
TRANSPARENT SCHEDULING OF WEB SERVICES  

Dmytro Dyachuk and Ralph Deters 
Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, Canada 

Keywords: SOA, Web Services, Scheduling.  

Abstract: Web Services are applications that expose functionality to consumers via public interfaces. Since these 
interfaces are defined, described and consumed using XML-based standards, Web Services outperform 
other middleware approaches (e.g. CORBA, RPC) in terms of platform interoperability and ease of use.  
Web Services support the concept of loosely coupled components, which in turn enables the development of 
more agile and open systems. However, this flexibility comes at the price of reduced control over the usage 
of the services that are exposed via the interfaces. This paper focuses on the transparent scheduling of 
inbound requests by introducing a proxy that prevents clients from directly accessing the provider. By 
manipulating the order and volume of requests sent to the provider it becomes possible to improve 
throughput and mean response time and to ensure consistent performance in overload situation.  

1 INTRODUCTION 

According to the Four Tenets of Service Orientation 
(Box 2004), services are characterized by having 
clear boundaries and autonomy. Service Orientation 
(SO) also replaces data types as a means to describe 
input/output of services by using contracts and 
schemas and defines service compatibility by use of 
policies.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Service-Oriented Architecture. 
 
In a service-oriented system (fig. 1), services are 
offered by service providers that register them with 
registries (e.g. UDDI). Service consumers (aka 
clients) discover at runtime service providers by 
simply queering the registries. Upon discovering a 
service provider, the consumer obtains from the 
provider the meta-data of the service that is then 

used to establish a binding to the provider. Since 
services are high-level constructs that hide 
implementation details, consumers can easily bind to 
unknown services across platform and language 
barriers, resulting in a system with very dynamic 
functional dependencies between its components. 
Consequently SO supports very loose coupling 
between consumers and providers, allowing for agile 
and open systems. Compared to other middleware 
approaches such as RPC (e.g. ONC-RPC) and 
object-oriented middleware (e.g. CORBA) SO 
differs in its lack of access transparency, since there 
is a very clear notion between local and remote.  
Service-oriented middleware (e.g. Web Services) 
enables developers to expose functionality in terms 
of services, which can be described in a declarative 
manner ensuring interoperable and platform 
independence. Using IDE tools (e.g. Visual Studio 
2005, Eclipse 2006) and frameworks (e.g. Axis 
2006) it is fairly easy for programmers to expose 
application interfaces and/or consume existing 
services, resulting in an ever-increasing number of 
Web Service deployments.  
However, the ease with which components (e.g. 
legacy systems) can now be exposed and 
consequently combined, raises serious concerns in 
regards to the dependability of the resulting system.  
It is important to remember that providers of 
services expose local resources (e.g. legacy 
applications) to potentially new and unknown loads. 

112
Dyachuk D. and Deters R. (2007).
TRANSPARENT SCHEDULING OF WEB SERVICES.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 112-119
DOI: 10.5220/0001291001120119
Copyright c© SciTePress



 

This is particularly worrisome since Web Services 
platforms tend to implement PS (Processor Sharing) 
as the default scheduling policy (Graham 2004) 
which can easily lead to server overload situations 
that in turn can cause ripple effects throughout a 
system (e.g. fault-propagation). 

This paper focuses on the use of scheduling as a 
means to ensure that the exposed services are 
protected from overload situations and that the 
throughput and mean response time are optimized. 
The remainder of the paper is structured as follows. 
Section two presents an overview on server 
behaviour and scheduling. Section three presents a 
benchmark and an experimental setup of a system 
used to evaluate the scheduling of service requests. 
This is followed by experimentation and evaluation 
sections that discuss the results of the 
experimentation. Section six discusses related work. 
The paper concludes with a summary and outlook. 

2 SERVERS & LOAD   

If we assume that service providers do not share 
resources with other service providers (e.g. no two 
providers expose the same data base), than every 
service provider can be modelled as a server.  
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Behaviour of Server. 
 

If these providers are capable of handling multiple 
requests simultaneously, incoming service requests 
must be assigned a separate thread. Since each 
server has a finite amount of resources and each 
consumer request will lead to a temporary reduction 
of server-resources, it is interesting to examine the 
server’s behaviour under various loads. Studies 
(Heiss 1991) show that servers respond in a common 
way to loads. If a server is gradually exposed to an 

ever-increasing number of service requests it is 
possible to observe three distinct stages, under-load, 
saturation and over-load. At the beginning the 
server experiences a load that is below its capacity 
(under-load) and consequently it is not fully utilized. 
As the number of requests is increased the 
throughput (number of completed jobs per time unit) 
increased. As the rate of incoming requests increases 
the server experiences its saturation point (peak 
load). This saturation marks the point where the 
server is fully utilized and operating at its full 
capacity. The saturation point marks also the highest 
possible throughput. Further increases of the rate at 
which the request arrive will now lead to an 
overload or thrashing effect. The service capacity is 
exceeded and “an increase of the load results in the 
decrease of throughput” (Heiss 1991). The main 
reasons for a server to experience thrashing are 
either resource contention (overload of the physical 
devices e.g. CPU, memory, hard drive, etc.) or data 
contention (locking). 

Since server over-load situations lead to a 
decline in throughput it is important to avoid them. 
Heiss and Wagner (Heiss 1991) proposed the use of 
adaptive load control as the means for preventing 
overloads. This is achieved by first determining the 
maximum number of parallel requests (e.g. 
maximum number of simultaneous consumers) and 
then buffering/balking the requests once the 
saturation point has been reached. 
The impact of this approach can be seen in figure 2. 
The darker curve shows the characteristic three 
phases a server can experience, under-load, 
saturation and over load. Using an admission control 
(grey curve), the trashing is avoided due to the 
buffering/balking of requests above peak load.  
Adding an admission control into an already existing 
Web Services system can be achieved by use of the 
proxy pattern. As shown in figure 3, adding a proxy 
that shields/hides the original provider enables a 
transparent admission control.  

The role of the proxy is to monitor the rate at 
which consumers issue requests. Once the request 
rate exceeds the capacity of the provider, a FIFO 
queue is used to buffer the excess request. The 
transparent admission control is a very effective 
approach for handling requests bursts (Heiss 1991, 
Elnikety 2004). However a basic FIFO queue 
ignores that different requests impact the server in 
different way e.g. different resource utilization.  
 

Number jobs of on server

T
h

ro
ug

h
p

u
t

with thrashing

without thrashing

under-load over-load 
saturation 
(peak load)

TRANSPARENT SCHEDULING OF WEB SERVICES

113



 

 
Figure 3: Transparent Admission Control. 

 
Since service-oriented middleware (e.g. Web 
Services) tends to favour declarative communication 
styles (e.g. SOAP messages), it is fairly easy to 
analyze the server bound traffic, determine the 
request and estimate the impact each request will 
have on the service provider.  This in turn leads to 
the possibility of scheduling (re-ordering) of service 
requests (fig. 4). 

 
Figure 4: Transparent Scheduling. 

 
Scheduling of requests opens a broad spectrum of 
possibilities, like maximizing service performance in 
terms of interactions per time unit, minimizing 
variance of service response times, etc.  
This paper focuses on SJF (Shortest Job First) 
scheduling as a means for optimizing overall 
throughput. SJF (Shortest Job First) is a scheduling 
policy which minimizes the response time of light 
requests, for the price of the heavier ones. All 
incoming service calls are put in a waiting queue and 
are executed in the order of their size as shown in 
figure four. Smith (Smith 1956) proved that SJF is 
the best scheduling policy for maximizing the 
throughput if perfect job estimation is available. 

In this paper we limit the discussion of 
scheduling to SOAP encoded, synchronous RPC 
style, stateless Web Services. In addition rather than 
using a complex resource model, requests (jobs) will 
be characterized by the load they create on the 
provider (server). The SJF scheduler is highly 
dependent on a correlation value of predicted and 
observed job length – the better the correlation the 
better the optimality of the schedule. While a 
correlation close to one (perfect predictions) 
achieves the optimal schedule (Conway 1967), a 
correlation close to minus one (always wrong 
predictions) results in the worst schedule (instead of 
minimizing the response time, it will be maximized). 
A correlation of zero (random guess, equal amounts 
of correct and wrong predictions) leads to a random 
scheduling (Conway 1967).  

The SJF scheduler is highly dependent on a 
correlation value of predicted and observed job 
length – the better the correlation the better the 
optimality of the schedule. 

3 TPC-APP  

To achieve a realistic and domain independent 
evaluation of the transparent scheduling, the TPC-
APP benchmark of the Transaction Processing 
Performance Council (TPC) was chosen. According 
to TPC (TPC 2006) the “TPC Benchmark™ App 
(TPC-App) is an application server and web services 
benchmark. The workload is performed in a 
managed environment that simulates the activities of 
a business-to-business transactional application 
server operating in a 24x7 environment…..” (TPC-
APP 2006). 

Since there were no free test-suites available, a 
reimplementation of the benchmarks was 
implemented following the TPC specifications. 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 5: Topology of TPC-APP. 
 
As shown in figure 5, the TPC-APP scenario 
consists of clients, a third-party service, a bookstore 
service and a database server. The bookstore 
services and the database server are hosted on 
different machines (application server & DB server). 
TPC-App also introduces a third-party service (e.g. 
credit card service) to simulate external parties.  
The application server (bookstore service) exposes 
eight different methods shown in table one with their 
distribution in the client requests (e.g. 50 % of all 
client calls are Create Order requests). Two methods 
are Writes (Create Order, Change Item), one is 
Read/Write (New Customer, Change Payment) and 
three are Reads (Order Status, New Products, and 
Product Detail). TPC-APP dictates that each of these 
methods should be treated as a transaction with 
ACID properties. 

WEBIST 2007 - International Conference on Web Information Systems and Technologies

114



 

Table 1: Services. 
 

 
The database contained all the information operated 
by service, like customers, orders, inventory, etc. 
The size of the database was 80 Mb.  The inventory 
table was scaled to 100 000 records, and the table 
describing orders and clients was proportional to the 
number of virtual clients.  In order to reduce proxy 
complexity component inserted between clients and 
application server, the underlying communication 
protocol was changed from the HTTPS to HTTP.  

4 EXPERIMENTS   

Our TPC-APP implementation uses JSE as the 
officially allowed by TPC platform.  The application 
server is Jakarta Tomcat 5.0.28 running on JSE 1.4. 
Tomcat’s default configuration is set to use a load 
balancing package. Load balancing was disabled to 
ensure a consistent behaviour for the experiments (it 
also leads to a 15 ms speedup in average on each 
service call). Axis 1.3 served as framework for 
implementing the Web Services. All Web Services 
were implemented in a synchronous way and use the 
default HTTP 1.0 as the transport protocol. MySQL 
4.1.12a was selected as the database server and the 
Connector J3.1.12 JDBC driver was used to link the 
services to the database. The application server, 
database server and virtual clients resided on 
separate machines of following configuration: 
Pentium IV 2.8 GHz, 2Gb of RAM. The third part 
services used Pentium 3, 600Mhz with 512 of RAM. 
The machines were connected with a 100Mb LAN 
and used XP SP 2 as their OS. The XP performance 
counters were used to collect the performance data. 
As the main metrics we chose throughput and 
average response time. The average response time is 
the mean value of all the response times of service 
during the measurement interval. Throughput is here 
defined as the number of successful service 
interactions per time unit. The measurement interval 
is 30 minutes.  

To emulate the behaviour of multiple clients, a 
workload generator is used. The settings of the client 
session lengths were distributed according a discrete 
Beta distribution with shape parameters 1.5 and 3.0. 
(TPC-APP 2006). In order to keep the number of 
simultaneous clients constant, new clients arrive 
after old clients have finished their session.  

According to TPC-APP the client’s business 
logic is ignored (takes zero time). Every client starts 
a new service call immediately after obtaining the 
results from the previous ones. The load on the 
service provider is a result of the number of 
simultaneous clients. HTTP 1.0 is the used transport 
protocol (closing the connection after each 
interaction). The timeout for the connection is set to 
90 seconds.  

The clients are simulated by the workload 
generator and execute a sequence of requests that is 
determined by invoking a random generator at 
runtime (the setting represent the distribution shown 
in table one). The process of determining calls 
sequences has no memory and consequently the 
probability of the next operation being invoked does 
not depend on the previous call.  

Two types of experiments were conducted. The 
first experiment is used determine if posteriori 
knowledge (runtime statistics) can predict with 
sufficient accuracy the behaviour of a job. The 
second type of experiments was used to determine 
the impact of scheduling. 

5 EVALUATION   

5.1 Job-Size Estimation 

In order to evaluate the sizes of the jobs we divided 
all the SOAP requests into classes. SOAP requests 
within the same class create approximately same 
loads on the service. Using the average response 
time of the class it is possible to predict the 
behaviour of a request. 

Trace studies of the TPC-APP benchmark 
workload show that a classification according to the 
name of a service operation allows achieving only a 
(weak) 0.35 correlation between the estimated and 
the actual response times. As can be seen in figure 
six, some operations (“Order Status”, “New 
Products”) have a high variation of execution time, 
while operations, like “Change Payment”, exhibit 
more stable behaviour. However, if the data 
contained in the SOAP messages is also used for 
classification a (strong) 0.72 correlation between the 
estimated and the actual response times is achieved 

Method Distribution 
New Customer 1.00% 

Change Payment 
Method 

5.00 % 

Create Order 50.00 % 
Order Status 5.00 % 

New Products 7.00 % 
Product Detail 30.00 % 
Change Item 2.00 % 

TRANSPARENT SCHEDULING OF WEB SERVICES

115



 

[fig. 7].  The reason for the strong correlation is an 
effect of using a database centric scenario in which 
the costs of a service call relate to the number of 
updates/writes performed on the database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Execution time of service methods (16 clients). 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Execution time of  “Order status” with different 
SOAP request complexity (16 clients). 

 

5.2  Admission Control & Scheduling 

To obtain the data of a SOAP message is necessary 
to perform a partial request parsing. In order to 
minimize scheduling overhead and avoid double 
parsing we located the proxy component into the 
Tomcat framework (proxy resides on the same 
machine as app-server). 

Figures 9 and 10 show the observed throughput 
and response time in relation to used policy {PS, 
FIFO, SJF} and number of simultaneous clients.  

The first observation is that even with admission 
control (FIFO) and SJF, a decline in throughput can 
be observed. The decline is a result of the thrashing 
due to overload of their parsing parts. The overload 
situation the admission control and scheduler 
experience and can be easily solved/eased by hosting 
these components on a more resource rich host. In 

the current setting, the proxy that performs the 
scheduling/admission control is residing on a host 
that is shared with the application server [fig. 8.]. 
 
 
 
 
 
 
 
 
 
 
 

 Figure 8:  Topology of the scheduled environment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Throughput of the service governed by various 
scheduling policies. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Response times of the service governed by 
various scheduling policies. 

 
The second observation is the significant 
performance boost FIFO and SJF achieve in 
overload situations. While PS degrades as expected 
(at ca. 41 clients) SJF and FIFO begin to degrade 
only at around 76 clients. 

296
140

934715

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

C
u

m
u

la
ti

ve
 P

er
ce

n
t

9

8

7

6

5

4

3

2

1
Complexity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Number of clients

M
ea

n 
re

sp
on

se
 t

im
e,

 m
s

SJF

PS

FIFO

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Number of clients

T
h

ro
u

g
h

p
u

t,
it

er
ac

ti
o

n
s/

s
SJF

PS

FIFO

469
407

343
266

203
140

630

ResponseTime

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

C
um

ul
at

iv
e 

P
er

ce
nt

Product
Detail

Order
Status

New
Products

New
Customer

Create
Order

Change
Payment
Method

Change
Item

Method

WEBIST 2007 - International Conference on Web Information Systems and Technologies

116



 

Until the load reached its peak values (41 users) 
the buffer queue created by the admission control is 
mostly empty therefore all scheduling policies 
behave in the same manner.  

 
Table 2: Application server loads with 36 clients. 

 
Policy Original FCFS SJF 

CPU, % 63 40 37 
RAM, 
MB 557 557 558 

Network 
Bytes/sec 271220 261629 73750 

 
 

Table 3: Database server loads with 36 clients. 
 

Scheduling 
policy Original FCFS SJF 

CPU, % 3.44 13.8 14.21 

Memory, 
Mb 1.45 1.4 1.39 

Network, 
Kbytes/sec 55.97 19.39 20.90 

Reading, 
Mb/sec 0.11 0.32 0.34 

Writing,Mb
/sec 0.65 0.13 0.13 

 
After the load exceeded its peak value the excess 
requests were buffered and the throughput was 
preserved. Further load growth created a situation in 
which there were more elements in the queue to be 
scheduled so SJF and FIFO began to behave 
different. At higher loads SJF started outperforming 
FIFO by 20% in average. Table two shows that 
scheduling did not affect the consumption of the 
resources like, memory or network. Meanwhile the 
CPU utilization went down from 63% to 37-40% 
due a lesser amount of parallel jobs. In general, low 
values of CPU utilizations are the result of using 
HTTP 1.0 since establishing a new socket causes a 
significant delay (up to 1 sec) and does not require 
the processor resources. It can also be seen that the 
database server’s CPU load and amount of 
reads/writes had highest values in case of SJF [table 
3]. Thus even these loads were not fully utilizing the 
database. The under-utilization of the database can 
be explained by the low frequency of database 
queries issued by application server.  Consequently, 
the application server is the bottleneck. In the 
current setup scheduling of the service requests 

mostly affected the performance of the bottleneck 
element – the application server.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11: “Create Order” Operation. 
 

As a result of scheduling, the application server was 
able to produce database queries faster. Thus the 
database server utilization (CPU, read/write 
operations) increased by 10% [tabl. 3]. Applying 
scheduling caused an interesting effect of “resource 
load equalisation” in which the usage of overloaded 
resources decreased, while the utilization of lesser 
used resources increased. Nevertheless, this is an 
observed effect that requires research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 12.”Change Item” Operation. 
 
It is important to note, that the skew of the response 
time distribution was small [fig. 13] and that the 
difference between the slowest and the fastest 
request reached only the ratio of one to six. 
Therefore the possibility of optimizations was lower 
and the bigger jobs were penalized only lightly.  

0
200
400

600
800

1000
1200

1400
1600
1800

Create Order

PS

FIFO

SJF

0

50

100

150

200

250

300

350

Change Item

PS

FIFO

SJF

TRANSPARENT SCHEDULING OF WEB SERVICES

117



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 13: The distribution of the service response times 
(without network overhead). 

 
Figures 12 and 13 describe an example of a light and 
a heavy request in a medium load case (11 clients). 
SJF to FCFS heavy jobs experienced the 2% 
increase of the response time, while the response 
time of smaller jobs shrunk up to 45%. In any case, 
each of these policies significantly outperformed 
default PS. 
 
6 RELATED WORK 

Elnikety et. al. (Elnikety 2004), present a method for 
admission control and request scheduling for multi-
tired e-commerce Web-sites with a dynamic content 
in.  The authors use a transparent proxy, as the 
intermediate scheduling component between 
application server and database server. The method 
enabled overload protection and preferring 
scheduling SJF augmented with aging method.  

SJF scheduling has been successfully used for 
http requests by Cherkassova in (Cherkassova 1998). 
This work proposes the use of Alpha-scheduling to 
improving the overall performance. Alpha-
scheduling, is a modified SJF algorithm and 
prevents the starvation of big requests, in way 
similar to aging methods (Elnikety 2004).  The job 
size in (Elnikety 2004) is estimated by classifying all 
http requests according a name of the requested 
servlet.  

In the domain of web services admission control 
research has focussed on supporting QoS 
differentiation (providing different levels of QoS).  
Siddaharta et al. (Siddaharta 2003) introduce the 
concept of using a Smartware platform as managing 
infrastructure for Web Services. The Smartware 

platform consists of three core components namely 
interceptor, scheduler and dispatcher. The 
interceptor intercepts the incoming requests, parses 
them and classifies them according to user and client 
(device) type. Once classified the requests are 
subjected to a scheduling policy the scheduler 
determines the order of execution. Finally the 
dispatcher routes the request to the service endpoint. 
Smartware implements a static scheduling by 
assigning priorities to service calls according the 
classification of the interceptor. As a main 
scheduling means the Smartware authors chose a 
randomized probabilistic scheduling policy namely 
lottery scheduling (Waldspurger 1994).  

Sharma et al (Sharma 2003) achieve QoS 
differentiation using predefined business policies. 
The authors examined   static scheduling, in which 
the request class is determined by the application 
type, device type and client (user) level. The overall 
priority is calculated on the base of component 
priorities, for example it can be a sum or a product. 
The problem of starvation was eliminated by 
applying probabilistic scheduling. However, static 
scheduling does not appear to be a capable for 
ensuring differentiated throughput in case of 
fluctuating loads (Sharma 2003). The authors 
suggest augmenting the static scheduling by altering 
priorities at runtime using the observed throughput. 
The adjustments to the required throughput are done 
using a correcting factor that is calculated as a 
penalization function of a hyperbolic nature, which 
speeds up slow responses and slows down fast 
responses in compliance with each request class.   

7 CONCLUSION   

This paper presents the idea of transparent 
scheduling of Web Services requests as a means for 
achieving better performance. Using the TPC-APP, 
a two-tier B2B application, as a benchmark we 
evaluated the performance gains of SJF (Shortest 
Job First) compared to FIFO admission control and 
standard PS. By simply adding a proxy between 
consumer and provider, it was possible to achieve a 
transparent scheduling and admission control that 
lead to significant performance improvements in 
overload cases. In addition, the experimental 
evaluation showed that even in the absence of a 
priori knowledge, a SJF scheduler that uses observed 
runtime behaviour can lead to schedules that 
outperform FIFO and PS, making it an attractive 
approach for boosting Web Services performance. 
The results of the experimentation indicate that 
transparent scheduling can be applied to Web 

WEBIST 2007 - International Conference on Web Information Systems and Technologies

118



 

Services as an effective and easy to implement 
approach for boosting performance and avoiding 
service provider trashing. And while SJF does 
penalize larger jobs, this doesn’t seem to exceed 10 
% which seems acceptable given the overall gains.   

8 FUTURE WORK   

While the results of applying scheduling are very 
promising it is important to note that the current 
work only focused on a very simplified SOA 
architecture. Future work in transparent scheduling 
of Web Services will overcome this by addressing 
the following issues. 
 

8.1 Document-Style 

In the current work we focused on RPC-style Web 
Services, that exhibit the basic request/response 
MEP (Message Exchange Pattern). Document-style 
interaction supports more complex MEPs and raises 
new question in regards to scheduling. 
 

8.2 Composite Services 

Composite Services orchestrate the functionality 
provided by the other services thus creating complex 
environment with significantly more complex 
behaviour. We hope that by applying scheduling to 
this environment it should be possible to increase 
services dependability, performance, etc. 
 

8.3 Service-Level Agreements (SLA) 

SLAs are an increasingly important aspect of SOA. 
Scheduling can be used as a means for achieving this 
by minimizing penalties and supporting QoS 
contracts in critical situations.  

ACKNOWLEDGEMENTS 

This research has been supported by NSERC grants 
and the equipment provider by the Canadian 
Foundation for Innovation (CFI).  

REFERENCES 

Apache, 2006.  Available at: http://httpd.apache.org/ 
Axis, 2006, Available at: http://ws.apache.org/axis/ 
Box, D., 2004, “Four Tenets of Service Orientation”, 

Available at: 
http://msdn.microsoft.com/msdnmag/issues/04/01/Indi
go/default.aspx 

Christensen, E., Curbera, F., Meredith, G., Weerwarana 
S.,, 2006, Available at: http://www.w3.org/TR/wsdl. 

Cherkasova, L., “Scheduling strategy to improve response 
time for web applications”,1998, in HPCN Europe 
,Proceedings of the International Conference and 
Exhibition on High-Performance Computing and 
Networking. London, UK: Springer-Verlag, pp. 305–
314. 

Conway, R., W., et al. 1967.. Theory of scheduling, 
Addison-Wesley, Massachusetts, USA, 1967. 

Elnikety, S., Nahum, E., Tracey, J., Zwaenpoel, W., , 
2004.  “A Method for Transparent Admission Control 
and Request Scheduling in E-Commerce Web Sites”. 
In Proceedings of the 13th international Conference on 
World Wide Web (New York, NY, USA, May 17 - 20, 
2004). WWW '04. ACM Press, New York, NY, pp. 
276-286. 

Extensible Markup Language (XML), Available at: 
http://www.w3.org/XML/ 

Eclipse, 2006.  http://www.eclipse.org/ 
Graham, S., Davis, D., Simoenov, S., Daniels, G., 

Brittenham, P., Nakmura, Y., Fremantle, P., Konig, 
D., and Zentner. 2004.C. Building Web Services with 
Java. Sams Publishing, Indianapolis, Indiana, USA. 

Heiss, H.-U. , Wagner, R., 1991.  “Adaptive load control 
in transaction processing systems”, In 17th 
International Conference on Very Large Databases, 
Barcelona, Spain. 

Mitra, N., 2006. SOAP version 1.2 part 0. Available at: 
http://www.w3c.org/TR/soap12-part0/. 

Sharma, A.,, Adarkar, H., Sengupta, S., 2003 “Managing 
QoS through prioritization in web services,” WISEW, 
vol. 00, pp. 140–148. 

Siddhartha, P., Ganesan, R.,  Sengupta, S., 2003, 
“Smartware - a management infrastructure for web 
services.” in WSMAI,  pp.. 42–49. 

Smith,W.,E., 1956. Various optimizers for single-state 
production. Naval Research Logistics Quarterly, 1956. 

TPC, 2006. Transaction Processing Performance Council, 
Available at: http://www.tpc.org/. 

TPC-APP, 2006. Available at: 
http://www.tpc.org/tpc_app/ 

Visual Studio, 2005. Available at: 
http://msdn.microsoft.com/vstudio/ 

Waldspurger, A., Weihl, W., E., 1994, “Lottery 
scheduling: Flexible proportional-share resource 
management,” in Operating Systems Design and 
Implementation,  pp. 1–11.  

W3C, 2006, Available at: http://www.w3.org/. 
XML, 2006. Available at; http://www.w3.org/XML/. 
XML-RPC, 2006,       Available at: 

http//www.xmlrpc.com/spec.  

TRANSPARENT SCHEDULING OF WEB SERVICES

119


