
UNDERSTANDING PRODUCT LINES THROUGH DESIGN
PATTERNS

Daniel Cabrero
Dirección General de Tráfico, Spanish Ministry of Internal Affairs, Madrid, Spain

Javier Garzás
Kybele Consulting S.L. Madrid, Spain

Mario Piattini
Alarcos Research Group. University of Castilla-La Mancha. Ciudad Real, Spain

Keywords: Design Patterns, Software Product Lines, Systematic Literature Review, Variability Points.

Abstract: Many proposals concerning design and implementation of Software Product Lines have been studied in the
last few years. This work points out how and why different Design Patterns are used in the context of
Product Lines. This will be achieved by reviewing how often those patterns appear in different proposed
solutions and research papers for Product Lines for a given set of sources. This information will help us
identify which specific problems need to be solved in the context of Product Lines. In addition, we will
discuss how this information can be useful to identify gaps in new research.

1 INTRODUCTION

Software Product Lines engineering gathers the
analysis, design and implementation of a family of
systems in order to improve the reuse of the
commonality among them. Thus, a Product Line is a
group of “similar” systems (Clements and Northrop,
2001). Each system can be defined as the variability
within the rest of the family.

The main challenge of this tendency in
engineering is to establish the appropriate
mechanisms for modelling and implementing this
variability (Myllymäki, 2002) and to save cost and
time by reusing components whenever possible.

Design Patterns describe common problems and
their solutions (Gamma et al., 1995) in such a way
that analysts and software designers can easily
retrieve them. Thanks to the fact that experienced
software engineers and domain specialists develop
patterns, the software community can take advantage
of this reliable knowledge, available from pattern
libraries.

The experience at hand in the field of reusability
of common features and components is well known

and a lot of work on this has been successfully
applied in a wide variety of systems, adopting
solutions defined in patterns. Fortunately, all this
experience has been gathered, and is obtainable
through pattern libraries.

In terms of modelling variability in design,
Software Product Lines are not much different from
other systems. Therefore, one of the major
differences between a classic development and a
Product Line-oriented development is how the
requirement analysis is done. In Product Lines
requirements are collected in terms of “Variability
Points” (Keepence and Mannion., 1999), which are
differences among systems within a Product line.

The remainder of the paper is organized as
follows. Section 2 describes how we carried out a
review on how different frameworks use this
existing knowledge. An ordered list of patterns and
refactorings will be summarized, based on the
frequency of their appearance. Section 3 focuses in
more in detail on the most common problems faced
by Software Product Lines. Finally, section 4 draws
some conclusions and identifies future research
work.

405
Cabrero D., Garzás J. and Piattini M. (2007).
UNDERSTANDING PRODUCT LINES THROUGH DESIGN PATTERNS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 405-408
DOI: 10.5220/0001323304050408
Copyright c© SciTePress

2 DATA RETRIEVAL: A
SYSTEMATIC REVIEW IN
PRODUCT LINES

A Systematic Literature Review is a means of
identifying, evaluating and interpreting all available
research that is relevant to a particular research
question. Individual studies contributing to a
Systematic Review are gathered and new
conclusions are obtained from its summarization and
analysis (Biolchini et al., 2005). This
methodological literature review is common in other
science disciplines such as medicine, but was
recently introduced in Software Engineering by
(Kitchenham, 2004).

2.1 Research Question

The difference between a Systematic Literature
Review and a traditional Literature Review is that
“the research conduction process of a Systematic
Review follows a well defined and strict sequence of
methodological steps” (Biolchini et al., 2005). These
“strict” steps include the definition of the followed
procedure in the research, which focuses different
aspects such as the research question, sources, query
strings or selection criteria.

In the context of this research, we performed a
Systematic Review focusing on Design Knowledge
as defined in (Garzás and Piattini, 2005) (Design
Patterns, Refactorings, Design Principles, Rules,
Bad Smells and Heuristics) applied to Software
Product Lines. The research question was defined as
shown in the Figure 1.

Figure 1: Research Question

2.2 Execution of the Systematic Review

In this case, a specific set of Query Strings was used
to identify research articles in three sources: the
IEEE, the ACM and the SCIENCE DIRECT portals.
The Table 1 shows the strings used, as well as the
number of selected studies from them. For example,
the cell corresponding to the first column and the
first row establishes that 30 documents were
retrieved for the “Design Pattern” + “Product Line”
string queries.

Table 1: First Search. Retrieved Studies.

 Product Line Product Family

Design Pattern 30 11

Heuristic 19 3

Design Principle 10 9

Bad Smell 0 0

Refactoring 25 6

Design Rule 6 2

Once the search was performed, 121 relevant

studies were selected. After that, we filtered the
really important papers using the selection criteria.
The selection criteria was to read the article abstract
in order to ensure that the they talked about Product
Lines and Design Knowledge Concepts defined in
(Garzás and Piattini, 2005). After filtering each of
them, we found that they mostly focused on
architectural issues, requirements management, and
many other aspects, but very few of them referred to
lower level design aspects.

The Table 2 shows the number of results for
each string query after the selection criteria was
applied.

Table 2: First Search. Filtered Studies.

 Product Line Product
Family

Design Pattern 11 2

Heuristic 2 0

Design Principle 2 1

Bad Smell 0 0

Refactoring 4 0

Design Rule 0 0

Which kind of Design Knowledge (e.g.
Patterns, Refactorings, Principles, Rules,
Bad Smells and Heuristics) is commonly
used in Software Product Lines?

Eventually, we discovered that some of the
retrieved documents did propose new patterns for
managing variability. Those “complex” patterns
could be broken down into “classic” Patterns and
Refactorings, such as those defined by the Gang of
Four (Garzás and Piattini, 2005), (Buschmann et al.,
1996) or (Fowler, 1999). Among those “complex”
patterns we can highlight the Single Adapter Pattern,
Multiple Adapter Pattern and Option Pattern
(Goedicke et al., 2004, Keepence and Mannion.,
1999)., the SCV Analysis (Coplien et al., 1998) or
the Command Language Pattern (Goedicke et al.,
2004).

In the end, after reading carefully each selected
document, we had found 4 articles published in

ICSOFT 2007 - International Conference on Software and Data Technologies

406

Journals related with different patterns, as depicted
in the Table 3.

Table 3: First Search. Final Results.

(Keepence
and

Mannion.,
1999)

(Coplien
et al.,
1998)

(Goedic
ke et
al.,

2004)

(Ziadi
et al.,
2003)

Abstract
Factory X X X X

Singleton X X

Null
Object X X

Replace If
with

Inheritanc
e

X

Adapter X

Message
Redirector X

Service
Abstractio

n Layer
 X

Command
Processor X

Command X

Interprete
r X

The summarized data given in the Table 3

establishes that only Patterns and Refactorings were
found in the retrieved papers.

We noticed that articles focusing ‘low level’
design aspects used class diagrams. Because of that,
we performed a second search, this time in Internet,
using ‘class diagram’ and ‘pattern-based’ Strings, as
shown in the Table 4.

Table 4: Second Search. Retrieved Studies.

 Software
Product Line

Software Product
Family

Class Diagram +
Pattern-Based 90 20

After reading the abstract of the 110 related

studies returned by the search queries (90 from the
first query string and 20 from the second one), we
found that 4 research works used any of the above-
mentioned Design Knowledge. The Table 5 depicts
the different patterns mentioned in each study.

All of them used patterns, but no reference was
found in this second search related to refactorings,
bad smells, design principles, design rules or
heuristics.

Table 5: Second Search. Final Results.

 (Myllymä
ki, 2002)

(Bachma
nn and
Bass,
2001)

(Harsu
, 2001)

(Muthig
et al.,
2004)

Abstract
Factory X X X

Strategy X

Mediator X X

Proxy X

Singleton X

2.3 Data Synthesis

The next step in our work was to check how often
those patterns appear in the Product Line-based
solutions and to build an ordered list based on their
occurrence in the literature.

The list shows the most-used patterns in Software
Product Lines and their occurrence per document in
parentheses:

1. Abstract Factory (7)
2. Singleton (3)
3. Mediator (2)
4. Null Object (2)
5. Proxy, Command, Adapter, Interpreter,

Message Redirector, Strategy, Service
Abstraction Layer, Command Processor,
Replace If with Inheritance. (1)

It is interesting to highlight that, by observing the

list of patterns used in Product Lines, we can take
advantage of the common pattern language provided
by pattern libraries. Thus, we can associate those
patterns with the problems that they try to solve. In
other words, the pattern frequency defines many
important aspects of the system.

A quick glance at the list shows a clear
preference for the Abstract Factory Design Pattern.
A long way off this as regards frequency, we can
find the rest of Patterns and Refactorings.

The next sections will explain the basics of the
patterns found, and how they are used within
Software Product Lines.

UNDERSTANDING PRODUCT LINES THROUGH DESIGN PATTERNS

407

3 CONCLUSIONS

Very often, a system or technology can be defined
by means of the problems that it tries to solve.
Identifying those problems and having an overview
of the state of the art in this respect is a necessary
step in the process of producing a new proposal.

This research work reaches several objectives.
First of all, it highlights what the main problems in
SPL are, currently, as well as how they are being
solved using patterns. This has been achieved
empirically, studying the appearance frequency of
patterns, instead of basing conclusions on personal
opinions.

Secondly, this article shows a new line of
research that aims to cover gaps in research on the
use of refactorings, bad smells, design principles,
design heuristics and design rules in Product Lines.

In addition, we propose that future work can be
focused on the lack of a detailed library that analyses
and evaluates each relevant pattern-based solution
and then gives guidelines as to which proposal
should be used in different cases.

ACKNOWLEDGEMENTS

This research is partially supported by the ESFINGE
project of the General Research Council (Dirección
General de Investigación) of the Spanish Ministry of
Education and Science (TIC 2003-02737-C02-02)
and ENIGMAS (Entorno Inteligente para la Gestión
del Mantenimiento Avanzado del Software),
supported by the Department of Education and
Science of the Junta de Comunidades de Castilla-La
Mancha (Regional Government of Castilla-La
Mancha) (PBI-05-058).

REFERENCES

Bachmann, F. & Bass, L. (2001) Managing variability in
software architectures, Symposium on Software
Reusability ACM Press

Biolchini, J., Mian, P. G., Natali, A. C. C. & Travassos, G.
H. (2005) Systematic Review in Software Engineering.
Rio de Janeiro, COPPE / UFRJ.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
& Stal, M. (1996) Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley and
Sons Ltd.

Clements, P. & Northrop, L. (2001) Software Product
Lines: Practices and Patterns, Addison-Wesley.

Coplien, J., Hoffman, D. & Weiss, D. (1998)
Commonality and Variability in Software Engineering.
IEEE Software 15, 37 - 45.

Fowler, M. (1999) Refactoring, Addison Wesley.
Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995)

Design Patterns, Addison-Wesley.
Garzás, J. & Piattini, M. (2005) An ontology for micro-

architectural design knowledge. IEEE Software
Magazine, 22, 28-33.

Goedicke, M., Köllmann, C. & Zdun, U. (2004) Designing
runtime variation points in product line architectures:
three cases. Science of Computer Programming, 53,
353 - 380

Harsu, M. (2001) A Survey of Product-Line Architectures.
Tampere, Tampere University of Technology.

Keepence, B. & Mannion., M. (1999) Using patterns to
model variability in product families. IEEE Software,
16, 102-108.

Kitchenham, B. (2004) Procedures for Performing
Systematic Reviews. Keele University Technical
Report. Keele, Software Engineering
Group.Department of Computer Science. Keele
University.

Muthig, D., John, I., Anastasopoulos, M., Forster, T.,
Dörr, J. & Schmid, K. (2004) GoPhone - A Software
Product Line in the Mobile Phone Domain. IESE-
Report. Fraunhofer IESE.

Myllymäki, T. (2002) Variability Management in Software
Product Lines. Tampere, Institute of Software
Systems. Tampere University of Technology.

Parnas, D., Clements, P. C. & Weiss, D. (1984) The
Modular Structure Of Complex Systems, International
Conference on Software Engineering Orlando, Florida,
IEEE Press.

Ziadi, T., Jézéquel, J.-M. & Fondement., F. (2003)
Product Line Derivation with UML, Groningen
Workshop on Software Variability Management,

ICSOFT 2007 - International Conference on Software and Data Technologies

408

