AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT
QUERIES*

Giacomo Buratti
Department of Mathematics and Informatics, University of Camerino, Via Madonna delle Carceri 9, Camerino, Italy

Danilo Montesi
Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, Bologna, Italy

Keywords:

Abstract:

XML, Algebra, Full-Text, Approximate Query.

XQuery Full-Text is the proposed standard language for querying XML documents using either standard or

full-text conditions; while full-text conditions can have a boolean or a ranked semantics, standard conditions
must be satisfied for an element to be returned. This paper proposes a more general formal model that considers
structural, value-based and full-text conditions as desiderata rather than mandatory constraints. The goal is
achieved defining a set of relaxation operators that, given a path expression or a selection condition, return
a set of relaxed path expressions or selection conditions. Algebraic approximated operators are defined for
representing typical queries and returns either elements that perfectly respect the conditions and elements that
answer to a relaxed version of the original query. A score reflecting the level of satisfaction of the original
query is assigned to each result of the relaxed query.

1 INTRODUCTION

The study of semi-structured data and XML have re-
ceived in the last years a further boost from a new
trend: the integration of structured, semi-structured
and unstructured data into a more general framework
(INEX, 2006). A convergence between these diverg-
ing models is made necessary by the consideration
that many today’s applications have to cope with data
covering the entire spectrum. This requirement led
to the definition of many query languages for XML
with full-text capabilities; lastly, W3C has published
a Working Draft for XQuery Full-Text (W3C, 2006),
a extension of XQuery with full-text operators.

Our contribution to this convergence effort has
been the definition of AFTX (Buratti, 2007), an al-
gebra for semi-structured and full-text queries over
XML repositories. Our algebra includes either ba-
sic or full-text operators. Basic operators are used to
restructure and filter the input trees. Full-text opera-
tors perform full-text searches, either using a boolean
model or a ranked retrieval. In the first case a binary
judgement (relevant / not relevant) is assigned to each

*This work has been supported by CIPE 4/2004

62

Buratti G. and Montesi D. (2007).

AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT QUERIES.

input tree; in the second case a score value, reflecting
how relevant the tree is with respect to the user query,
is calculated.

1.1 The Need for Approximation

One of the main differences between structured and
semi-structured paradigm is the flexibility of the
schema. In fact the schema specifications for an XML
document can define some elements as optional, or
the cardinality of an element can differ from doc-
uments to documents; moreover, it is perfectly le-
gal for an XML document not to have an associated
schema at all. This flexibility poses interesting ques-
tions for what concerns answering to a query that im-
poses some constraints on the structure of XML frag-
ments to retrieve; it could be the case that such con-
straints are satisfied by a very small part of input doc-
uments. Nevertheless, there could be documents that
are relevant to users, even if they do not closely re-
spect some structure constraints.

XQuery Full-Text treats basic conditions (i.e. nav-
igational expressions and constraints on value of ele-
ments or attributes) and full-text conditions in a non-
uniform way. In fact, when writing full-text con-

In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 62-69

DOI: 10.5220/0001327700620069
Copyright © SciTePress

AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT QUERIES

ditions, it is possible to specify whether to use a
boolean semantics or to perform a ranked retrieval.
On the contrary, basic conditions are always treated
as mandatory: in order to be retrieved, an element
must be reachable by exactly following the specified
path expression, and all the conditions on values must
be satisfied.

In the effort of providing a uniform treatment of
basic and full-text conditions, the key idea is to con-
sider the searched path expression and the specified
conditions on values as desirable properties to enjoy
for an element to be returned, instead that consider-
ing them as mandatory constraints. Therefore, an el-
ement should be returned even if it does not perfectly
respect basic conditions, and a score value should in-
dicate how well such conditions are satisfied.

1.2 A Motivating Example

Consider the XML document shown graphically in
Figure 1. Suppose a user writes an XQuery ex-
pression containing the for clause for $a in doc(
“bib.xml”) /bib/book/author. The user need is
probably to find all book authors, including those who
just co-authored a book. The for clause, however,
will find only those authors that are the single authors
of at least one book. If the for clause has an approx-
imated behavior, it could also return a subtree reach-
able by following an relaxed version of the original
path expression, for example /bib/book//author,
therefore including co-authors in the result.

This relaxed query would find all the book au-
thors, but not the paper authors. It could be the
case that such authors are also of interest for the
user. The user need could be satifisfied by fur-
ther relaxing the query, i.e. the path expression
/bib/book//author could be transformed into the
path expression /bib//author.

Suppose now the wuser writes an expres-
sion containing the clause for $a in doc(
“bib.xml”) /bib/book/title. Such a query finds
all the book titles, but ignores paper titles, which
could also be interesting for the user. In fact some
semantic relationship exists between the words
book and paper: using some lexical database (e.g.
(Princeton University, 2007)) we can find that both
these words are hyponyms of the word publication.
Considering such a relationship, a different kind of
relaxation could treat the path /bib/paper/title
as a approximated version of /bib/book/title and
therefore include in the result also the paper titles.

Let us now consider a for clause including a filter
predicate based on the full-text operator ftcontains,
like the following:

for $a in doc("bib.xml")//paper
[//section/title ftcontains "INEX"]

We are looking for papers that include in a section
title the word INEX. The paper shown in Figure 1 is
not returned, because the titles of the various sections
do not include the searched word. However, the word
is included in the content of the first section of the
paper, therefore the paper is probably of interest for
the user. A possible relaxation could transform the
previous query by removing the last step in the path
expression, thus obtaining:

for $a in doc("bib.xml")//paper
[//section ftcontains "INEX"]

As a final example, consider the partial query

for $b in doc("bib.xml")/bib/book
where $b /price < 39

The user wants to find books with a price lower than
39. However, it could be the case that very few books
satisfy such a constraint (in the document of Fig-
ure 1, no book satisfies the constraint); consequently,
the user could also be interested in books having a
price of 39, or even in books having a price not much
greater than 39. A relaxed version of the where clause
could return such books, by substituting the condi-
tion $b/price < 39 with an approximated version
of it, obtained by changing the comparison operator
(S$b/price < 39) or even increasing the threshold
price ($b/price < 45).

1.3 Our Contribution

The purpose of this paper is to formally define the
notion of query relaxation that has been informally
presented. Section 2 represents the core of the pa-
per; here we introduce the various relaxation opera-
tors, that perform one of the following tasks: 1) given
a path expression, define a set of relaxed path expres-
sions; 2) given a predicate on a element value, define
a set of relaxed predicates.

With respect to (Amer-Yahia et al., 2004), the pa-
per that mainly influenced us, our work has the advan-
tage of considering a wider spectrum of relaxations.
Moreover, we incorporate the notion of approxima-
tion into a general algebraic framework suitable for
representing queries over XML.

The relaxation operators are then used in Section
3 to define a set of approximated algebraic operators.
These operators are a variant of some of those pre-
viously defined for AFTX; AFTX, which is briefly
reviewed in the same section, is an algebra working
on forests of trees, i.e. ordered lists of trees. For a
deeper treatment of AFTX data model, algebraic op-

63

ICSOFT 2007 - International Conference on Software and Data Technologies

@ Year = “1994
“TCP-IP “Addison- 65 95
lllustrated” Wesley”

[svens | [wr |

@ Year = “2000"
@ “Morgan Kaufmann 39.95
Publishers”

“Data on
the Web”

paper Year = “2000" ‘ ‘ “Abiteboul”

“Serge” ‘ ‘Buneman ‘ “Peter” “Suciu”

ﬂ

FleXPath: Flexible

o . " “Querying XML data i |s a
Structure well-explored topic...
and Full-Text

‘ “Amer-Yahia” ‘ “Lakshmanan”

Introductlon ..Consider querying

documents in the IEEE INEX..

Figure 1: Graphical representation of an XML document.

erators, XQuery Full-Text translation, and algebraic
optimization see (Buratti, 2007).

Approximated algebraic operators are based on
the concept of score: a relaxed answer (i.e. an an-
swer to a relaxed query) has a score which reflects
how exact is the query that returns such an answer.
In a certain way exact and relaxed queries play the
same role of boolean and ranked retrieval in classi-
cal Information Retrieval (and in XQuery Full-Text):
while exact queries classify each document fragment
as either relevant (i.e. fulfilling constraints imposed
on document structure and elements / attributes value)
or not relevant, relaxed queries establish how relevant
a fragment is. The definition of an approximation-
aware algebra for XML standard and full-text search
can serve as the theoretical foundation for the defi-
nition of an approximation-aware version of XQuery
Full-Text.

The main contribution of the presented work is the
formal definition of the concept of approximation in
terms of approximation operators. Therefore it should
be regarded to as a valuable starting point for future
research in the area; in Section 4, besides drawing
some conclusions, we outline some possible future re-
search directions.

2 RELAXATION OPERATORS

In this section we formally define a set of relaxation
operators. We propose two kinds of relaxation: path
relaxations and comparison relaxations.

64

2.1 Path Relaxations

We define four path relaxation functions: axis relax-
ation, internal step deletion, final step deletion, and
name relaxation. Their goal is to obtain a set of re-
laxed path expressions, starting from an input path
expression.

Axis Relaxation P4 approximates a path expres-
sion Aj/Ay by substituting a child axes with a de-
scendant axes, thus obtaining the relaxed expres-
sion A;//Ay. Its goal has already been depicted
in an example in Section 1, where the path ex-
pression /bib/book/author were transformed into
/bib/book//author.

It is clear that multiple relaxed expression can
be obtained from the original expression, possi-
bly recursively applying the relaxation function; in
this example, other possible relaxed expressions
are /bib//book/author, /bib//book//author,
//bib/book//author etc. Formally, the set of ob-
tainable relaxed expressions has cardinality Y% ; ('Z)

Internal Step Deletion Ps approximates a path
expression Ajof//Ay (where o is an axes and
B is an element name) by eliminating the inter-
nal step of}, thus obtaining the relaxed expression
Ai//X2. As an example, consider the XML doc-
ument in Figure 1 and suppose to start with the
path expression /bib/book/authors/author. Us-
ing P4 we could transform it into the relaxed version
/bib/book/authors//author, but this transforma-
tion is not yet sufficient to capture authors of a book
having just one author; now we can apply Ps, obtain-
ing /bib/book//author, which captures either au-

AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT QUERIES

thors and co-authors.

Final Step Deletion Pr removes from the original
path expression Ao the final step af, thus obtaining
the relaxed expression A; for example, using Pr we
can transform the expression /bib/book/content
into the expression /bib/book. The behaviour of the
final step deletion function is radically different to that
of P4 and Ps; while an application of P4 or Pg results
in a relaxed path expression that reaches all the ele-
ments that can be reached using the original path ex-
pression (plus some extra elements), an application
of Pr results in a set of path expressions that reach
a completely different set of elements. As one could
expect, its usage is therefore different from that of the
two previous relaxations, as we will see in Section 3.

Name Relaxation Py substitutes an element
name [in a path expression AjofA, with an-
other name [}/, thus obtaining the relaxed expression
Aop'Ay. For example, using Py we could trans-
form the expression//book/author into the expres-
sion //publication/author.

In the spirit of data integration, this operation
should be intended as a way to manage heterogenous
data sources disregarding possible name conflicts due
to the usage, for example, of synonyms in the schema
definition. Generally speaking, the Name Relaxation
function should be thought of as a way to substitute
a name with another one that has a certain degree of
similarity with it; such a similarity could be calcu-
lated, for example, using an ontology.

2.2 Comparison Relaxations

Typical operations on XML documents also involve
checking the satisfaction of a comparison predicate.
For example, having selected a set of book elements,
we could filter those element on the basis of the book
price, using the predicate /price < 50. There are
two possible relaxations we can perform on a pred-
icate like this: operator relaxation and value relax-
ation.

Operator Relaxation Cp substitutes an operator
0 in a comparison expression x8y with another opera-
tor &, thus obtaining x0'y. For example, using Co we
could transform /price < 50 into the relaxed com-
parison /price < 50.

Clearly, such a transformation makes sense only if
the new operator guarantees a larger (or at least equal)
number of successful comparison than the original
one. A partial ordering relation < can be defined be-
tween available operators, stating that 8 < @’ if, for
each pair of operands (x,y), x0y implies x8'y. An
example of ordering relationships between operands
on numeric values is shown in Figure 2, where an ar-

row from operand 6 to operand 6’ means that 8 < ©’;
similarly, an ordering relationship should be defined
between operators on strings, dates, etc.

Figure 2: Ordering between numeric operators.

Value Relaxation Cy substitutes an operand y in
a comparison expression x0y with another operand y’,
thus obtaining x0y’. For example, using Cy we could
transform /price < 50 into the relaxed comparison
/price < 55.

This relaxation, along with Cp, permits to include
in the list of satisfactory elements also those whose
value slightly differs from the user request. As usual,
its goal is therefore to expand the space of possible
results. The choice of the new value y’ should depend
on the comparison operator. For example, given the
comparison x < y, ¥ should be a value such that y’ >

y.

3 APPROXIMATED ALGEBRAIC
OPERATORS

In this section we define a set of approximated alge-
braic operators. For each of them, we briefly recall the
semantics of the basic AFTX operator and define the
new operator on the basis of the relaxation operators
that can be used.

3.1 Approximated Projection

AFTX projection T is a unary operator that takes is
a forest and operates a vertical decomposition on it:
every input tree contributes, with the subtrees of in-
terest, to the projection output. The subtrees of inter-
est are specified in the projection predicate through a
path expression A, a concept almost identical to that
used in XPath, except for the fact that it can not con-
tain selection conditions. For example, the AFTX ex-
Pression T3y, /poox (“bib.xm1”), where bib.xml is the
XML document shown in Figure 1, returns a forest
containing two trees, that correspond to the two sub-
trees rooted at book that can be found in the input
tree.

The approximated projection ©* operator has the
following behavior:

65

ICSOFT 2007 - International Conference on Software and Data Technologies

e calculate all possible relaxation of the path ex-
pression A in the predicate, using Axis Relaxation
Py, Internal Step Deletion Ps, Name Relaxation
Py;

o for each relaxed path expression, execute the pro-
jection using that path expression;

e calculate the union of the projection results (in-
cluding the result of the projection that uses the
original path expression), eliminating duplicate
trees (i.e. subtrees reachable by following two dif-
ferent relaxed path expressions).

As one could expect, the Final Step Deletion
relaxation function Pr is not used here. In fact,
such a relaxation would lead to results completely
unrelated to those expected. For example, sup-
pose we want to do a projection using the predicate
/bib/book/author; by eliminating the final step we
would obtain the predicate /bib/book; trees result-
ing from such a projection would represent books, a
completely different concept to that of authors.

Example 1 Consider the XML document in Figure
1 and suppose to write the algebraic expression
n”/‘bib/book/author(“bib.xml”)). Using the basic AFTX
projection this expression would return only the au-
thor W. Stevens. However, by applying P4 to the
projection path expression we can obtain the relaxed
path expression /bib/book//author, thus including
in the result also Serge Abiteboul, Peter Buneman,
and Dan Suciu. Moreover, by applying Py we can
substitute book with paper, thus obtaining the path
expression /bib/paper//author and adding to the
result also S. Amer-Yahia and L.V.S. Lakshmanan.

3.2 Approximated Selection

AFTX selection © is a unary operator that takes is a
forest and operates a horizontal decomposition on it:
only the trees of interest contribute, with their entire
content, to the selection output. The selection predi-
cate is composed by a path expression A and a selec-
tion condition y. The path expression is used to op-
erate a temporary projection on the input tree. Each
subtree T’ belonging to the temporary projection re-
sult is then checked: if at least one of them satisfies
the selection condition, the original input tree is added
to the selection output.

The selection condition is a conjunction of base
selection conditions. The evaluation of each base con-
dition 7; depends on its form:

e if v; is the form A/, it is satisfied if exists at least
one subtree 7} that can be reached from root(T")
by following \/;

66

e if y; is the form A’ = A7, it is satisfied if exists at
least a pair of subtrees (77,75) that can be reached
from root(T') by following, respectively, A’ and
A", and such that 77 is strictly equal to 7} (infor-
mally, strict equality between trees means that the
two trees are two copies of the same tree);

e ifv; is the form A/ pBx, where x is a constant and p
is an element property (for example its value, the
value of one of its attributes, etc.), it is satisfied if
exists at least one subtree 77 that can be reached
from root(T”) by following A’ such that root(T{) p
is in relation 6 with x;

e ify; isthe form A/ p’ON" p”, it is satisfied if exists at
least a pair of subtrees (77,7) that can be reached
from root(T') by following, respectively, A’ and
A", and such that root(T/)p’ is in relation 8 with
root(T3)p".

For example, the AFTX expression
G /book[/author AND /price.v<40] (n/bib/book(“bib‘xml”))
returns a forest containing the subtrees rooted at book
that have at least one author sub-element and such
that the value of the price sub-element is less than
40.

The approximated selection 6* operator does the
following:

e calculate all possible relaxation of the path ex-
pression A in the predicate, using Axis Relaxation
P4, Internal Step Deletion Ps, Name Relaxation
Py;

e calculate all possible relaxations of the selection
condition 7, applying some relaxation function to
each base selection condition depending on the
kind of the base selection condition;

e for each relaxed path expression and selection
condition, calculate the result of the selection;

e calculate the union of the selection results (includ-
ing the result of the selection that uses the original
selection predicate), eliminating duplicate trees.

If a base condition v; is the form A/, we can re-
lax A as usual. For example, the selection predi-
cate /book [/authors/author] can be relaxed into
/book [//author]. Moreover, Pr can also be ap-
plied. For example /book[/authors/author] can
be relaxed into /book[/authors], or even into
/book [1; in practice, we relax (or even eliminate) the
constraint on the presence of a subtree.

If vy; is the form A’ = A", we can apply to A’ and
A\’ P4, Ps and Py. For example the selection predicate
/books [/csbook/authors
/author = /mathbook/authors/author] can
be relaxed into /books[/csbook//author =
/mathbook//author].

AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT QUERIES

If 7; is the form A’ pOx, we can apply Py, Ps and Py
on A’; for example /book [/authors/author.count
> 1] (“find all the books with more than one author’)
can be relaxed into /book[//author.count > 1].
Moreover, we can apply Cp and Cy on pOx; for ex-
ample the predicate book [/price.v < 50] can be
relaxed into book [/price.v < 55].

Finally, if ; is the form A'p’0A” p”, we can use all
the relaxations seen for the previous case; moreover
A’ can also be relaxed using P4, Ps and Py. For ex-
ample, the predicate /books[/csbook/totalprice
< /mathbook
/totalprice] could be relaxed into /books [
/csbook/price < /mathbook/price] using: 1)
Name Relaxation on /csbook/totalprice, 2) Name
Relaxation on /mathbook/totalprice, and 3) Oper-
ator Relaxation on <.

Example 2 Consider the XML document in Figure 1
and suppose to write the following algebraic expres-
sion:

G?book[/author/last.v=“Amer—Yahia” OR /price‘v<60](
n;bib/book(“bib.xml”)) .

Using non-approximated operators, projection re-
turns a forest containing the two books, and the sub-
sequent selection retains the book Data on the Web.
The paper is not returned, even if, having Amer-Yahia
among its authors, it is probably of interest for the
user. However, using the approximated selection and
projection operators:

e projection returns also the paper, because using
Py the path expression /bib/book can be trans-
formed into /bib/paper;

e selection retains the paper in the result; us-
ing Py and Py the selection predicate is
relaxed into /paper[//author/last.v =

‘‘Amer-Yahia’’ OR /price.v < 60];

e selection retains the book TCP-IP Illustrated also;
in fact the selection base condition /price.v <
60 can be transformed into /price.v < 70.

3.3 Approximated Full-text Selection

AFTX full-text selection ¢ behaves in a way simi-
lar to that of basic selection operator: it performs
a horizontal decomposition of the input forest, re-
taining only those trees having at least one sub-
tree satisfying the full-text selection predicate. The
full-text selection predicate allows to search one or
more words or phrases (specified by the parame-
ter vy, which is a list of word or phrases connected
with boolean operators) into the full-text value of
an element (i.e. the value of the element concate-
nated with the value of its sub-elements) or into

the value of an attribute a. Moreover, it sup-
ports proximity search. For example, the expression
G/x/vitle[xL” OR “Web”] (T /bib/+ (“Dib.xm1”))

returns all the books or papers that contain the word
XML or the word Web in the title (note that * is a wild-
card that means “any name”).

The approximated full-text selection operator
¢*, as usual, transforms the predicate using some re-
laxation operator and returns the union of the results
of the relaxed full-text selections.

First of all, the path expression A can
be subject to P4, Ps and Py; for example,
/book/chapter/section["XML"] can be re-
laxed into /publication//section["XML"], thus
obtaining as result also those publications (like
papers) which are not divided into chapters.

Another relaxation function that is worthwhile
applying is Pr, thus broadening the search scope.
For example, relaxing /book/title["XML" AND
"Algebra"] into /book["XML" AND "algebra"]
we obtain as result all the books that contain the
searched words everywhere, instead that just in the
title: we have broadened the search scope from
the full-text value of /book/title to the full-text
value of /book (that includes the full-text value of
/book/title).

Example 3 Consider the XML document in Figure 1.
Suppose we look for papers that include, in their title,
the words XML and INEX. Then we write the follow-
ing algebraic expression:

G/paper/title[“XML” AND “INEX”| (n/bib/paper(“bib'xml”))‘
This expression would return an empty answer; in
fact the paper title contains the word XML, while
the word INEX is included only in the content of the
first section. However, using Pr we can remove the
title step in the path expression of the full-text se-
lection predicate, thus obtaining the relaxed predicate
/paper|[“XML” AND “INEX”]. Therefore the paper will
be returned, because both searched words are found
in its full-text value.

3.4 Generalized Top-K and Threshold
Selection

The three approximated operators have the goal to
broaden the result space, by adding some trees that
would have been discarded by applying the corre-
sponding exact operator. Their usage is therefore
valuable, because a strict interpretation of conditions
imposed by the user query could discard trees which
could be of interest for the user, even if they do not
perfectly respect some conditions.

However, the usage of such relaxations could lead
to the opposite problem: the user who poses the query

67

ICSOFT 2007 - International Conference on Software and Data Technologies

could be overwhelmed by a huge amount of answers.
What is needed is therefore a way to filter such results,
retaining only those that best match the user needs.

A similar problem has already been tackled in ba-
sic AFTX regarding the full-text score assignment op-
erator &. This operator does not perform a selection:
each input tree is returned, without filtering. What it
does is to assign to each tree a score value that repre-
sents the relevance of that tree to the full-text search
condition; this value is stored in the score property
of the root element. The full-text condition is spec-
ified in the score assignment predicate, in the same
way as in the full-text selection predicate. However, a
weight can be assigned to each word or phrase (within
the parameter) in order to specify which words (or
phrases) should highly influence score calculation.
Moreover, an extra parameter f, which can be thought
of as a function pointer, specifies the way the score is
calculated.

After using full-text score assignment, a user typ-
ically wants to receive results in score order, disre-
garding those with a lower score. The solution has
been found in the introduction of two derived oper-
ators: top-K full-text selection T and threshold full-
text selection ®. They assign a score to each input
tree and return, respectively, the k trees with highest
scores and those trees whose score is higher than a
defined threshold t; in both cases trees are returned in
descending score order.

Having introduced relaxed operators into our al-
gebra, now such a process of filtering and ordering
could be based on two kinds of score:

e the full-text score, which represents the level of
satisfaction of full-text conditions; such a score is
calculated by full-text score assignment;

e anew structural score, which represents the level
of satisfaction of non-full-text conditions.

Informally, the structural score should be the an-
swer to the question “how much have you relaxed
my query in order to include this tree in the result?”.
The best way to calculate such a score is not trivial to
find; similarly, the way to combine the structural score
with the full-text score is a quite interesting problem.
Both these issues are beyond the scope of this paper
and are candidate targets for future research ((Amer-
Yahia et al., 2005) and (Marian et al., 2005) both deal
with this issue). However, supposing to have a set
of structural score calculation functions and a set of
combined score calculation functions, we can define
a generalized version of top-K T7 . ,(F) and thresh-

old ®}, . -(F) operators, which operates as follows:

e calculate the structural score using the function

S

68

e combine the structural score just calculated and
the full-text score (previously calculated by some
score operator) using the function f>;

e retain in the output, respectively, the k trees with
highest score or the trees with a score higher than
T.

Example 4 Consider the XML document shown in
Figure 1 and suppose to write the following algebraic
expression:

T;l Sl (&/*/title[O.Q “Web” OR 0.8 “XML”]f(
Ejbib/book(“bib.xml”))) .

The projection find all books, then the score as-
signment calculates a score, using the scoring func-
tion f and considering the word XML more impor-
tant than Web; finally the generalized top-K returns
the book with the highest combined score.

By applying Py to the path expression, the relaxed
projection returns a forest containing three trees, cor-
responding to the two books and to the paper. Sup-
pose the full-text scoring function f calculates a sim-
ple sum of the weights of the found words; then the
full-text score of the two books are, respectively, 0 and
0.2, while the paper has a full-text score of 0.8.

Suppose now the structural score function f,
when Py has been used, assigns a structural score
corresponding to the degree of similarity between the
original word and the substitute, and suppose that the
similarity between book and paper is 0.7. Therefore,
the two books has a structural score of 1 (because no
relaxation has been done for them), while the paper
has a structural score of 0.7.

Finally, suppose the combined score calculation
function f, returns a weighted sum of the structural
score (with weight 0.2) and the full-text score (with
weight 0.8). Then: the book TCP-IP Illustrated has
a combined score of 1x0.2+0 = 0.2; the book Data
on the Web has a combined score of 1x0.2+ 0.2 x
0.8 = 0.36; the paper has a combined score of 0.7 x
0.24-0.8%0.8 = 0.78. Therefore, the generalized top-
k operator returns the paper, which is the publication
with the highest combined score.

4 CONCLUSION AND FUTURE
WORK

In this paper we have presented an approximation-
aware theoretical framework for full-text search over
XML repositories. Some relaxation operators have
been presented and used for defining approximated al-
gebraic operators. The algebra is intended as a formal
basis for the definition of an approximated query lan-

AN APPROXIMATION-AWARE ALGEBRA FOR XML FULL-TEXT QUERIES

guage for XML, which should be an extension of the
actual W3C candidate standard, XQuery Full-Text.

As already mentioned, a first future research di-
rection is the development of valid scoring methods
for calculating the structural score of a tree, i.e. a
score reflecting how precisely a tree satisfies the struc-
tural conditions imposed by a user query. Moreover,
a set of combined score calculation functions should
be developed; their goal is to combine the structural
score and the full-text score, returning a global score
reflecting how precisely a tree satisfies structural and
full-text conditions. The combined score calculation
function should enjoy some properties, e.g. the value
of the result should be a continuous function of the
weights assigned to structural and full-text score (Fa-
gin and Wimmers, 2000).

Considering structural constraints of a query as a
desiderata instead that a requirement also poses inter-
esting performance issues. In fact, dealing with relax-
ation means transforming a query into a set of similar
queries, each of which must be executed in order to
calculate the final result. It is therefore needed a way
to efficiently compute such answers. This problem is
closely related to that of score calculation; again, the
usage of scoring functions enjoying some properties
(like monotonicity) should allow the definition of im-
pacting optimization strategies, for example allowing
to prune some part of the tree of the possible relaxed
queries, which means avoiding to execute part of the
relaxed queries.

REFERENCES

Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D.,
and Toman, D. (2005). Structure and Content Scor-
ing for XML. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005),
pages 361-372, Trondheim, Norway.

Amer-Yahia, S., Lakshmanan, L. V. S., and Pandit, S.
(2004). FleXPath: Flexible Structure and Full-Text
Querying for XML. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 83-94, Paris, France.

Buratti, G. (2007). A Model and an Algebra for
Semi-Structured and Full-Text Queries (Ph.D. The-
sis). Technical Report UBLCS-2007-03, University
of Bologna.

Fagin, R. and Wimmers, E. L. (2000). A Formula for In-
corporating Weights into Scoring Rules. Theoretical
Computer Science, 239(2):309-338.

INEX (2006). INitiative for the Evaluation of XML
Retrieval. http://inex.is.informatik.
uni-duisburg.de/2006/.

Marian, A., Amer-Yahia, S., Koudas, N., and Srivastava,
D. (2005). Adaptive Processing of Top-K Queries

in XML. In Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), pages
162—-173, Tokyo, Japan.

Princeton University, C. S. L. (2007).
http://wordnet.princeton.edu/.

W3C (2006). XQuery 1.0 and XPath 2.0 Full-Text,
W3C Working Draft. http://www.w3.0rg/TR/
xquery-full-text/.

Wordnet.

69

