
WEB SERVICE TRANSACTION MANAGEMENT

Frans A. Henskens
School of Electrical Engineering & Computer Science, University of Newcastle, Callaghan 2308, Australia

Keywords: Web services, transactions, concurrency control, Internet, component-based software.

Abstract: This paper describes extension of the functionality of conventional web browsers to produce a new
enhanced web browser. Each instance of this enhanced browser is part of a federation of browser instances
that use a directed graph-based technique to provide transaction and hence concurrency control over access
to web services. These ‘super browsers’ communicate with web-based services across the Internet,
application code that may be obtained from the Internet but then executes as a local program, and with other
browser instances.

1 INTRODUCTION

The Internet pervades modern society, providing
connected users with access to: huge amounts of
textual information; resources such as data files
containing computer programs, encoded music and
picture data; and email. Most Internet users interact
with the Internet using programs called web
browsers (e.g. Mozilla (Mozilla Foundation, 2006),
Internet Explorer (Microsoft Corporation, 2007b),
Safari (Apple Inc., 2007), Opera (Opera Software
ASA, 2007)) and mail handlers (e.g. Eudora
(Qualcomm Incorporated, 2007), Outlook
(Microsoft Corporation, 2007a)). As suggested by
their name, mail handlers provide users with the
ability to send and receive items of electronic mail.
Web browsers allow users to display screens of
formatted text and images, use hyperlinks (Nelson,
1965) to move between such pages, interact with
active content provided by plug-ins such as Flash
(Adobe Systems Incorporated, 2007) and Java (Sun
Microsystems Inc., 2007), and interact with external
(to the browser) services such as booking systems
that provide an interface to underlying data
management systems.

Web services allow Internet users to
communicate data without the need for intimate
knowledge of each others’ computer systems or
application software. Interaction may be business-
to-business, commonly achieved using remote
procedure call (Birrel and Nelson, 1984).
Increasingly the interaction is between businesses
that provide a service or services, and clients who

wish to use the service(s). This client-service
interaction involves the use of documents in the
form of HTML (Raggett et al., 1999) web pages,
displayed on the client’s computer using a web
browser. Standards such as XML (Bray et al., 2006)
for data tagging, SOAP (Gudgin et al., 2003) for
data transfer, UDDI (OASIS UDI, 2004) for service
advertising and WDSL (Christensen et al., 2001) for
service description, facilitate use of web services. A
common means for client utilisation of a web service
involves the client using a web browser to download
and display the service provider’s web page, which
then controls the interaction between the client and
the service.

This paper describes extending the functionality
of conventional web browsers to produce a new
enhanced form of browser. Each instance of this
enhanced browser is part of a federation of browser
instances that provides transaction-like control over
access to web services. These ‘super browsers’
communicate with web-based services across the
Internet, application code that may be obtained from
the Internet but then executes as a local program,
and with other browser instances. This architecture
provides for heterogeneity of implementation of the
new super browser, web services and the user
application code.

2 CLIENT-SERVICE
INTERACTION

It is interaction with external programs that
underpins the motivation for the suggestion of a

112
A. Henskens F. (2007).
WEB SERVICE TRANSACTION MANAGEMENT.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 112-119
DOI: 10.5220/0001327901120119
Copyright c© SciTePress

super browser. Increasingly, users of Internet
services do so in combination with their use of other
services offered by unrelated providers.
Additionally, access to such services is typically not
gained using a single interface – rather the user is
required to separately connect to each service
provider, and then use the interface provided by that
provider’s web site. In this situation it is typical that
no ‘behind the scenes’ service provider to service
provider interaction would occur to, for instance,
coordinate the client’s use of the services.

For example a holiday-maker may wish to
organise an itinerary involving booking an airline
flight, bus transport to a hotel, accommodation at the
hotel, day trip, etc. At issue is the fact that the
airline, bus company, hotel and excursion company
are typically independent of each other, and
implement separate booking systems. The holiday-
maker, then, has to separately affect bookings with
each company’s web-based system. If the user finds
that a particular booking is not possible (often
through being fully booked), it may be necessary for
him or her to undo previous bookings and start the
whole process again. Alternately the user may
utilise multiple browser windows to simultaneously
access each of the service providers, but may find
that, in the time taken to peruse other servers, a
previously available service has become fully
booked. In centralised systems this problem would
be solved using a mechanism called a transaction
(Härder and Reuter, 1983).

The high levels of utilisation of the Internet to
conduct both business and pleasure make solving
this problem extremely important. The business
world desperately needs a way of controlling
interaction between services, and high-level analysis
of such needs have been the subject of numerous
publications, for example (Hanson et al., 2002, Juric
et al., 2006, Lazovik et al., 2003). To date, attempts
to control such interactions have only applied to
business processes for which the activities involve
interaction with Web services only, and assume no
human interaction. This belies the fact that people
often participate in such interactions (IBM and SAP
AG, 2005).

In the following sections the notion of
transactions is developed, followed by a model for
control of web-based transactions. Both the
inclusion of human-machine interactions and the
provision of a software layer providing support for
applications represent significant achievements of
the model.

2.1 Transactions

Transactions involve a co-ordinating entity
interacting with the various components to ensure
that services continue to be available for the life of
the transaction, and either all components (services)
involved in the transaction successfully complete
(i.e. in the above example that all bookings are
made) or that none of them complete.

Continuing the previous example, the holiday-
maker may check availability of the various
components of their holiday before making any
bookings. After being satisfied that the desired
itinerary is possible, he/she would go back and make
the appropriate bookings. This scenario could lead
to a second issue, that of control over concurrent
access to the resources. In this case, the holiday-
maker could attempt to book their flight, only to find
that some other person has taken the last seat in the
time that has elapsed between determining
availability and booking the itinerary. Dealing with
this and similar issues is termed concurrency control
(Peinl, 1983).

Transaction semantics have long been used to
control user interaction with multiple entities in a
data store, and also to prevent concurrent users of
the store from adversely affecting each other
(Farrag, 1989). The theory specifies that all
transactions must exhibit the ACID (atomicity,
consistency, isolation and durability) properties, the
isolation property ensuring that transactions are
serializable and therefore that they manage
concurrent use of the data in the store (Date, 1999).
Traditionally, access to data has been controlled by a
data base management system (DBMS) (Date, 1999)
implementing either a pessimistic (Gray and Reuter,
1993), optimistic (Kung and Robinson, 1981), or
combination-of-the-two approach (Momin and
Vidyasankar, 2000) to transaction and hence
concurrency control. Thus transaction management
has been achieved using a centralised piece of
software (the DBMS). With the advent of
distributed databases, transaction control has been
achieved through the use of messages between
DBMS instances that effectively create a single
DBMS spanning the networked computers.

Middleware systems such as CORBA (Siegel,
1996) support distributed access to services provided
by objects resident at possibly different networked
hosts. Transaction-based concurrent access to such
objects is supported through the use of a special
service implemented in the Object Request Broker
(ORB) (Object Management Group, 1998), which
also requires specific functionality from the
participating server objects (Emmerich, 2000). In
both this and the traditional DBMS approaches,

WEB SERVICE TRANSACTION MANAGEMENT

113

centralised control (in these examples either the
DBMS or the ORB) underpins the transaction
system. Such centralised control is not available
when the services involved in the transaction are
heterogeneous in implementation, as is the case for
the typical service available on the Internet.

The following section discusses the use of
cooperating web browser instances to provide the
abstraction of centralised control of transactions
involving use of web services.

2.2 Distributed Transaction Control

The notion of using cooperating browser instances to
control transactions is similar to that which
underpins distributed operating systems (distributed
OS) (Sinha, 1996); the operating system (OS)
instances are independently executing entities that
communicate as necessary to provide the required
level of global coordination. The distributed OS,
then, is an abstraction provided through the
cooperation between, and interaction of, the
component OS instances.

Centralised management of user interaction with
web services would theoretically be possible.
However the huge number of potential service
clients and providers, resulting from the geographic
spread of the Web and the uptake levels that this
spread has encouraged, make it impractical. Such
control could be distributed by, for example,
creating regional manager entities that work together
to provide the abstraction of a single global
manager. Any such decomposition would still
create significant potential for points of failure and
bottleneck.

The alternative approach presented in this paper
extends the notion of decomposition of control to the
level at which each participating host computer
becomes involved in transaction coordination. The
key feature of this design is that hosts are only
involved on a need to know basis. Additionally, the
scope of a host’s control changes dynamically
through the life of the system, as users complete
(commit) or abort transactions. Such architecture is
possible through the incorporation of a novel
transaction representation and management
technique, based on Directed Dependency Graphs
(DDGs) (Jalili and Henskens, 1995) at each
participating host. This technique is described in the
following section

2.3 Directed Dependency Graphs

The use of DDGs to control transactions stems from
their use in incremental checkpointing of persistent
stores (Jalili, 1995). This approach to stability of

stores (Brown, 1989) allowed parts of the store to be
checkpointed in parallel with user access to other
parts of the store. It is important at this stage to note
that, while the terms checkpoint and rollback are
commonly known as database transaction terms,
their use at this time describes the acts of rendering
data stable (durable) or reverting the data to a
previous stable state respectively.

The DDG technique uses directed graphs to
record the inter-relationships created between
programs and the objects they access as the
programs execute. These relationships are used
when mutated object data is written to non-volatile
storage, ensuring that other dependent data is also
made stable in an atomic operation. The result is
that, on restart after unexpected shutdown (crash) of
all or part of the system, the recovered state ise
physically and logically self-consistent in spite of
the inevitable loss of some data.

The critical observation of the DDG work was
that a bi-directional relationship exists between
processes and the objects they access. In other
words, that a connection between a process and an
object has different meaning for checkpoint than it
has for rollback. Moreover, the relationship between
a process and a previously-mutated (by some other
process) object it has read is different from the
relationship between a process and an object it has
itself mutated. These differences can be represented
by including a direction component to each graph
edge.

For example, consider processes P1 and P2
whose activities are linked through a common object
O. If P1 mutates O, after which O is read by P2, then
according to non DDG-based schemes (which
typically use set notation to describe inter-entity
relationships) all three entities would checkpoint or
roll back as a unit (and all other objects associated
with each process would also be affected). In fact P1
and O could checkpoint independently of P2, and P2
could roll back independently of P1 and O. Only a
checkpoint of P2 must propagate to P1 and O.

This may be recorded using graph rather than set
notation using the directed edges → and ↔. When a
process P mutates an object O, the edge P ↔ O is
added (if it does not already exist) to the DDG(s)
including P and O. When a process P reads a
modified object O, the edge P → O is added (if it
does not already exist or if an ↔ edge does not
exist) to the DDG(s) including P and O. As implied,
when a process belonging to a DDG reads a
modified object or modifies an object that belongs to
another DDG, the two DDGs are merged using one
of the described edges to create a single larger
graph. In a distributed system each host maintains
that part of the graph containing entities located on

ICSOFT 2007 - International Conference on Software and Data Technologies

114

that host. Special ‘dummy’ graph nodes are used to
represent links to continuation of graphs on other
hosts, allowing graphs to span networks of hosts.

A DDG shrinks when a set of dependent entities
is checkpointed or reverts to its last stable state (rolls
back). Once a checkpoint or rollback operation is
initiated for an entity E, the operation propagates to
each entity that is reachable from E in the DDG to
which E belongs, if necessary involving network
messages between OS instances. Then, because
each involved entity is now stable, all edges attached
to them are removed.

At any instant each entity belongs to one and
only one dependency graph. To find the set of
entities dependent on any entity, it is sufficient to
find the location of the entity in its graph and then,
subject to the kind of operation, traverse the directed
graph starting from the entity. Thus the set of
dependent entities may differ for entities in the same
DDG.

The following section shows how DDGs can be
used to provide browser-based transaction control.

3 DDGS, BROWSERS, AND WEB
SERVICES

What is required is a new environment that supports
the execution of applications constructed to include
and make use of the plethora of heterogeneous
services available on the Internet (web services). In
essence such applications would be constructed
using the component-based approach (Brown, 1996).
Accordingly, using the new environment, extant
web-based entities providing different services and
functionalities may be combined to create a single,
all-encompassing, coordinated resource. The
required environment is provided by a next-
generation web browser (a “super browser”) that not
only supports current methods of Internet use, but
also provides a consistent interface for applications
to interact with disparate Internet resources.
Importantly, the wrapping applications execute
without change on any computer
architecture/operating system platforms for which
the super browser has been implemented.

Purposes of the super browser are to:
• Support all functionality provided by

current web browsers.
• Provide a run-time environment for

application programs written to utilise
services provided by disparate Internet
providers. In this function the super-
browser behaves in much the same way as

the Java Virtual Machine (Lindholm and
Yellin, 1999) does for Java programs,
providing a consistent interface to
underlying services for application
programs, and transparently interacting with
those services in the form required by each
of them.

• Incorporate mechanisms with which
application programs can implement
transactions, and hence support predictable
concurrent use of the underlying services
that form components of the applications.

• Allow application programs to execute
without alteration on any host computer for
which a version of the super browser is
available.

The super browser addresses the problems of:
• Coordinating interactions between multiple

Internet users and the services to which the
Internet provides access.

• Providing a generic interface for execution
of component-based web application
software so that the software can be used on
any supported computing platform.

• Defining a standard interface to Internet
services. Services that comply with that
interface will be candidates for inclusion, as
components, in the more complex
applications that execute as clients of the
super browser.

Conventional coordination of interactions
between active entities (programs) and the data they
access has been achieved using centralised control,
for example a DBMS or ORB. In the case of
interaction between users and Web-based services,
such centralised control is not available. The super
browser produces a federation of control agents
created by enhancing the capabilities of each of the
web browser instances being used to access the
services. Each enhanced web browser (super
browser) instance will host (act as a virtual machine
for) zero or more user-controlled application
programs. These programs may be locally stored on
host computers and invoke the super browser when
they execute (similarly to the way HTML files cause
a browser to be activated when they are run), or they
may be dynamically downloaded from the Internet
(using a hyperlink) as required.

3.1 Role of DDGs

As the hosted application(s) access services on the
Internet, each hosting super browser instance uses a
locally-maintained DDG to store the inter-entity
relationships created by the application’s activities.

WEB SERVICE TRANSACTION MANAGEMENT

115

Super browsers become associated with other
remote super browser entities on a ‘need to know’
basis through their access to common service
providers. The associations between browser
instances are represented in the sub-graph stored at
each instance, with ‘dummy’ graph nodes used to
represent between-browser-instance connections.
The result is a globally distributed graph structure
comprising one or more disjoint graphs with parts of
those graphs being stored on one or more hosts.

While the super browser entities provide the
equivalent of a single global access coordinator, they
actually dynamically form separate clusters based on
the patterns of accesses performed by the user
programs they host. These clusters grow as services
are accessed, and shrink as transactions complete or
abort. This architecture produces a scalable and
efficient solution to the problem of coordinating
interactions between global users and the huge
number of available web services, but does not
support the conventional models of transaction
control.

3.2 DDGs and Transactions

As described in (Henskens and Ashton, 2007), there
are similarities in the information recorded in
stability DDGs and the information required for
transaction management and concurrency control.
However, there are also differences between stability
and concurrency control requirements, namely:

• The DDG stability technique maintains
dependency information on a per-process
basis rather than a per-transaction basis,

• The DDG stability technique records
information about dirty-read and write
accesses, whereas transaction isolation also
requires knowledge of clean-read accesses,
and

• Stability checkpoints and transaction
commits have different semantics.

A transaction is an abstract concept that includes
the user-defined boundaries (BEGIN_TRX and
COMMIT_TRX), the required data resources and
accesses (that may include mutation) to that data.
The super browser entities initiate the activities
specified by the transactions they host. This occurs
every time a hosting browser makes a request of,
and receives a response from, a web service
involved in a hosted transaction. Thus, on each
communication with a web service, it is necessary
for the host browser to record the browser-service
dependency, including the identification of the
transaction that used the service.

Stability mechanisms provide the abstractions: a
durable computational store; a logically-consistent
store restart state at all times; concurrency control at
process level. Full transaction support requires the
abstractions provided by the stability mechanism to
be augmented as follows:

1. Support for transaction-based events
associated with the programming language
key words (e.g. BEGIN-TRX and
COMMIT-TRX) used to define the extent
of each transaction.

2. The transaction extent defines an atomic
unit of work that is isolated from any other
concurrent activity.

3. The means for managing concurrency
should be flexible enough to cope with run-
time determination of the temporal extent
and physical granularity of interaction.

A consequence of these requirements is that the
transaction management system must have control
over the timing of checkpoints that correspond to
transaction commits.

The DDG-based transaction manager creates
edges between graph nodes representing transactions
and accessed entities as follows:

1. A clean-read edge is recorded as “—”. T
— E indicates that transaction T has
queried a web service entity E.

2. A dirty-read edge is recorded as “→”. T →
E records that transaction T has read a web
service entity E that had been previously
mutated since its most recent checkpoint.

3. A write edge is recorded as “↔”. T ↔ E
indicates that transaction T has modified
web service entity E since it was last check-
pointed.

These edges can be used, with appropriate logic
at the time of edge insertion (the completion of a
browser request-response) or COMMIT/ABORT-
TRX events, to implement an optimistic transaction
control mechanism. Moreover, the technique has
been shown to perform as well as the better of
conventional pessimistic or optimistic transaction
management over a wide range of transaction sizes,
levels of concurrent activity, distribution of involved
objects and object store sizes (Ashton, 2004,
Henskens and Ashton, 2007).

Transactions are widely accepted as an
appropriate mechanism for management of control
over concurrent access to objects in a store (Date,
1999). Thus the use of DDG-based concurrency
Control (DCC) represents an excellent choice for
general-purpose transaction management and
concurrency control.

The super browser uses the Directed graph-based
Concurrency Control (DCC) transaction technique to

ICSOFT 2007 - International Conference on Software and Data Technologies

116

manage the interactions of component-based
applications with web services, thus providing
ACID-compliant interaction between concurrent
users and the service providers.

Implementation of DCC at browser level
requires communication between super browser
entities. The current generation of browser entities
only communicate with service/page providers and
their host computer systems, so browser-to-browser
interaction represents a novel enhancement of the
way browsers operate.

3.3 Inter Browser Communication

Super browser entities must communicate in order
that commit, abort and roll-back actions can be
implemented. The latter two actions occur under
user program instruction, and the former as a result
of transaction manager determination that the
transaction cannot succeed because of concurrent
activity involving the web services (Ashton, 2004).
A browser that is either instructed to commit or
abort, or that determines a need to roll back, uses its
locally stored graph segment to communicate with
involved web service providers instructing them to
take appropriate action. It uses the ‘dummy’ graph
nodes that provide connection to remote browser
entities to traverse the graph to those entities,
causing the operation to propagate through the
distributed system.

Many browser entities are hosted on computers
that sit behind routers or firewalls, for example as
parts of local area networks connected to the Internet
through a broadband connection such as ADSL or
cable. Such browsers are able to operate
successfully in the usual request-response
circumstance using techniques such as NAPT.
Servers sitting behind routers are only accessible
(except in a response situation) through definition of
a port forward defined in the router (Comer, 2004).

At the commencement of a transaction, the
initial relationship between the controlling browser
and the involved web services is of the client/server
nature supported by techniques such as NAPT.
Implementation of DCC-based concurrency
communication changes the relationship between the
participating browsers and service providers to peer-
to-peer, requiring initiation of requests from the
Internet side of routers to entities behind those
routers, and without port forwarding implemented in
those routers. This is made possible by storing of IP
and port information for browser entities, obtained
from the initial request messages, in the graph
‘dummy’ node(s) representing those entities in the
DDGs. A comprehensive description of this aspect

of DCC-based transaction management will be
presented in a future publication.

3.4 Application Program Interface

The super browser provides a run-time environment
for client application programs. Initially this takes
the form of extension of the Java Virtual Machine
(JVM) that, in conventional browsers, supports
execution of Java applets. Extensions to the Java
Application Programmer Interface (API) provides
for bracketing of transactions using the usual
notations (BEGIN_TRX, COMMIT_TRX and
ABORT_TRX). Additionally, the API supports
identification of the web services that form
components of the application, and subsequent
access to those services.

Future work will investigate support for fully
compiled client software written, for example, in
object-oriented languages like C++. For such
programs the super browser will appear to be more
like an extension of the operating system (in the
same way as is middleware) than as a user-level
application program.

4 CONCLUSION

Web services allow business to business interaction
across the Internet, and are increasingly being used
for web page based interaction between businesses
and their clients.

It is currently difficult or impossible to construct
applications, or web pages, that provide transaction-
like semantics to use of web services offered by
unrelated service providers. This is particularly the
case if there is a requirement for human interaction
with the transaction.

Directed dependency graphs, previously used to
underpin stability and later transaction-based
concurrency control in persistent object stores, can
be used to provide transactions involving clients and
disparate web services. Termed DCC, this
technique, when implemented in a federation of
enhanced web browsers, provides an efficient,
distributed and scalable form of transaction
management.

With the support provided by these so-called
super browsers, programmers can build component-
based client application programs incorporating
multiple remotely provided web services. Clients
can enjoy transaction semantics in their use of those
services. Moreover, the application software can
either execute using a virtual machine (e.g. JVM)
provided by the browser, or as an independent

WEB SERVICE TRANSACTION MANAGEMENT

117

program for which the super browser behaves as
middleware with respect utilisation of web services.

Features of this new approach to control of
interaction with web services include:

• Extension of the extant web service
interaction models to include support for
human interaction.

• A software platform (the super browser)
providing support for programming and
execution of applications that implement
the extended web service interaction model.

• An Application Programmer Interface
(API) for the interaction between web
services and the super browser.

• An API for the interaction between the
component-based application programs and
the super browser.

• A browser-to-browser communication
protocol that supports transactions and
transaction-based concurrency control.

A super browser implementation, together with
sample user applications and web services are
currently under development, and will be used to
prove and demonstrate these technologies. The
results will form the subject of a future paper.

REFERENCES

Adobe Systems Incorporated, 2007. Macromedia Flash.
http://www.adobe.com/products/flash/flashpro/.

Apple Inc., 2007. Safari RSS.
http://www.apple.com/macosx/features/safari/.

Ashton, M. G., 2004. Management of Data, Access and
Concurrency in a Persistent Object Store. Ph.D,
Computer Science & Software Engineering.
University of Newcastle.

Birrel, A. D. & Nelson, B. J., 1984. Implementing
Remote Procedure Calls. ACM Transactions on
Computer Systems, 2(1), 39-59.

Bray, T., Paoli, J., Sperberg-Mcqueen, C. M., Maler, E. &
Yergeau, F., 2006. Extensible Markup Language
(XML) 1.0 (Fourth Edition).
http://www.w3.org/TR/2006/REC-xml-20060816.

Brown, A. L., 1989. Persistent Object Stores. Faculty of
Mathematics and Computational Science. St
Andrews, Ph.D, Universities Of St Andrews and
Glasgow.

Brown, A. W., 1996. Component-Based Software
Engineering, Wiley.

Christensen, E., Curbera, F., Meredith, G. &
Weerawarana, S., 2001. Web Services Description
Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

Comer, D., 2004. Computer Networks and Internets,
Pearson/Prentice Hall.

Date, C. J., 1999. An Introduction to Database Systems,
Reading, MA, USA, Addison-Wesley Publishing Co.

Emmerich, W., 2000. Engineering Distributed Objects,
Wiley.

Farrag, A. A., Ozsu, M. T., 1989. Using Semantic
Knowledge of Transactions to Increase Concurrency.
ACM Transactions on Database Systems, 14, 503 -
525.

Gray, J. & Reuter, A., 1993. Transaction Processing:
Concepts and Techniques, San Mateo, CA, Morgan
Kauffmann Publishers.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J. &
Nielsen, H. F., 2003. Simple Object Access Protocol
Version 1.2. http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/.

Hanson, J., Nandi, P. & Levine, D., 2002. Conversation-
enabled Web services for agents and e-business.
International Conference on Internet Computing.

Härder, T. & Reuter, A., 1983. Principles of Transaction-
oriented Database Recovery. ACM Computing
Surveys, 15(4), 287 - 317.

Henskens, F. A. & Ashton, M. G., 2007. Graph-based
Optimistic Transaction Management. Journal of
Object Technology.

Ibm & Sap Ag, 2005. WS-BPEL Extension for People.
Jalili, R., 1995. A Failure Transparent Distributed

Persistent Store. Ph.D, Basser Department of
Computer Science. Sydney, University of Sydney.

Jalili, R. & Henskens, F. A., 1995. Reducing the Extent of
Cascadable Operations in Stable Distributed Stores.
18th Australian Computer Science Conference.
Adelaide, Australia.

Juric, M. B., Mathew, B. & Sarang, P., 2006. Business
Process Execution Language for Web Services
Version 2nd Edition. PACKT Publishing.

Kung, H. T. & Robinson, J. T., 1981. On Optimistic
Methods for Concurrency Control. ACM Transactions
on Database Systems, 6(2), 213-226.

Lazovik, A., Aiello, M. & Papazoglou, M. P., 2003.
Planning and Monitoring the Execution of Web
Service Requests. Service-Oriented Computing -
ICSOC 2003. Springer-Verlag, Lecture Notes in
Computer Science.

Lindholm, T. & Yellin, F., 1999. The Java Virtual
Machine Specification, Sun Microsystems.

Microsoft Corporation, 2007a. Microsoft Outlook.
http://office.microsoft.com/en-au/outlook/default.aspx.

Microsoft Corporation, 2007b. Windows Internet
Explorer.
http://www.microsoft.com/windows/ie/default.mspx.

Momin, K. A. & Vidyasankar, K., 2000. Flexible
integration of optimistic and pessimistic concurrency
control in mobile environments. Lecture Notes in
Computer Science, 1884, 346-353.

Mozilla Foundation, 2006. About Mozilla.
http://www.mozilla.org/about/.

Nelson, T. H., 1965. A File Structure for the Complex,
the Changing and the Intermediate. 20th National
Conference. ACM.

ICSOFT 2007 - International Conference on Software and Data Technologies

118

http://www.adobe.com/products/flash/flashpro/
http://www.apple.com/macosx/features/safari/
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://office.microsoft.com/en-au/outlook/default.aspx
http://www.microsoft.com/windows/ie/default.mspx
http://www.mozilla.org/about/

Oasis Udi, 2004. Introduction to UDDI: Important
Features and Functional Concepts.
http://www.uddi.org/whitepapers.html.

Object Management Group, 1998. The Common Object
Request Broker: Architecture and Specification, 492
Old Connecticut Path, Framinkham, MA 01701,
U.S.A.

Opera Software Asa, 2007. The Opera Web Browser.
http://www.opera.com/.

Peinl, P., Reuter, A., 1983. Empirical Comparison of
Database Concurrency Control Schemes. 9th
International Conference on Very Large Databases.
Florence, Italy, Morgan Kaufmann.

Qualcomm Incorporated, 2007. Eudora.
http://www.eudora.com/.

Raggett, D., Le Hors, A. & Jacobs, I., 1999. HTML 4.01
Specification. http://www.w3.org/TR/html401/.

Siegel, J., 1996. CORBA Programming, Wiley.
Sinha, P. K., 1996. Distributed Operating Systems:

Concepts and Design, Wiley-IEEE Press.
Sun Microsystems Inc., 2007. Java Plug-In Technology.

http://java.sun.com/products/plugin/.

WEB SERVICE TRANSACTION MANAGEMENT

119

http://www.uddi.org/whitepapers.html
http://www.opera.com/
http://www.eudora.com/
http://www.w3.org/TR/html401/
http://java.sun.com/products/plugin/

