
GOAL-ORIENTED AUTOMATIC TEST CASE GENERATORS
FOR MC/DC COMPLIANCY

Emine G. Aydal, Jim Woodcock and Ana Cavalcanti
University of York, UK

Keywords: Test case generators, goal-oriented test-case generators, MC/DC.

Abstract: Testing is a crucial phase of the software development process. Certification standards such as DO-178B
impose certain steps to be accomplished in testing phase and certain testing coverage criteria to be met in
order to certify a software as Level-A software. Modified Condition/Decision Coverage, listed as one of
these requirements in DO-178B, is one of the most difficult targets to achieve for testers and software
developers. This paper presents the state-of-the-art goal-oriented automatic test case generators and
evaluates them in the context of MC/DC satisfaction. It also aims to guide the production of MC/DC-
compliant test case generators by pointing out the strengths and weaknesses of the current tools and by
highlighting the further expectations.

1 INTRODUCTION

Civil Aviation is only one of the fields where the
proper use and the correct implementation of
software are of high importance in order to protect
the lives of the passengers. The Federal Aviation
Administration (FAA) is the body in the United
States of America (USA) that “is primarily
responsible for the advancement, safety and
regulation of civil aviation as well as overseeing the
development of the air traffic”(Hayhurst et al. 2001).
In order to secure FAA approval of digital airborne
computer software, the developers are recommended
to use the RTCA/DO-178B document (DO178B
1992), by the FAA through Advisory Circular (AC)
20-115B (DO178B 1992, Hayhurst et al. 2001,
AC#20-115B 2003). In RTCA/DO-178B, software
life cycle activities and design considerations are
described and sets of objectives for the software life
cycle processes are enumerated. According to
RTCA/DO-178B document, one of the most difficult
objectives to be met in order to achieve Level-A
software is the satisfaction of the Modified
Condition Decision Coverage (MC/DC). MC/DC is
a test coverage criterion that verifies the adequacy of
the executed tests in terms of conditions, decisions
and their relations with respect to each other. The
process of satisfying MC/DC for software is still
computationally complex and therefore software
developers are in urgent need of a tool that
automates the process of generating test cases that

cover MC/DC or a tool that is able to verify that a
given test suite satisfies MC/DC.

Within this context, this paper focuses on the goal-
oriented test case generators. We commence with a
brief overview of MC/DC and its positioning in the
literature. We, then, summarize the general concept
of test case generation by explaining the principal
components of generators in an organised fashion.
We present the capabilities and weaknesses of
various goal-oriented test-case generators and
conclude with a summary of practical improvements
that would ease MC/DC satisfaction when
implemented.

2 MC/DC IN THE LITERATURE

One of the main difficulties encountered in the
testing phase is the decision of adequacy (decision
of terminating the testing process). Testing can
continue as long as there are different, untested
execution paths and/or requirements that have not
been verified, but the constraints of software
development, such as time and budget limitations,
only allow a certain amount of test cases to be
carried out. Therefore, different sets of rules that
prescribe some property of the test sets are
suggested in the literature (Kapoor and Bowen 2004,
Ammann et al. 2003, Chilenski and Miller 1994).
These sets of rules are named as test coverage
criteria. The satisfaction of a test coverage criterion

290
G. Aydal E., Woodcock J. and Cavalcanti A. (2007).
GOAL-ORIENTED AUTOMATIC TEST CASE GENERATORS FOR MC/DC COMPLIANCY.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 290-295
DOI: 10.5220/0001324002900295
Copyright c© SciTePress

that verifies the adequacy of the executed tests in
terms of desired qualities is checked during the test
coverage analysis phase. The two different test
coverage analyses (Hayhurst et al. 2001, Adrion et
al. 1982) are requirements coverage analysis and
structural coverage analysis. Requirements coverage
analysis forms a bridge between software
requirements and test cases, thus demonstrating how
well testing has verified the implementation of the
software specifications. Structural coverage analysis
provides traceability between code structure and test
cases. The results of this analysis shows how much
of the code structure has been executed.

Whilst determining the percentage of the code
structure covered, different structural coverage
criteria may focus on different elements in the
program and their accuracy, effectiveness and cost
may vary. In (Chilenski and Miller 1994, Chilenski
and Newcomb 1994), structural coverage criteria are
investigated within three categories:
- Data flow coverage criteria deal with the

interrelationships along subprogram subpaths
between points where a variable is defined and
where that variable’s definition is used.

- Control flow coverage criteria analyze the
interrelationships of decisions and conditions
along subprogram path subsets.

- Control coverage criteria check the program by
examining decision and condition outcomes and
interrelationships within a single control point.

Modified Condition / Decision Coverage (MC/DC),
being a control coverage criterion, deals with
decisions and conditions in control points. A
condition is a leaf level Boolean expression, which
does not include any Boolean operators and thus
cannot be broken down into smaller Boolean
expressions. A decision is a Boolean expression that
is composed of a single condition or expressions that
combine many conditions (Hayhurst et al. 2001,
CAST 2001). MC/DC requires the following
statements to be true for the given set of test cases
(Hayhurst et al. 2001, Kapoor and Bowen 2004,
Ammann et al. 2003):
- Every point of entry and exit in the program has

been invoked at least once.
- Every decision in the program has taken all

possible outcomes at least once.
- Every condition in the program has taken all

possible outcomes at least once.
- Every condition in a decision has been shown to

independently affect that decision’s outcome

3 TEST CASE GENERATION

Testing has been one of the major processes in the
software development accounting for approximately
50% of the time and over 50% of the budget
(Chilenski and Newcomb 1994). Due to the size of
the input space and the number of paths in a
program, the possibility of being able to complete
exhaustive testing remains low and instead,
researchers have been looking for some other ways
of quickening the testing process with the aim of
achieving some testing coverage criteria.
Automation of test case generation with the help of a
tool is one of the approaches aiming to reduce the
time and effort given to testing.

This chapter will first explain the concept of
automating the test case generation process in
general and section 3.2 will provide more insight to
the components expected in test case generators.

3.1 Automatic Test Case Generation

The automation of test case generation may have
different targets to achieve. The test case generation
for functional testing aims at generating test cases
that exercises all the functions of the systems either
based on specifications or based on the model of the
system. The test case generation for structural
testing, on the other hand, attempts to find a set of
program inputs X that achieves desired testing
coverage criterion, provided that X is a subset of the
set of all possible input combinations (Tracey et al.
1998). This type of test case generation may be
code-based, model-based or specification-based
depending on the approach taken.

In fact, the approach taken not only determines how
the test cases will be generated, but also whether the
system has to be executed in the generation of these
test cases. Some test case generation techniques
need the execution of the program with the
generated test suite. These techniques are called to
be dynamic. If the execution of the system is not
involved in the generation of the test suite, then
these techniques are said to be static techniques.

The next section will briefly explain the components
that are likely to be seen in test case generators.

3.2 General Structure of the Test Case
Generators

A typical test case generator consists of three parts;
Program Analyzer, Strategy Handler and Generator.

GOAL-ORIENTED AUTOMATIC TEST CASE GENERATORS FOR MC/DC COMPLIANCY

291

Figure-1 shows the components and the tasks that
may be handled in these components.

Figure 1: The components of a test case generator.

The first component, Program Analyzer, is
responsible for the preparation of the program to the
automation process. This preparation may need
some changes on the actual program or some
analysis of a certain property. For instance, some
test case generation techniques require specific
response from the software and therefore the
instrumentation may become necessary. If the
approach taken is formal, a formal specification of
the system may be in need. Another task performed
at this point may be to build a control flow graph
(CFG) or to perform parameterised feasibility
analysis in order to locate as much unreachable code
as possible.

Strategy Handler is the component where
external factors affecting the test case generation are
determined. This step may include the formalization
of the test coverage criterion, the selection of paths,
normalization of constraints, etc. In some cases, this
component may need some amount of interaction or
input from Program Analyzer.

Generator is the component that takes input
from the other two components and generates test
cases according to the rules of the approach
followed. The satisfaction of test coverage criterion
is generally verified in this component as well.

The model above is similar to that of (Edvardson
1999), however, the tasks of these components are
more generalized in order to give reader an overall
picture of the test case generators and establish a
basis for the next chapter where different goal-
oriented test case generators are discussed.

4 GOAL-ORIENTED TEST CASE
GENERATORS AND MC/DC

There have been many studies on the automation of
test case generation during the last two decades.

Literature surveys on this field (Edvardson 1999,
Prasanna et al. 2005) generally classified the test
generators for structural testing into three categories;
random, path-oriented, goal oriented. This paper
mainly focuses on goal oriented generators. The
reader may find further information on random and
path-oriented test case generators in (Tracey et al.
1998, Durrieu et al. 2004, Diaz et al. 2004).

The goal-oriented generators generally identify test
cases covering a selected goal such as statement or
branch coverage irrespective of the path taken. In
other words, in this sort of generators, the input
generated does not necessarily traverse from entry to
the exit point of the program, but may take an
unspecified path. Since the paths are not restricted,
the risk of encountering infeasible paths is reduced
(Edvardson 1999). Having said that, the strategy
selected should still provide a way to direct the
search for input values.

Chaining Approach

One of the approaches followed is the chaining
approach (Ferguson and Korel 1996). In this
approach, for each test coverage criterion, different
initial event sequence is defined and the goal nodes
are determined accordingly. For instance, the initial
event sequence for the branch coverage of the
branch (p,q), the initial event sequence E is defined
as E = <(s, Ø),(p, Ø),(q, Ø)> (Ferguson and Korel
1996). The problem with this approach is the
lengthiness of the processes to prepare the program
to testing. The Branch Classification process
handled in the Program Analyzer has to determine
the critical, semi-critical and non-critical nodes for
each branch. Then, this classification leads the
search during the execution of the program and
decides which branch to take to reach the goal node
or to cover the requested branch. Then again, for
branch coverage, each branch has to be given
explicitly to the generator and the program has to be
executed as many times as the number of branches
in the code. It is written in the specifications of the
tool that the technique can be adapted to other
criteria as well, but the algorithm to introduce a new
criterion is not straightforward and the burden to
introduce each unit of the criterion –eg. each branch
for branch coverage - is still on the shoulders of the
tester. The structure of the test case generator that
uses chaining approach is given in Figure-2.

ICSOFT 2007 - International Conference on Software and Data Technologies

292

Figure 2: Chaining approach.

Simulated Annealing

A similar approach is studied in the domain of
Heuristic-global optimization techniques (Tracey et
al. 1998). Clark et al. have used simulated annealing
in order to build a general framework for generating
test-data. Figure-3 shows the internal structure of the
generator described in (Tracey et al. 1998).

Given the representation of the candidate solutions
and a cost function which can measure the quality of
the candidate solution for a chosen test criterion,
simulated annealing can overcome the problems of
locally optimal solutions by performing modified
neighbourhood search (Tracey et al. 1998). Instead
of classifying branches to find the target branch, as
in chaining approach, it uses the directions of the
cost function. The cost function returns zero as long
as the correct branch is taken along the path to be
traversed.

Figure 3: Simulated annealing.

This approach is superior to many others in the sense
that it is flexible and allows changes during the
procedure. The cost function plays the role of the

oracle in finding the right path and avoids redundant
branching. The test coverage criterion formalization
is also hidden in the cost function. Thus, to generate
test data for new test criterion, it is necessary to
devise an appropriate cost function. The problem is
that the cost function itself may need an oracle.
Because finding a cost function for a new test
criterion is not an easy process and to the best of our
knowledge, no cost function has been produced to
cover MC/DC. Furthermore, although the cost
function aims to lead to the desired branches, there
must be an additional unit to check that the
generated test cases caused the desired coverage.

Having said that, the flexibility of the technique may
allow further improvements. For instance, the
derivation of the cost function from the test criterion
may be formally demonstrated, and the degree of
learning process in each execution may be increased
possibly by harnessing the current optimization
techniques such as tabu-search, generic-algorithms
as well as simulated annealing with the help of
software metrics (Tracey et al. 1998). These
improvements may let researchers to adapt new
criteria such as MC/DC by using more formal
techniques.

Figure 4: Assertion-oriented approach.

Assertion-oriented Approach

Another approach again in the context of goal-
oriented generators is the assertion-oriented
approach. This approach is based on the power of
assertions, i.e. pre- and post-conditions. The
approach may be useful when considered in the
context of all-purpose test case generation. Because
its main goal is to identify a program test on which
an assertion is violated (Korel and Al-Yami 1996)
and ultimately automate the process for each
assertion in the program. By finding an assertion
violation, it aims at finding a fault in the program, a

GOAL-ORIENTED AUTOMATIC TEST CASE GENERATORS FOR MC/DC COMPLIANCY

293

faulty precondition or an erroneous assertion. The
Figure-4 shows its internal components.
For fault-detection purposes, this testing technique
can be of use, but its drawback is that it does not
consider any test coverage criterion within the
process. Thus, there is no fixed termination point
other than the number of assertions in the program,
but as stated in (Korel and Al-Yami 1996), the
problem of finding a program input on which an
assertion is violated is undecidable and therefore the
process may not be able to find violations for certain
assertions and may never terminate.

ADA Testing Workbench

As a more formal approach in building test case
generators, Chilenski and Newcomb (1994) examine
Ada Testing Workbench (ATW), a research tool that
automates the analysis of a subset of Ada language
and generation of coverage compliant specifications
for twenty-one control, control-flow and data-flow
coverage criteria, including MC/DC. The internal
structure of ATW is shown in Figure-5.

Figure 5: Goal-oriented test case generator – ATW.

The generator starts the process with the
transformation of source code into a machine
understandable representation. Then, ATW starts the
parsing step where a set of knowledge base
structures are generated. These constitute an abstract
syntax tree (AST). By using AST, Control Flow
Analysis generates CFG for each Ada subprogram.
CFG is used to determine the decisions, conditions
and variables that control the execution of the code.
Meanwhile, coverage specifications are built for the
test coverage criteria by using the coverage tables
and feasibility analysis is carried out. Finally, the
generator reduces the number of rows in the
Coverage Tables by using Valid Conditions Table
(VCT) and constructs test cases accordingly. Thus
the goal of the generator can be summarized as

generating test cases for a certain coverage criterion
through Coverage Tables in an efficient manner.
Although this work was promising for test case
generation, the efforts to improve the tool (ATW)
ceased in 1994. One of the main benefits of this
study has been that it demonstrated automated
formal semantics capture techniques with derivation
of formal specifications from Ada code and
mechanical theorem proofs for properties of
program paths (Chilenski and Newcomb 1994,
Chilenski and Miller 1994).

Model-based Approach

In addition to the techniques and tools introduced,
there are also model-based goal-oriented test case
generation tools (Prasanna et al. 2005, Cavarra et al.
2002), most of which are based on UML. The test
case generation from UML models is certainly
possible. However, to generate test cases that satisfy
a coverage criterion, the models need to be verified
against the specifications. Although there have been
some studies focused on formal verification of UML
models, the overall semantics of UML still needs to
be elaborated in order to get rid of ambiguities in its
definition as stated by Prasanna et al. 2005 and
therefore these tools are not studied in this paper.

5 CONCLUSION

Having evaluated a significant number of goal-
oriented test case generators in the context of
MC/DC satisfaction, we can summarize the crucial
outcomes as follows:
- MC/DC must be formulated in a standard format

and there must be a mechanism that introduces
the criterion to the generator.

- If there is a need for the determination of all
branches or paths in order to execute them, then
this must be handled by the tool.

- Heuristic-global optimization techniques can be
used if formality in the definition of cost function
for MC/DC can be achieved.

- Analysis of the program code is an indispensable
part of the test case generation since, like most
other criteria, MC/DC is a syntax-dependent
criterion. Some of the generators analyze the
code through instrumentation, others through
parsing and producing CFGs, etc. A formal
analysis of the code that does not rely on the
programming language can improve the
confidence in the tool and provide more
flexibility to other components of the generator.

- It is possible to produce tools that accept
different coverage criteria in the form of plug-ins

ICSOFT 2007 - International Conference on Software and Data Technologies

294

as in (Chilenski and Newcomb 1994). Although
our aim in this paper is to generate MC/DC-
compliant test suites, having this broader idea in
mind would probably facilitate the introduction
of other criteria if need be.

- The components of the tool must comply with
the ‘separation of concerns’ rule. Separation of
concerns (SoC) is the process of breaking a
program into distinct features that overlap in
functionality as little as possible (Jackson 2006).
In this case, the components; program analyzer,
strategy handler and generator must be
implemented in such a way that amendments in
one of the components should not affect others in
great deal. For example, if the instrumentation of
the code in the program analyzer depends on the
criterion formulated in Strategy Handler, this
may cause huge amount of modifications when
the decision for the criterion used is changed.

Figure 6: A different view to test case generation.

Figure-6 gives a different view to the test case
generation process. The main idea emphasized in
this figure is the fact that MC/DC is separated from
the other components of the generator and therefore
its formalization can be handled separately, for
instance, by using Z notation, provided that the
generator is able to interpret this notation. Another
message given by Figure 6 is that the code
transformed into a format that can be understood by
the generator, must still be consistent with the
formal specifications of the program.

There is certainly more work to be done in this
subject, however the strengths of the tools and the
techniques outlined in this paper will certainly draw
a guideline in the production of future tools to cover
MC/DC and we continue to explore the use of
formal methods to achieve MC/DC-compliant test
case generation.

REFERENCES

AC#20-115B (2003). Advisory Circular (AC) # 20-115B,
FAA.

Adrion, R., Branstad, M. and Cherniavsky, J., (1982).
Validation, Verification and Testing of Computer
Software. Computing Surverys, ACM.

Ammann, P., Offutt, J. and Huang, H., (2003). Coverage
Criteria for Logical Expression. International
Symposium on Software Reliability Engineering
(ISSRE '03).

Cavarra, A. , Crichton, C., Davies, J., Hartman, A., Jeron,
T. and Monier, L., (2002). Using UML for Automatic
Test Generation. Proceedings of ISSTA.

Certification Authorities Software Team (CAST), 2001.
Rationale for Accepting Masking MC/DC in
Certification Projects.

Chilenski, J.J. and Miller, S.P., (1994). Applicability of
Modified Condition/Decision Coverage to Software
Testing. Software Engineering Journal.

Chilenski, J.J. and Newcomb, P.H., (1994). Formal
Specification Tools for Test Coverage Analysis. The
Boeing Company.

Díaz, E., Tuya, J. and Blanco, R., (2004). A Modular Tool
for Automated Coverage in Software Testing,
Software Technology and Engineering Practice. IEEE
CS Press, pp. 234-240.

DO-178B, (1992). DO-178B: Software Considerations in
Airborne Systems and Equipment Certification,
RTCA, Washington D.C., USA.

Durrieu, G., Laurent, O., Seguin, C. and Wiels, V., (2004),
Automatic Test case Generation for Critical Embedded
Systems. DASIA’04.

Edvardsson, J., (1999), A Survey on Test Data Generation,
ECSEL.

Ferguson R. and Korel B., (1996). The Chaining Approach
for Software test data generation. ACM Transactions
on Software Engineering and Methodology, 5(1):63-
86.

Hayhurst, K.,Veerhusen, D., Chilenski, J. and Rierson,
L.K., (2001). A Practical Tutorial on Modified
Condition/Decision Coverage. NASA.

Jackson, M., (2006). What can we expect from program
verification?. Innovative Technology for Computer
Professionals 39, no.10, PG 65-71.

Kapoor, K. and Bowen, J.,(2004).Formal Analysis of
MCDC and RCDC Test Criteria. London South Bank
University.

Korel, B. and Al-Yami, A. M., (1996). Assertion-oriented
automated test data generation. Proceedings of the
18th International Conference on Software
Engineering, (ICSE), pages 71-80. IEEE.

Prasanna, M., Sivanandam, S.N., Venkatesan, R. and
Sundarrajan, R., (2005). A Survey on Automatic Test
Case Generation. Academic Open Internet
Journal,Volume 15.

Tracey, N., Clark, J., Mader, K. and McDermid, J., (1998).
An Automated Framework for Structural Test Data
Generation. 13th IEEE International Conference on
Automated Software Engineering.

GOAL-ORIENTED AUTOMATIC TEST CASE GENERATORS FOR MC/DC COMPLIANCY

295

