
INTEGRATING BUSINESS PROCESSES AND INFORMATION
SYSTEMS

Giorgio Bruno
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy

Keywords: Business processes, enterprise information systems, human tasks, control flow, information flow.

Abstract: While the need for a better integration between business processes and enterprise information systems is
widely acknowledged, current notations for business processes are inclined to emphasize control-flow
issues and omit to provide adequate links with two fundamental aspects of enterprise information systems,
i.e. the human tasks and the information flow among the tasks. This paper presents a notation for business
processes whose purpose is to overcome the above-mentioned limitations. This notation, called tk-nets
(task-oriented nets) supports four interaction patterns between process elements and human tasks. It is
exemplified with the help of a case study concerning a web-based application intended to manage the
handling of paper submissions to conferences.

1 INTRODUCTION

At a simplified conceptual level, an enterprise
information system (EIS) can be analyzed from two
major perspectives: the informational perspective
and the behavioral one. The informational
perspective is concerned with the structure of
information; the behavioral perspective, instead,
addresses the organization of the units of work
(called tasks) which enable the (human) users and
the system itself to operate on the underlying
informational base.

While the informational perspective is based on
one kind of models, which show the classes of the
information items (called business objects) and their
relationships, for the behavioral perspective several
kinds of models have been proposed with different
purposes. Two of them, use cases and business
processes, deserve particular attention.

UML use cases (OMG, 2007) are mainly used
in the requirements specification phase of the
software life cycle: they show the tasks and the roles
required for them, and can also point out the
structural dependencies (inclusion and extension)
among the tasks. What is missing from use case
models is the information flow, i.e. the indication of
the information items to be operated on by the tasks;
on the contrary, the information flow played an
important role in the old functional models, such as
the dataflow diagrams (Gane and Sarson, 1979).

Business processes can be addressed with
different modeling notations, such as BPMN (OMG,
2006) and UML activity diagrams (OMG, 2007),
however they all have a point in common: the
emphasis placed on the control flow, on the basis of
the well-known workflow patterns (van der Aalst,
ter Hofstede, Kiepuszewski and Barros, 2003), and
the omission of the information flow (although
information items can be included for
documentation purposes).

Moreover, the interactions between the process
elements and the human tasks are understated. In
fact, a business process is meant to be mainly an
orchestrator of external activities. There are two
main reasons for this: 1) the limited processing
capabilities of the current languages for business
processes, such as XPDL (WfMC, 2005); 2) the
consideration that the information resides in the EIS
and can be manipulated more effectively with
enterprise operations invoked through services. The
external activities are represented by the process
elements (or process steps), which also indicate how
to activate them. In particular, in BPMN, the
connection between a process step and a task is
obtained through an asynchronous service. The
process step indicates the performer required (in
terms of a single string or an array of strings), the
input message, which is meant to activate the task
and to provide it with the input information, and the
output message, which is meant to notify the
completion of the task as well as to return the output

79
Bruno G. (2007).
INTEGRATING BUSINESS PROCESSES AND INFORMATION SYSTEMS.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 79-86
DOI: 10.5220/0001327200790086
Copyright c© SciTePress

information. This simple interaction pattern does not
address all the situations taking place in practical
applications. For example, if task “submitPapers” is
meant to enable an author to submit a number of
papers over a given period of time and to make each
paper immediately processed (i.e. assigned to some
reviewers), then this task will generate a number of
output messages, one for each paper submitted, not
only the completion one.

The selection of the performer for a human task
is a critical issue and several patterns have been
proposed (Russell, van der Aalst, ter Hofstede, and
Edmond, 2005). In some cases, the performer may
be selected among the users playing a given role,
with a load-balancing criterion. In other cases, the
selection may depend on the information flow: for
example, the performer of task “reviewPaper” is the
reviewer that has previously been associated with
the paper to be reviewed.

This paper presents a notation for business
processes whose purpose is to integrate the control
flow and the information one so as to provide a
better integration with human tasks. This notation,
called tk-nets (task-oriented nets), has a structure
similar to Petri nets, however the interpretation is
tailored to that purpose.

The organization of this paper is as follows.
Section 2 presents four interaction patterns between
process steps and human tasks. Section 3 introduces
a case study concerning a web-based application
intended to manage the handling of paper
submissions to conferences: it stresses the need for a
tight integration between the control flow and the
information one. Section 4 presents the tk-nets
notation exemplified on the case study. Section 5
provides a comparison with related work. Section 6
presents the conclusion and the future work.

2 INTERACTION PATTERNS
BETWEEN PROCESS STEPS
AND TASKS

A (human) task is a unit of work that a suitable user
(or actor) carries out with the help of a graphical
user interface (GUI) in order to achieve a particular
purpose. Placing a purchase order or filling in the
review form for a conference paper are examples of
tasks. As such, a task is an abstract entity: in reality,
a task encompasses both foreground actions, i.e. the
user entering pieces of information or commands,
and background actions, i.e. the system processing
the user’s inputs. Such background actions rely on
enterprise operations in order to operate on the
underlying business objects.

Tasks can be activated in two modes, denoted by
terms “pull” and “push”.

In the “pull” mode, tasks are referred to by the
menu items available in the GUI, according to the
role(s) played by the current user. A menu item,
such as “review paper”, denotes a potential task: if
the user clicks it, the system shows (either directly
or through a search) the actual instances of that task
the user is expected to perform (e.g. the papers to
review). In other terms, the user is pulling the
system. An actual instance of a task, such as “review
paper n. 123”, is called an actual task.

In the “push” mode, users are presented with a
to-do list showing the actual tasks that have been
assigned to them; by clicking an item of the list, a
user can activate the corresponding task.

The purpose of business processes is to make
users work in the “push” mode: in fact, the control
flow determines when a task has to be performed
and the information flow indicates the information
needed.

From an operational point of view, the bridge
between processes and tasks is provided by the to-do
list, which is based on a particular class of business
objects, called task assignments. A task assignment
basically designates the user in charge of the task
(the performer), the input information and the timing
constraints (the period in which the work has to be
performed). A task assignment goes through a
number of states, the major of which are “assigned”
(the initial state), “enabled”, “started” and “ended”.
When a task assignment is in state “enabled”, it can
be shown in the to-do list of the corresponding
performer. When the user begins working on the
actual task, the state of the task assignment becomes
“started”. A task is a long-running activity, as the
performer can stop and resume work several times,
until (s)he states it is ended.

To-do lists are handled by a specific architectural
component, called the task manager (TM). It is a
kind of mediator between the process manager (PM)
in charge of interpreting the descriptions of business
processes and the enterprise operations supporting
the GUI.

While processes are expected to assign tasks to
performers, current notations and languages do not
provide direct references to tasks, but only indirect
ones through intermediate services. In fact, a
business process, as described in BPMN or XPDL,
consists of a number of elements, or process steps,
and the connection between a process step and a task
is obtained through an asynchronous service: the
input message (with respect to the service) is meant
to activate the task and to provide it with the input
information, while the output message is meant to
notify the completion of the task as well as to return
the output information.

ICSOFT 2007 - International Conference on Software and Data Technologies

80

This simple interaction pattern does not cover all
the situations taking place in practical applications.
In terms of events, it addresses the case of one input
event (with respect to TM) and one output event: the
input event entails the generation of a task
assignment and the output event notifies the
completion of the task.

This paper proposes three more patterns so as to
cope with multiple events. The four patterns are
called task interaction patterns. The above
mentioned one is referred to as pattern (1, 1).

Pattern (1, *) indicates that the task (i.e. the
related enterprise operations) sends a number of
intermediate events before the completion one. Such
additional output events signify that the task has
produced information items requiring immediate
attention. For example, if task “submitPapers” is
meant to enable an author to submit a number of
papers over a given period of time and to make each
paper immediately processed (i.e. assigned to some
reviewers), then this task will generate a number of
intermediate events, one for each paper submitted.

Pattern (*, 1) indicates that the task receives
additional input events, after the activation one,
signifying that additional input information is
available. For example, task “assignPapers” is
activated with an initial group of papers and an
initial group of reviewers and then, during its
execution, it receives additional papers and
reviewers: this way, the conference chair is able to
continuously monitor the match between papers and
reviewers and, if needed, (s)he has time to involve
more reviewers.

The fourth pattern (*, *) denotes both a flow of
input events and a flow of output ones. For example,
task “evaluatePapers” is meant to receive a flow of
reviews and to provide a flow of papers evaluated,
each of which will trigger an immediate notification
to the author.

3 THE CASE STUDY

The case study addresses a fictitious web-based
application intended to manage the submissions of
papers to conferences.

In particular, attention is focused on process
ConferenceBP aimed at handling the life cycle of a
given conference. It is a case-based process, in the
sense that a particular instance of this process
handles the life cycle of a specific conference (i.e. a
case).

A conference is represented by a business object
of class Conference. The simplified class-model for
the business objects supporting this application is

shown in Figure 1 (the default multiplicity value for
association ends is *, i.e. many).

The users of the system belong to three major
roles: (conference) chair, author and reviewer; they
are represented by business objects of classes Chair,
Author and Reviewer, respectively. When the
process is started, the general information about the
conference (including the submission period, the
review period and the registration period) has
already been established; moreover the conference
business object has already been associated with the
chair business object.

1
Conference

Chair

Paper

Author

Reviewer Folder

Review

1 1

1

1

1 1

cha ir

au thor

reviewer

1
Conference

Chair

Paper

Author

Reviewer Folder

Review

1 1

1

1

1 1

cha ir

au thor

reviewer

Figure 1: Class model related to the case study.

The behavior of ConferenceBP is as follows.
During the submission period, users can get an
account as authors or reviewers. Authors can then
submit papers (an author can submit several papers).
As papers are submitted and reviewers join the
conference, the conference chair goes on assigning
papers to reviewers: in particular, all the papers
assigned to a reviewer are collected in a folder.
When the chair has finished, the reviewers can start
working on their folders: they are assumed to release
their reviews separately during the review period. As
reviews are released, the chair goes on evaluating
papers: if it happens that the number of reviews of a
given paper is not sufficient to take a decision, the
chair can involve other reviewers by providing them
with new folders containing the pending papers.
When all the decisions have been taken, a
notification is emailed for each paper and the
conference rate is automatically determined for each
author. Then, during the registration period, the
authors of accepted papers submit the final versions
and in parallel they also enter payment information
details. As final papers are submitted and payment
information is provided, the chair goes on defining
the conference program.

The requirements above indicate a number of
tasks which can be grouped on the basis of their
interaction patterns, as follows.

INTEGRATING BUSINESS PROCESSES AND INFORMATION SYSTEMS

81

(1, 1): getAuthorAccount, getReviewerAccount,
submitFinalPaper, enterPaymentInfo.

(1, *): submitPaper, reviewPapers.
(*, 1): assignPapers, reassignPapers, evaluate-

Papers, defineProgram.

4 MODELING BUSINESS
PROCESSES WITH TK-NETS

The model of ConferenceBP is shown in Figure 2.
The notation proposed in this paper, i.e. tk-nets, is
illustrated in this section.

Process ConferenceBP is a case-based process
describing the life cycle of a conference: this is
indicated with annotation “manages Conference” in
Figure 2, where Conference is the “managed” class,
i.e. the class of the business objects (called managed
objects) managed by the process instances.

There are two kinds of transitions (or process
steps) in tk-nets: those related to tasks (referred to as
task transitions) are represented as rectangles with
rounded corners, while regular rectangles represent
procedures that can automatically be performed by
the system. Each transition is mapped to a process
action describing its detailed behavior. An informal
definition of the process actions associated with
ConferenceBP is presented in Table 1. The role of
process actions will be discussed in subsection 4.1.

A task transition indicates the task involved, the
interaction pattern and the role of the performer: in
fact, the name of the task is the name of the task
transition, the interaction pattern is indicated by the
stereotype (e.g. <<1, *>>), and the role required is
written between parentheses. The action of a task
transition can give rise to a number of similar tasks;
in that case, for documentation purposes, the task
transition (e.g. “reviewPapers”) is shown shaded.

There are two kinds of places in tk-nets, i.e.
typed places and simple ones. Simple places are
depicted as small grey circles, such as “c1” and
“c2”; they only have a name. Typed places are
depicted as larger circles and have a label consisting
of the place name, followed by the place type.

The process elements, places and transitions, are
formal items, in the sense that they are a kind of
templates for the actual items belonging to the
process instances. In fact, a process instance is made
up of actual places, each actual place referring to the
corresponding formal place. Actual places contain
tokens: typed places contain typed tokens, while
simple ones contain simple (or empty) tokens. A
typed token is associated with a business object; the
class of the business object coincides with the type
of the corresponding formal place. A typed token
represents a state of the related business object; for

example, a token in place “p1” denotes a paper that
has just been submitted, in the context of a certain
instance of ConferenceBP.

The information flow and the control flow may
overlap at typed places, and, in order to explain what
it means, the notion of triggers is introduced.

From a logical point of view, a trigger is issued
by an actual place in three modes, as follows. If the
place is a fully triggering (or “ft”) place, it issues a
trigger as soon as it receives a token; if it is a non-
triggering (or “nt”) place, it never issues triggers; if
it is a partially triggering (or “pt”) place, it issues a
trigger only when an input transition ends. The “pt”
behavior is based on a special event, i.e. the ending
of an input (with respect to the place) transition. A
procedure ends when the corresponding action has
been performed, while a task transition ends when
all the tasks it has activated are completed. This
way, a task transition, besides activating a number of
tasks, can synchronize their completion.

The purpose of triggers is as follows. When a
trigger is issued by an actual place, say p, if the
corresponding formal place has just one outgoing
transition, the process manager (PM) tries to
perform that transition by calling the associated
process action. A process action incorporates a
guard, which can accept or reject the trigger on the
basis of the tokens available in the actual input
places, as will be discussed in subsection 4.1. In case
the formal place has two or more outgoing
transitions, PM call the corresponding actions in
sequence, on the basis of their priorities, until the
guard of one of them is successful. In Figure 2, the
priority is the same for all the transitions.

Simple places are always “ft” places: in fact,
they support the control flow only. The triggering
behavior of typed places is indicated by acronym
“ft”, “nt” or “pt” depicted in the circle. A graphical
alternative is adopted in Figure 2: the white typed
places denote “ft” places, and the grey typed places
denote “pt” places; there are no “nt” places.

The information flow of a transition is indicated
by its surrounding typed places. In order to make the
model more expressive, the input arcs and the output
ones of task transitions are shown thin or thick. A
thin input (with respect to a transition) arc means
that the task will receive a single token from the
corresponding input place. Likewise, a thin output
arc means that the task will deliver a single token to
the corresponding output place. In case of thick arcs,
the task will receive or deliver a number of tokens,
instead of a single one. For example, the outgoing
arc of “submitPaper” is thick, as an author can
submit several papers.

ICSOFT 2007 - International Conference on Software and Data Technologies

82

in it ia lize
(public) <<1,1>>

getAuthorAccount
(public) <<1,1>>

getAuthorAccount
(public) <<1,1>>

getReviewerAccount
(public) <<1,1>>

getReviewerAccount

a1, Author r1, Reviewer

(au thor) <<1,*>>
submitPaper

p1, Pa per

manages Conference

(cha ir) <<*,1>>
assignPapers

f1, Folder
(reviewer) <<1,*>>

reviewPapers
(reviewer) <<1,*>>

reviewPapers

(cha ir) <<*,1>>
eva lua tePapers

rv1, Review

sendNot ifica t ions

(au thor) <<1,1>>
submitFina lPaper
(au thor) <<1,1>>

submitF ina lPaper

p2, PapercomputeRates

(au thor) <<1,1>>
enterPayment In fo
(au thor) <<1,1>>

enterPayment In fo

(cha ir) <<*,1>>
defineProgram

p4, Paper

p5, Paper

a2, Author
a3, Author

p6, Paper
end

c1
c2

(cha ir) <<*,1>>
reassignPapers

p3, Paper

in it ia lize
(public) <<1,1>>

getAuthorAccount
(public) <<1,1>>

getAuthorAccount
(public) <<1,1>>

getReviewerAccount
(public) <<1,1>>

getReviewerAccount

a1, Author r1, Reviewer

(au thor) <<1,*>>
submitPaper

p1, Pa per

manages Conference

(cha ir) <<*,1>>
assignPapers

f1, Folder
(reviewer) <<1,*>>

reviewPapers
(reviewer) <<1,*>>

reviewPapers

(cha ir) <<*,1>>
eva lua tePapers

rv1, Review

sendNot ifica t ions

(au thor) <<1,1>>
submitFina lPaper
(au thor) <<1,1>>

submitF ina lPaper

p2, PapercomputeRates

(au thor) <<1,1>>
enterPayment In fo
(au thor) <<1,1>>

enterPayment In fo

(cha ir) <<*,1>>
defineProgram

p4, Paper

p5, Paper

a2, Author
a3, Author

p6, Paper
end

c1
c2

(cha ir) <<*,1>>
reassignPapers

p3, Paper

Figure 2: The tk-nets model of process ConferenceBP.

Table1: Actions of process ConferenceBP.

getAuthorAccount: < “public”>;
getReviewerAccount: < “public”>;
submitPaper: < a1>;
assignPapers: <p1 or r1 conference.chair>;
reviewPapers: for each f1 in f1* {<f1

f1.reviewer>};
evaluatePapers: <rv1 conference.chair>;
reassignPapers: <p3 conference.chair>;
submitFinalPaper: for each p5 in p5* {<p5

p5.author>};
enterPaymentInfo: for each a2 in a2* {<a2

a2>};
defineProgram:<p6 or a3 conference.chair>;
sendNotifications: for each p2 in p2* send

acceptance message or rejection message according
to p2 state (i.e. accepted or rejected); deliver only
the accepted papers to place p4;

computeRates: compute the rates for the authors
of the papers accepted (those in p4*); deliver papers
to place p5 and authors to place a2;

4.1 Description of ConferenceBP

This subsection describes the behavior of the
instances of ConferenceBP as well as the role of the
process actions.

A process action is called by PM when an input
place has issued a trigger. An action incorporates a
guard, whose purpose is to check whether all the
tokens required are present in the input places. If the
guard is successful, the trigger is accepted and the
action takes such tokens (called the input tokens)

from the input places and operates on the business
objects associated with them. If the guard fails, the
action is not performed. If the guard is omitted, a
standard behavior is assumed, as follows: the trigger
is always accepted and the action automatically
takes the first token from the “ft” places and all the
available tokens from the “pt” places and the “nt”
ones.

Within the body of an action, the business
objects associated with the input tokens are referred
to with the names of the places: in particular, if one
token is taken from place p, the corresponding
business object is referred to as p, while, if several
tokens are taken from place p, the collection of the
business objects associated with them is referred to
as p*. The business objects associated with the input
tokens are also called the input business objects.

Task transitions are meant to produce task
assignments by means of task requests. A task
request basically designates the user in charge of the
task (the performer), the input information and the
timing constraints (the period in which the work has
to be performed). Task requests are shown, in the
actions, in the simplified form <i p>, where i
denotes the input information, i.e. the input business
objects, and p denotes the performer. The managed
object, i.e. the current conference in this case, is
assumed to be implicitly part of the input
information. If the task is meant to receive a flow of
input information, i.e. its interaction pattern is <<*,
1>> or <<*, *>>, the effect of the task request is as
follows: if there is an ongoing task assignment, the
input information is added to it, otherwise a new

INTEGRATING BUSINESS PROCESSES AND INFORMATION SYSTEMS

83

task assignment is generated and the input
information is associated with it.

All the transitions in ConferenceBP have a
standard behavior, hence the guards are omitted.

When an instance of ConferenceBP is started,
procedure “initialize” is performed, and then the
actions of both “getAuthorAccount” and
“getReviewerAccount”, which are similar, are
carried out.

In the action of “getAuthorAccount”, task
request < “public”> indicates that there is no
specific input information, apart from the current
conference. Moreover, the actual performer is not
specified; only a role name (“public”) is provided. In
fact, this task is not intended for a known user (i.e. a
user registered in the EIS): in the web page related
to the conference, there will be a menu item (e.g.
“getAuthorAccount”) enabling any interested user to
get an author account.

Task transition “getAuthorAccount” gives rise to
a number of actual tasks; in fact, as long as the
submission period is open, new authors can register.
However, as soon as an author has registered, task
“submitPaper” is assigned to them; for this reason,
place “a1” is a fully triggering place (i.e. a grey
place).

In the action of “submitPaper”, task request <
a1> indicates that the performer is the user (an
author) denoted by business object “a1”, i.e. the
author who has just registered.

Task “assignPapers” features interaction pattern
(*, 1). In fact, it is meant: a) to receive a flow of
input information (papers and reviewers); b) to
deliver a number of folders to place “f1” (as shown
by the thick arc), but only one output event (i.e. a
trigger) to “f1”, when it ends (hence “f1” is a “pt”
place). Task request <p1 or r1 conference.chair>
indicates that the performer is the conference chair:
in fact, “conference.chair” is a kind of navigational
construct which returns the chair (business object)
associated with the current conference on the basis
of its relational attribute “chair” (shown in Figure 1).
The input information consists of one paper or one
reviewer (i.e. the corresponding business objects), as
both places “p1” and “r1” send separate triggers.

When task transition “assignPapers” ends, task
transition “reviewPapers” is performed. Its action
contains a number of task requests, one for each
folder taken from place “f1”. Each task
“reviewPapers” is assumed to deliver a number of
reviews (as reviewers are not supposed to do their
work all at once) which are passed to task
“evaluatePapers”. This task can deliver two output
flows: the first flow, made up of the papers for
which a decision has been taken, is directed to place
“p2”, while the second one, consisting of the
pending papers, is directed to place “p3”. As the end

of the review period is approaching, the chair can
deliver the pending papers to place “p3” thus
activating task transition “reassignPapers” by means
of which (s)he can prepare new folders for other
reviewers. When all the papers have been evaluated,
task “evaluatePapers” ends and triggers procedure
“sendNotifications”. The behavior of the remaining
transitions is described in Table 1.

5 COMPARISON WITH
RELATED WORK

The various notations proposed for business
processes can be compared from different points of
view, such as the control-flow perspective (van der
Aalst, ter Hofstede, Kiepuszewski and Barros,
2003).

This section discusses how the control flow and
the information flow are handled in three major
notations, i.e. the Event-driven Process Chain,
Colored Petri Nets, and BPMN.

The Event-driven Process Chain (EPC) is an
informal notation which has been used to describe
the SAP R/3 reference model (Curran and Keller,
1998). It is based on the notions of event, function,
information item and organization unit. The control-
flow structure is based on events, functions and
control-flow links connecting events and functions,
while the information-flow structure is based on
information items, functions and information-flow
links connecting information items and functions.
Recent work (Mendling, Neumann and Nüttgens,
2005) has been aimed at formalizing the control
flow semantics under the pressure of the workflow
patterns (van der Aalst, ter Hofstede, Kiepuszewski
and Barros, 2003). However, the separation
between the control-flow links and the information-
flow links entails some redundancy.

In fact, if two functions operate in series, as the
information item produced by the first one is acted
on by the second one, then an intermediate event is
needed to propagate control from the first function
to the second one, in addition to the information
item.

In Colored Petri Nets (CPNs) (Kristensen,
Christensen and Jensen, 1998), the control-flow
structure and the information-flow one coincide: in
fact, transitions are token-driven processing units
and tokens carry pieces of information. As CPNs
have not been designed to specifically address
human tasks, transitions can only represent the first
of the task interaction patterns presented in section
2, and therefore places in CPNs correspond to only
one category of places in tk-nets, i.e. the fully-
triggering places.

ICSOFT 2007 - International Conference on Software and Data Technologies

84

(cha ir) a ssignPapers

(reviewer) reviewPapers sta r t eva lua tePapers

(cha ir) reassignPapers

send not ifica t ionscompute ra tes

(author) submitFina lPaper

in it ia lize (public) getAuthorAccount

(au thor) submitPaper(public) getReviewerAccount

(au thor) en terPaymentIn fo

(cha ir) defineProgram

pending papers a ll papers eva luated

(cha ir) a ssignPapers

(reviewer) reviewPapers sta r t eva lua tePapers

(cha ir) reassignPapers

send not ifica t ionscompute ra tes

(author) submitFina lPaper

in it ia lize (public) getAuthorAccount

(au thor) submitPaper(public) getReviewerAccount

(au thor) en terPaymentIn fo

(cha ir) defineProgram

pending papers a ll papers eva luated

Figure 3: The BPMN model of ConferenceBP.

BPMN (OMG, 2006) and UML activity
diagrams (OMG, 2007) provide the control flow, but
not the information flow (although for
documentation purposes information items can be
included).

In Figure 3, the model of ConferenceBP is
presented with the BPMN notation. The major
difficulty lies in representing human tasks (e.g.
“evaluatePapers”) that can receive and/or deliver a
flow of information, as will be discussed later on in
this subsection.
 Process steps “getAuthorAccount” and
“getReviewerAccount” feature the multiple-instance
property (indicated by the parallel mark). In fact,
they activate a number (not known a priori) of the
corresponding human tasks. The BPMN
MI_FlowCondition attribute of “getAuthorAccount”
can be set to a particular value so as to produce an
output token at the end of each instance (i.e. when a
user has got an account): this way, step
“submitPaper” can be activated. The loop marker in
“submitPaper” indicates that this step can be
repeated; in fact, an author can submit a number of
papers.

Since task “assignPapers” is not strongly related
to the end of the previous tasks, it is activated after a
certain period of time after the “initialize” step, as
shown by the delay step represented by the watch
symbol. The information flow is not represented,
therefore it is up to the implementation of the task to
collect the business objects related to the papers

submitted and to the reviewers registered. When this
task is completed, the step ends and releases two
output tokens, one triggering the multiple-instance
“reviewPapers” step, and the other activating step
“start evaluatePapers”, after a certain delay.
Actually, step “start evaluatePapers” does not
coincide with human task evaluatePapers, because
this task may emit intermediate events in case of
(pending) papers to be reassigned to other reviewers.

A task issuing multiple events cannot be
represented in BPMN with a single process step. The
solution adopted in Figure 3 is to start the task
through a service (in step “start evaluatePapers”) and
then wait for one of two events to occur: in case of
event “pending papers”, step “reassignPapers” is
performed, while in case of event “all papers
evaluated”, step “sendNotifications” is carried out.

The analysis of workflow data patterns (Russell,
ter Hofstede, Edmond and van der Aalst, 2005)
mainly addresses the various ways in which data
items are represented and handled within a business
process; in tk-nets, however, data items are external
as they are part of the EIS.

6 CONCLUSION

While it is advocated (Dumas, van der Aalst, and ter
Hofstede, 2005) that EISs be aware of business
processes, the vice versa is no less true.

INTEGRATING BUSINESS PROCESSES AND INFORMATION SYSTEMS

85

This paper has proposed an approach aimed at
strengthening the relations between business
processes and EISs by making the processes aware
of the human tasks and the information flow. This
approach is based on a notation called tk-nets, which
is complemented by a procedural part, i.e. the
process actions, describing the detailed behavior of
transitions. A prototype of the interpreter for tk-nets
has already been implemented: current work is being
devoted to making the approach fully operational:
for this reason, process actions are mapped to
enterprise beans according to the Java EE standard,
and, moreover, simulation features for human tasks
are under development.

Another direction of research is concerned with
the use of tk-nets to represent business models on
the basis of different perspectives, such as the role-
activity perspective (Ould, 2005) and the
language/action one (Winograd, 1987-88).

REFERENCES

Curran, T., Keller, G., 1998. SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model.
Prentice Hall.

Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
2005. Process-Aware Information Systems: Bridging
People and Software Through Process Technology.
Wiley.

Gane, C.P., Sarson, T., 1979. Structured Systems Analysis:
Tools and Techniques. Prentice Hall.

Kristensen, L.M., Christensen, S., Jensen, K., 1998. The
Practitioner's Guide to Coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer, 2, 98-132.

Mendling J., Neumann, G., Nüttgens, M., 2005. Yet
Another Event-Driven Process Chain. In Lecture
Notes in Computer Science, 3649, 428–433, Springer.
Berlin.

OMG, 2006. Business Process Modeling Notation
(BPMN), Final Adopted Specification, February 2006.
Retrieved March, 10, 2007, from http:
/www.bpmn.org/.

OMG, 2007. Unified Modeling Language: Superstructure,
version 2.1.1. Retrieved March, 10, 2007, from
http://www.omg.org/docs/formal/07-02-03.pdf.

Ould, M., 2005. Business Process Management: A
Rigorous Approach. The British Computer Society.

Russell, N., ter Hofstede, A.H.M, Edmond, D., van der
Aalst, W.M.P, 2005. Workflow Data Patterns:
Identification, Representation and Tool Support. In
Lecture Notes in Computer Science, 3716, 353-368,
Springer. Berlin.

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D., 2005. Workflow Resource Patterns:
Identification, Representation and Tool Support. In

Lecture Notes in Computer Science, 3520, 216–232,
Springer. Berlin.

van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Kiepuszewski, B., Barros, A.P., 2003. Workflow
Patterns. Distributed and Parallel Databases, 14, 5-
51.

WfMC, 2005. XML Process Definition Language, Version
2.00. Retrieved March, 10, 2007, from
http://www.wfmc.org.

Winograd, T., 1987-1988. A Language/Action Perspective
on the Design of Cooperative Work. Human-
Computer Interaction, 3, 3-30.

ICSOFT 2007 - International Conference on Software and Data Technologies

86

