
THEORETICAL FRAMEWORK FOR COOPERATION AND
COMPETITION IN EVOLUTIONARY COMPUTATION

Eugene Eberbach*
Dept. of Eng. and Science, Rensselaer Polytechnic Institute, 275 Windsor Street, Hartford, CT 06120, USA

Mark Burgin
Dept. of Mathematics, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095, USA

Keywords: Combinatorial optimization, evolutionary computation, complexity theory, multiobjective optimization,
search theory, cooperation and competition, super-recursive algorithms, Evolutionary Turing Machine.

Abstract: In the paper the theoretical framework for cooperation and competition of coevolved population members
working toward a common goal is presented. We use a formal model of Evolutionary Turing Machine and
its extensions to justify that in general evolutionary algorithms belong to the class of super-recursive
algorithms. Parallel and Parallel Weighted Evolutionary Turing Machine models have been proposed to
capture properly cooperation and competition of the whole population expressed as an instance of
multiobjective optimization.

1 INTRODUCTION

In this paper, we study the following problems for
the finite types of evolutionary computations:
completeness, optimality, search optimality, total
optimality and decidability for single and multiple
cooperating or competing individuals. In particular,
we concentrate our attention on the problem of
cooperation and competition of coevolved
individuals in population expressed in a natural way
as an instance of multiobjective optimization.

The paper is organized as follows. In section 2
we give a short primer on problem solving. Section
3 presents Evolutionary Algorithms and an
Evolutionary Turing Machine as a formal model of
evolutionary computation. A formal model for
cooperating and competitive population agents
trying to achieve a common goal is developed in
Section 4. Section 5 contains conclusions.

2 EVOLUTION AND PROBLEM
SOVING

All algorithms are divided into three big classes
(Burgin, 2005): subrecursive, recursive, and super-
recursive.

Algorithms and automata that have the same
computing/accepting power (cf., (Burgin, 2005a)) as
Turing machines are called recursive. Examples are
partial recursive functions or random access
machines.

Algorithms and automata that are weaker than
Turing machines are called subrecursive. Examples
are finite automata, context free grammars or push-
down automata.

Algorithms and automata that are more
powerful than Turing machines are called super-
recursive. Examples are inductive Turing machines,
Turing machines with oracles or finite-dimensional
machines over the field of real numbers.

The performance of search algorithms can be
evaluated in four ways (see, e.g., (Russell and
Norvig, 1995) capturing three criteria: whether a

* Research supported initially by ONR under grant
N00014-06-1-0354. On leave from University of
Massachusetts Dartmouth, eeberbach@umassd.edu.

229
Eberbach E. and Burgin M. (2007).
THEORETICAL FRAMEWORK FOR COOPERATION AND COMPETITION IN EVOLUTIONARY COMPUTATION.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 229-234
DOI: 10.5220/0001325002290234
Copyright c© SciTePress

solution has been found, its quality and the amount
of resources used to find it.

Definition 2.1. (Completeness, optimality,
search optimality, and total optimality) We say that
the search algorithm is
• Complete if it guarantees reaching a terminal

state/solution if there is one.
• Optimal if it finds the solution with the optimal

value of its objective function.
• Search Optimal if it finds the solution with the

minimal amount of resources used (e.g.,
minimal time or space complexity).

• Totally Optimal if it finds the solution both with
the optimal value of its objective function and
with the minimal amount of resources used.
Let R be the set of all real numbers and R+ be

the set of all non-negative real numbers.
Definition 2.2. (Problem solving as a

multiobjective optimization problem)

Given an objective function f: A × X → R+,
problem-solving can be considered as a
multiobjective minimization problem to find A* ∈
AF and x* ∈ XF such that

f(A*, x*)= min{f1(f2(A), f3(x)), A ∈ A, x ∈ X }

where f3 is a problem-specific objective function, f2
is a search algorithm objective function, and f1 is an
aggregating function combining f2 and f3.

3 EVOLUTIONARY TURING
MACHINES

Definition 3.1. A generic evolutionary algorithm
(EA) can be described in the form of the functional
equation (recurrence relation) working in a simple
iterative loop in discrete time t, called generations, t
= 0, 1, 2,... (Fogel, 1995, Michalewicz and Fogel,
2004):

X[t+1] = s (v (X[t])), where
- X[t] ⊆ X is a population under a representation

consisting of one or more individuals from the
set X (e.g., fixed binary strings for genetic
algorithms (GAs), Finite State Machines for
evolutionary programming (EP), parse trees for
genetic programming (GP), vector of reals for
evolution strategies (ES)),

- s is a selection operator (e.g., truncation,
proportional, tournament),

- v is a variation operator (e.g., variants of
mutation and crossover),

- X[0] is an initial population,
- F ⊆ X is the set of final populations satisfying

the termination condition (goal of evolution).
The desirable termination condition is the
optimum in X of the fitness function f: X → R,
which is extended to the fitness function f(X[t])
of the best individual in the population X[t] ∈ F,
where f is defined typically in the domain of
nonnegative real numbers. In many cases, it is
impossible to achieve or verify this optimum.
Thus, another stopping criterion is used (e.g.,
the maximum number of generations, the lack
of progress through several generations.).

Definition 3.1 is applicable to all typical EAs,
including GA, EP, ES, GP.

Formally, an evolutionary algorithm looking
for the optimum of the fitness function violates
some classical requirements of recursive algorithms.
If its termination condition is set to the optimum of
the fitness function, it may not terminate after a
finite number of steps. To fit it to the old
“algorithmic” approach, an artificial (or somebody
can call it pragmatic) stop criterion has had to be
added (see e.g., (Michalewicz, 1996; Koza, 1992)).
The evolutionary algorithm, to remain recursive, has
to be stopped after a finite number of generations or
when no visible progress is observable. Naturally, in
a general case, Evolutionary Algorithms are
instances of super-recursive algorithms.

Now, we define a formal algorithmic model of
Evolutionary Computation - an Evolutionary Turing
Machine (Eberbach, 2005).

Definition 3.2. An evolutionary Turing
machine (ETM) E = { TM[t]; t = 0, 1, 2, 3, ... } is a
series of (possibly infinite) Turing machines TM[t]
each working on population X[t] in generations t =
0, 1, 2, 3, ... where
- each δ[t] transition function (rules) of the

Turing Machine TM[t] represents (encodes) an
evolutionary algorithm that works with the
population X[t], and evolved in generations 0, 1,
2, ... , t,

- only generation 0 is given in advance, and any
other generation depends on its predecessor
only, i.e., the outcome of the generation t = 0, 1,
2, 3, ... is the population X[t + 1] obtained by

ICSOFT 2007 - International Conference on Software and Data Technologies

230

applying the recursive variation v and selection
s operators working on population X[t],

- (TM[0], X[0]) is the initial Turing Machine
operating on its input - an initial population
X[0],

- the goal (or halting) state of ETM E is
represented by any population X[t] satisfying
the termination condition. The desirable
termination condition is the optimum of the
fitness performance measure f(x[t]) of the best
individual from the population X[t].

- When the termination condition is satisfied,
then the ETM E halts (t stops to be
incremented), otherwise a new input population
X[t + 1] is generated by TM[t + 1].
In this model, both variation v and selection s

operators are realized by Turing machines. So, it is
natural that the same Turing machine computes
values of the fitness function f. This brings us to the
concept of a weighted Turing machine.

Definition 3.3. A weighted Turing machine (T
, f) computes a pair (x, f(x)) where x is a word in
the alphabet of T and f(x) is the value of the
evaluation function f of the machine (T , f).

It is necessary to remark that only in some
cases it is easy to compute values of the fitness
function f. Examples of such situations are such
fitness functions as the length of a program or the
number of parts in some simple system. However, in
many other cases, computation of the values of the
fitness function f can be based on a complex
algorithm and demand many operations. For
instance, when the optimized species are programs
and the fitness function f is time necessary to
achieve the program goal, then computation of the
values of the fitness function f can demand
functioning or simulation of programs generated in
the evolutionary process. We encounter similar
situations when optimized species are computer
chips or parts of plane or cars. In this case,
computation of the values of the fitness function f
involves simulation.

Weighted computation realized by weighted
Turing machines allows us to extend the formal
algorithmic model of Evolutionary Computation
defining a Weighted Evolutionary Turing Machine.

Definition 3.4. A weighted evolutionary
Turing machine (WETM) E = { TM[t]; t = 0, 1, 2, 3,
... } is a series of (possibly infinite) weighted
Turing machines TM[t] each working on population
X[t] in generations t = 0, 1, 2, 3, ... where

- each δ[t] transition function (rules) of the
weighted Turing machine TM[t] represents
(encodes) an evolutionary algorithm that works
with the population X[t], and evolved in
generations 0, 1, 2, ... , t,

- only generation 0 is given in advance, and any
other generation depends on its predecessor
only, i.e., the outcome of the generation t = 0, 1,
2, 3, ... is the population X[t + 1] obtained by
applying the recursive variation v and selection
s operators working on population X[t] and
computing the fitness function f,

- (TM[0], X[0]) is the initial weighted Turing
Machine operating on its input - an initial
population X[0],

- the goal (or halting) state of WETM E is
represented by any population X[t]) satisfying
the termination condition. The desirable
termination condition is the optimum of the
fitness performance measure f(x[t]) of the best
individual from the population X[t].

- When the termination condition is satisfied,
then the WETM E halts (t stops to be
incremented), otherwise a new input population
X[t + 1] is generated by TM[t + 1].

The concept of a universal automaton/algorithm
plays an important role in computing and is useful
for different purposes. The construction of universal
automata and algorithms is usually based on some
codification (symbolic description) c: K → X of all
automata/algorithms in K.

Definition 3.5. An automaton/algorithm U is
universal for the class K if given a description c(A)
of an automaton/algorithm A from K and some input
data x for it, U gives the same result as A for the
input x or gives no result when A gives no result for
the input x.

This leads us immediately, following Turing's
ideas, to the concept of the universal Turing
machine and its extensions - a Universal
Evolutionary Turing Machine and Weighted
Evolutionary Turing Machine. We can define a
Universal Evolutionary Turing Machine as an
abstraction of all possible ETMs, in the similar way,
as a universal Turing machine has been defined, as
an abstraction of all possible Turing machines.

Definition 3.6. A universal evolutionary
Turing machine (UETM) is an ETM EU with the
optimization space Z = X × I . Given a pair (c(E),
X[0]) where E = { TM[t]; t = 0, 1, 2, 3, ... } is an

THEORETICAL FRAMEWORK FOR COOPERATION AND COMPETITION IN EVOLUTIONARY COMPUTATION

231

ETM and X[0] is the start population, the machine
EU takes this pair as its input and produces the same
population X[1] as the Turing machine TM[0]
working with the same population X[0]. Then EU
takes the pair (c(E), X[1]) as its input and produces
the same population X[2] as the Turing machine
TM[1] working with the population X[1]. In general,
EU takes the pair (c(E), X[t]) as its input and
produces the same population X[t + 1] as the Turing
machine TM[t] working with the population X[t]
where t = 0, 1, 2, 3,

In other words, by a Universal Evolutionary
Turing Machine (UETM) we mean such ETM U that
on each step takes as the input a pair (c(TM[t]),
X[t]) and behaves like ETM E with input X[t] for t =
0, 1, 2, UETM U stops when ETM E stops.

Definition 3.6 gives properties of but does not
imply its existence. However, as in the case of
Turing machines, we have the following result.

Theorem 3.1. (Eberbach, 2005). In the class of
all evolutionary Turing machines, there is a
universal evolutionary Turing machine.

Definition 3.7. A universal weighted
evolutionary Turing machine (UWETM) is an
WETM EU with the optimization space Z = X × I .
Given a pair (c(E), X[0]) where E = { TM[t]; t = 0,
1, 2, 3, ... } is an WETM and X[0] is the start
population, the machine EU takes this pair as its
input and produces the same population X[1] as the
weighted Turing machine TM[0] working with the
same population X[0]. Then EU takes the pair (c(E),
X[1]) as its input and produces the same population
X[2] as the weighted Turing machine TM[1]
working with the population X[1]. In general, EU
takes the pair (c(E), X[t]) as its input and produces
the same population X[t + 1] as the weighted Turing
machine TM[t] working with the population X[t]
where t = 0, 1, 2, 3,

This definition gives properties of but does not
imply its existence.

Theorem 3.2. In the class of all weighted
evolutionary Turing machines with a given
recursively computable weight (fitness) function f,
there is a universal weighted evolutionary Turing
machine.

4 COOPERATION AND
COMPETITION IN
EVOLUTIONARY
COMPUTATION

Popular models of distributed intelligent
performance (e.g., optimization) are coevolutionary
systems (Michalewicz and Fogel, 2004), Particle
Swarm Optimization (PSO, also called Swarm
Intelligence) (Kennedy et al, 1995), and Ant Colony
Optimization (ACO also known as Ant Colony
System (ACS)) (Bonabeau et al, 1999).

Coevolution, ant colony optimization and
particle swarm optimization seem be potentially the
most useful subareas of evolutionary computation
for expressing interaction of multiple agents (in
particular, to express their cooperation and
competition). However, paradoxically in most
current applications, these techniques are used to
obtain optimal solutions for optimization of single
agent behavior (in presence of other agents –
members of population), and not for the
optimization of group of agents trying to achieve a
common goal (represented by joint fitness function).
This is primarily because fitness function is
optimized for a single individual from the
population, and not for the population as a whole.

Now, we define a formal algorithmic model of
Evolutionary Computation with cooperation and
competition – a Parallel Evolutionary Turing
Machine.

Definition 4.1. A parallel evolutionary Turing
machine (PETM) E = { TMi[t]; t = 0, 1, 2, 3, ...; i ∈ I
} consists of a collection of series of (possibly
infinite) Turing machines TMi[t] each working on
population X[t] in generations t = 0, 1, 2, 3, ...
where
- each δi[t] transition function (rules) of the

Turing machine TMi[t] represents (encodes) an
evolutionary algorithm that works with the
whole generation X[t] based on its own fitness
performance measure fi(x[t]), and evolved in
generations 0, 1, 2, ... , t,

- the whole generation X[t] is the union of all
subgenerations Xi[t] obtained by all Turing
machines TMi[t - 1] that collaborate in
generating X[t],

- only the zero generation X[0] is given in
advance, and any other generation depends on
its predecessor only, i.e., the outcome of the
generation t = 0, 1, 2, 3, ... is the subgeneration

ICSOFT 2007 - International Conference on Software and Data Technologies

232

Xi[t + 1] obtained by applying the recursive
variation v and selection s operators working on
the whole generation X[t] and realized by the
Turing machine TMi[t],

- TMi[0] are the initial Turing machines operating
on its input - an initial population X[0],

- the goal (or halting) state of PETM E is
represented by any population X[t]) satisfying
the termination condition. The desirable
termination condition is the optimum of the
unified fitness performance measure f(X[t]) of
the whole population X[t].

- when the termination condition is satisfied, then
the PETM E halts (t stops to be incremented),
otherwise a new input population X[t + 1] is
generated by machines TMi[t + 1].
In a similar way, we define a Parallel

Weighted Evolutionary Turing Machine.
Definition 4.2. A parallel weighted evolutionary

Turing machine (PWETM) E = E = { TMi[t]; t = 0,
1, 2, 3, ...; i ∈ I } consists of a collection of series of
(possibly infinite) Turing machines TMi[t] each
working on population X[t] in generations t = 0, 1, 2,
3, ... where
- each δi[t] transition function (rules) of the

Turing machine TMi[t] represents (encodes) an
evolutionary algorithm that works with the
whole generation X[t] based on its own fitness
performance measure fi(x[t]), and evolved in
generations 0, 1, 2, ... , t,

- the whole generation X[t] is the union of all
subgenerations Xi[t] obtained by all Turing
machines TMi[t - 1] that collaborate in
generating X[t],

- only the zero generation X[0] is given in
advance, and any other generation depends on
its predecessor only, i.e., the outcome of the
generation t = 0, 1, 2, 3, ... is the subgeneration
Xi[t + 1] obtained by applying the recursive
variation v and selection s operators working on
the whole generation X[t] and computing the
fitness function fi , and realized by the Turing
machine TMi[t],

- TMi[0] are the initial Turing machines operating
on its input - an initial population X[0],

- the goal (or halting) state of PETM E is
represented by any population X[t]) satisfying
the termination condition. The desirable
termination condition is the optimum of the

unified fitness performance measure f(X[t]) of
the whole population X[t].
when the termination condition is satisfied,

then the PETM E halts (t stops to be
incremented), otherwise a new input population
X[t + 1] is generated by machines TMi[t + 1].

Our models (of PETM and PWETM) are already
prepared to handle such situation. It is enough to
assume that fitness functions f, f1, f2, and f3 are
computed for the whole population (perhaps,
consisting of subpopulations), and not for separate
individuals from the population only. Let’s assume
that our population | x | = p, i.e., it consists of p
individuals or subpopulations. For simplicity, let’s
consider only individuals (by adding multiple
indices, we can consider subpopulations without
losing the generality of the approach).

Let f(M[t],X[t])=f1(f2(M[t]),f3(X[t])), where M[t]=
{M1[t],…,Mp[t]}, X[t]={X1[t],…,Xp[t]}. We define a
problem-specific fitness function f3 for the whole
population f3(X[t])=f13(f31(X1[t]),…,f3p(Xp[t])), where
f13 is an aggregating function for f31,…,f3p, and f3j is
a fitness function of the j-th individual xj, j =1,…,p,
and an evolutionary algorithm fitness function f2 for
the whole population
f2(M[t])=f12(f21(M1[t]),…,f2p(Mp[t])), where f12 is an
aggregating function for f21,…,f2p, and f2j is a fitness
function of the j-th evolutionary algorithm Mj , j = 1,
…, p, and evolutionary algorithm Mj is responsible
for evolution of Xj.

We will present definition for cooperation and
competition for generic fitness function f. Similar
definitions can be provided for fitness functions
f2and f3.

Definition 4.3. (Cooperation of single individual
with population) We will say that j-th individual xj
cooperates in time t with the whole population with
respect to a fitness function f iff f[t] > f[t + 1] and
other’s individuals fitness functions are fixed fi[t] =
fi[t + 1] for i ≠ j.

Definition 4.4. (Cooperation of the whole
population) We will say that all population
cooperates as the whole in time t with respect to a
fitness function f iff f[t] > f[t + 1].

Definition 4.5. (Competition of single individual
with population) We will say that j-th individual xj
competes in time t with the whole population with
respect to a fitness function f iff f[t] < f[t+1] and
other’s individuals fitness functions are fixed fi[t] =
fi[t + 1] for i ≠ j.

Definition 4.6. (Competition of the whole
population) We will say that all population

THEORETICAL FRAMEWORK FOR COOPERATION AND COMPETITION IN EVOLUTIONARY COMPUTATION

233

competes as the whole in time t with respect to a
fitness function f iff f[t] < f[t+1].

In other words, if individual decreases
(increases) fitness function of the whole population
then it cooperates (competes) with it. If fitness
function of the whole population decreases
(increases) then the population exhibits cooperation
(competition) as the whole (independently what its
individuals are doing). If individual (population)
cooperates (competes) for all moments of time, then
it is always cooperative (competitive). Otherwise, it
may sometimes cooperate, sometimes compete.

Let us consider some problems.
Analysis problem for f3 : Given f1[0],…,fp[0] for

individuals x1[0],…,xp[0] from the population X[0]
and aggregating function is given. What will be the
behavior (emerging, limit behavior) of f[t] for X[t]?

Synthesis/design problem for f3 : Given f[0] for
the population X[0]. Find corresponding individuals
x1[0],…,xp[0] with f1[0],…,fp[0] and aggregating
function that f[t] will converge to optimum.

Theorem 4.1. (Optimality of evolutionary
computation with cooperating population –
sufficient conditions to solve the synthesis problem
for f) For a given evolutionary algorithm UT[0] with
population X[0], if UETM EU = { UT[t]; t = 0, 1, 2,
3, ... } satisfies three conditions

1. the termination condition is set to the
optimum of the fitness function f(X[t])
with the optimum f*,

2. search is complete, and
3. population is cooperative all time t = 0,

1, 2, … ,
then UETM EU is guaranteed to find the optimum
X* of f(X[t]) in an unbounded number of generations
t = 0, 1, 2, ... , and that optimum will be maintained
thereafter.
Note that cooperation replaces elitism in sufficient
condition for convergence of cooperating members
of population looking for the optimum of fitness of
the whole population and not of the separate
individual. There is no surprise: if the whole
population competes all the time, then the optimum
will not be found and maintained despite
completeness.

Theorem 4.2. (Optimality of evolutionary
computation with competing population – inability
to solve the synthesis problem for f) For a given
evolutionary algorithm UT[0] with population X[0],
if UETM EU = { UT[t]; t = 0, 1, 2, 3, ... } satisfies
three conditions

1. the termination condition is set to the optimum
of the fitness function f(X[t]) with the optimum
f*,

2. search is complete, and
3. population is competing all time t=0,1,2,…,
then UETM EU is not guaranteed to find and
maintain the optimum X* of f(X[t]) even in an
unbounded number of generations t = 0, 1, 2,

If population is sometimes competing, sometimes
cooperating, then the optimum sometimes will be
found, sometimes not, but the convergence and its
maintenance is not guaranteed.

5 CONCLUSIONS

In this paper, we presented a formal model of
cooperation and competition for evolutionary
computation. We believe that our model constitutes
the first formal, much more precise and more
generic approach trying to capture the essence of
cooperation and competition for evolutionary
algorithms. This was possible because of precise
formulation on notions of cooperation, competition,
completeness, various types of optimization, an
extension of the notion of decidability – all of them
used in the context of several extensions of the
Evolutionary Turing Machine model.

REFERENCES

Bonabeau, E.M., Dorigo, M., Theraulaz G., 1999. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford University Press.

Burgin, M., 2005. Superrecursive Algorithms. Springer,
New York.

Eberbach, E., 2005. Toward a theory of evolutionary
computation. BioSystems 82, 1-19.

Fogel, D.B., 1995. Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. IEEE Press.

Kennedy, J., Eberhart, R., 1995. Particle Swarm
Optimization. In Proc. of the 1995 IEEE Int. Conf. on
Neral Networks, 1942-1948.

Koza, J., 1992. Genetic Programming I, II, III. MIT Press,
1992, 1994, 1999.

Michalewicz, Z., 1996. Genetic Algorithms + Data
Structures = Evolution Programs. Third edition,
Springer-Verlag.

Michalewicz, Z., Fogel, D.B., 2004. How to Solve It:
Modern Heuristics. 2nd edition, Springer-Verlag.

Russell, S., Norvig, P., 1995. Artificial Intelligence: A
Modern Approach. Prentice-Hall (2nd ed. 2003).

ICSOFT 2007 - International Conference on Software and Data Technologies

234

