byte IDs, where Kowari
and YARS uses 8 byte IDs. Redland does not use IDs
at all, and operates directly on URIs, which results in
a relatively large index.

All discussed approaches for large scale RDF stor-
age but Redland use variations of theB-Tree as an
index structure. Redland uses three Hashes for fast
lookup of graph patterns with only one variable in the
triple. In the comparison Redland performed best in a
query, where only the subject was requested for con-
stant predicate and object, which Redland carries out
as a simple Hash lookup. Since Redland only pro-
vides three Hash indexes, all other queries involv-
ing more complex graph patterns need cumbersome
joins and combinations make Redland’s performance

ICSOFT 2007 - International Conference on Software and Data Technologies

106



Table 1: RDF storage and querying features of Oracle’sRDF MATCHtable function, Sesame, Kowari, YARS, and Redland.

Oracle Sesame Kowari YARS Redland
Context yes no yes yes yes
Access Application HTTP SOAP HTTP APIs

Server, SOAP APIs
ODBC, etc. RMI

Query SQL RQL iTQL N3 RDQL
Lang. (graph RDQL RDQL SPARQL

patterns SeRQL SPARQL
SPARQL-like)

Index B-Tree DBMS hybrid B+-Tree Hash
(2 indexes) specific (AVL, (6 indexes) (3 indexes)

B∗-Tree)
(6 indexes)

Impl. Oracle-Kernel JavaTM JavaTM JavaTM C
Rules RDFS RDFS RDFS – –

user defined OWL

Table 2: Index size space requirements for 80 millions
triples.

RDF Storage Size
Method (MB)
YARS 2,857
Sesame MySQL 9,068
Sesame Native 1,095
Redland 57,141
Oracle 4,915

worst. Sesame Native maintains three indexes on
each, subject, predicate, and object. Query patterns,
specifying a single triple element perform quite well.
For queries, that specify more than one triple element,
a join must be performed, which results in poor run-
time results for those kinds of queries. Since YARS
keeps all possible combinations indexed, it performs
well for all kinds of query patterns. However, it also
runs slightly faster in those test cases, where proper
indexesareavailable for Sesame Native. Sesame with
underlying DBMS relies heavily on the internal stor-
age and optimisation mechanisms of those databases.
However, a comparison of Sesame using the Ora-
cle SAIL and Oracle itself is not appropriate, since
Sesame uses the OracleRDF MATCHtable function,
and just adds additional overhead. Therefore, Sesame
DB can be seen as the preferred RDF storage system,
when database independence is an important aspect.

Comparing the actual response time, Oracle was
able to deliver 15,000 rows out of 80 million triples
for a moderately complex graph pattern of 6 triples
and 5 variables, in roughly one second. In contrast

to that, the YARS testing results show a runtime of
about 10 seconds. Redland’s fastest result for a sim-
ple query with only one triple and one variable in
the query pattern, returned about 160,000 rows in
about 10 seconds. Oracle’s table function returned
same query result in almost same time like Redland,
however with respect to the more complex query pat-
terns, Oracle seems likely to outperform all other ap-
proaches.

The choice of a particular RDF storage solu-
tion may heavily depend on factors, such as cost
(commercial vs. open-source), access methods, sup-
ported query language, OWL support, context sup-
port, portability (platform and database), or general
performance. (Refer to table 1 for details.) While Or-
acle seems to perform best in a number of aspects, it
is only commercially available. However, YARS is
a reasonable alternative with respect to performance,
but currently does not support popular query lan-
guages.

If (future) OWL support is important, Kowari may
be a reasonable consideration. Redland performs well
for queries with limited query patterns (and where
proper adjustments are made due to specific applica-
tions). The biggest advantage of Sesame is that it is
database independent. However, using Sesame with
the Oracle SAIL imposes additional overhead, and
one should consider using Oracle directly for RDF
storage.

LARGE SCALE RDF STORAGE SOLUTIONS EVALUATION

107



6 CONCLUSION AND FUTURE
WORK

In order to meet the growing requirements of large
scale semantic data storage, which are often repre-
sented in RDF and RDF Schema, a number of ap-
proaches have been developed. Several of these RDF
storage solutions have been presented, namely Or-
acle’s RDF MATCHtable function, Sesame, Kowari,
YARS, and Redland. Although they all strive for
the same goal, there are some differences in terms
of database storage, supported query languages, ac-
cess protocols, indexing methods, implementation,
and reasoning support. In this work we present a com-
parison of those approaches with respect to supported
access protocols, supported query languages, index-
ing methods, RDF Schema awareness, and implemen-
tation and we identify applicability of particular ap-
proach as well as advantages and disadvantages. Fur-
thermore, an overview of storage requirements and
performance tests has been presented. Depending on
the feature comparison presented in Table 1, a certain
storage system may be chosen according to use-cases,
application, or knowledge bases.

We intend to further compare large scale RDF
storage solutions on more complex queries and large
scale RDF data in order to reveal strengths and weak-
nesses of particular approach. This will help us to
identify the applicability of particular approach and
the need for distinct research directions to rectify
shortcomings.

REFERENCES

Alishevskikh, A. (2007). SOFA Simple Ontology Frame-
work API. https://sofa.dev.java.net/ .

Andreas Harth and Stefan Decker (2005). Optimized Index
Structures for Querying RDF from the Web. InLA-
WEB, pages 71–80.

Andy Seaborne (2004). RDQL - A Query Lan-
guage for RDF. W3C Member Submission,
W3C. http://www.w3.org/Submission/2004/
SUBM-RDQL-20040109/ .

Dave J. Beckett (2001). The Design and Implementation of
the Redland RDF Application Framework. InWWW,
pages 449–456.

David Wood and Paul Gearon and Tom Adams (2005).
Kowari: A Platform for Semantic Web Storage and
Analysis. InProceedings of xtech.

Eric Prud’hommeaux and Andy Seaborne (2006).
SPARQL query language for RDF. W3C work-
ing draft, W3C. http://www.w3.org/TR/2006/
WD-rdf-sparql-query-20061004/ .

Eugene Inseok Chong and Souripriya Das and George
Eadon and Jagannathan Srinivasan (2005). An Effi-
cient SQL-based RDF Querying Scheme. InVLDB
’05: Proceedings of the 31st International Conference
on Very Large Data Bases, pages 1216–1227, Trond-
heim, Norway. VLDB Endowment.

Frank Manola and Eric Miller (2004). RDF Primer. W3C
Recommendation, W3C.http://www.w3.org/TR/
2004/REC-rdf-primer-20040210/ .

Gregory Karvounarakis et. al. (2002). RQL: A Declarative
Query Language for RDF. InWWW, pages 592–603.

JDBM (2007).http://jdbm.sourceforge.net .

Jeen Broekstra and Arjohn Kampman and Frank van
Harmelen (2002). Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In
International Semantic Web Conference, pages 54–68.

Jena (2007). http://www.hpl.hp.com/semweb/jena.
htm .

Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Paoli,
J., and Bray, T. (2004). Extensible Markup Lan-
guage (XML) 1.0 (Third Edition). W3C Recom-
mendation, W3C. http://www.w3.org/TR/2004/
REC-xml-20040204 .

UniProt (2007).http://www.isb-sib.ch/ ˜ ejain/rdf/ .

Wikipedia3 (2007). http://labs.systemone.at/
wikipedia3 .

WordNet (2007). http://www.semanticweb.org/
library/ .

ICSOFT 2007 - International Conference on Software and Data Technologies

108


