
DISTRIBUTED BLOOM FILTER FOR LOCATING XML TEXTUAL
RESOURCES IN A P2P NETWORK

Clément Jamard, Laurent Yeh and Georges Gardarin
PRiSM Laboratory, University of Versailles, 45 av. des Etat-Unis, 78000,Versailles, France

Keywords: XML, XQuery Text, P2P Network, Database System, Bloom Filter, Indexation.

Abstract: Nowadays P2P information systems are considered as large scale distributed databases where all peers can
provide and query data in the network. The main challenge remains locating relevant resources. In the case
of XML documents, keywords and structures must be indexed. However, the major problem for maintaining
indexes of huge textual XML documents is the cost for connecting/disconnecting: indexing a quantity of keys
requires the transit of many messages in the network. To reduce this cost we adapt the Bloom Filter principle
to summarize peer content. Our Bloom Filter summarizes both structure and value of XML document and is
used to locate resources in a P2P network. Our originality is to propose techniques to distribute the Bloom
Filter by splitting it into segments using a DHT network. The system is scalable and reduce drastically the
number of network messages for indexing data, maintaining the index and locating resources.

1 INTRODUCTION

Peer-to-Peer (P2P) network is a technology used to
share and query information in a distributed manner.
P2P networks offer dynamicity of data sources, ro-
bustness, scalability, reliability and no central admin-
istration. With the emergence of XML as a stan-
dard for representing and exchanging data, P2P net-
works have been adapted to share structured informa-
tion. Coupling P2P networks with XML databases
could emerge new query possibilities at world scale.
P2P systems are used to locate relevant sources by in-
dexing data that peers intend to share on other peers.
Queries are then resolved in a distributed manner.

In P2P network few attention has been paid for
peer dynamicity (connecting, disconnecting or updat-
ing peer) and for indexing XML with massive text
data. In fact, peer dynamicity and XML data index-
ing imply heavy traffic by sending every key to index,
that is a bottleneck for the system. Without dynam-
icity, or with an heavy cost for each action like peer
connection, the P2P network appears more static than
dynamic that is in opposition with the P2P paradigm.

Two kinds of P2P systems are focused on locating
XML sources. First, P2P systems like SomeWhere

(Rousset et al., 2006) or Piazza (Halevy et al., 2003)
are focused on locating efficiently data sources us-
ing mappings between peers. An advantage of this
approach is that it does not require to index data
in the network but connecting a peer in those net-
works requires constructing complex mappings, at an
heavy cost. Second, many P2P networks are built
over robust and scalable DHT (Distributed Hash Ta-
ble) methods ((Rowstron and Druschel, 2001), (Sto-
ica et al., 2001), (Ratnasamy et al., 2001)). In KaDoP
(Abiteboul et al., 2005), XML documents are decom-
posed into elements (node, text value) that are indexed
in the DHT. For each item, a message is sent in the
network for indexing the value. Many messages are
sent in the network as XML documents are composed
of several elements. Pathfinder (Gardarin et al., 2006)
is an alternative to index structured information; en-
tries of the index are organized as a compressed se-
quence of elements and values. Although this ap-
proach compresses the required index size and speed
up twig queries, the number of entries to be shipped
in the network remains huge.

DBGlobe (Koloniari et al., 2003) proposes an al-
ternative to these P2P systems by using Bloom Filter
(Bloom, 1970) for locating resources in a P2P net-

261
Jamard C., Yeh L. and Gardarin G. (2007).
DISTRIBUTED BLOOM FILTER FOR LOCATING XML TEXTUAL RESOURCES IN A P2P NETWORK.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 261-266
DOI: 10.5220/0001286002610266
Copyright c© SciTePress



work. A Bloom Filter is a compact data structure used
for testing the membership of an element in a set. A
Bloom Filter is a bit array of sizem initially set to 0
associated tok hash functions. Each function maps a
key value to a bit array entry. For checking if the filter
accepts a given wordw, all relevant array entries de-
termined by thek functions must be set to 1. Notice
that a value succeeding the test might not be in the
document. This phenomenon is called afalse positive
answer.

In DBGlobe, a Bloom Filter is only used to sum-
marize XML document structure. Peers are connected
by group on a P2P bus network, where each group
provides a filter summarizing participant structures.
This filter is used to orient query to relevant group of
peers. The cost for finding relevant peers is impor-
tant as the query must traverse several group of peers
before accessing the relevant data; the network traffic
can become a bottleneck and it only indexes structure.

We propose Distributed Bloom Filters to filter
XML content and structure. Our data model allows to
distribute a Bloom Filter on a DHT network by split-
ting it into segments. It behaves like a non dense in-
dex; keys are indexed with a probability to find in the
network. The work is focused on minimizing com-
munications and data exchanged for peer connection,
disconnection or querying data. We also propose a
method to control the probability of false positive for
efficiency of the solution.

The paper is organized as follows. In Section 2
we define the model of Distributed Bloom Filter. We
describe in Section 3 peers behavior for locating re-
sources using Distributed Bloom Filters in a DHT-
based network. In Section 4 we present experimental
evaluation that show the benefit and efficiency of our
method. In Section 5, we concludes our work.

2 DISTRIBUTED BLOOM FILTER

A Distributed Bloom Filter (called DBF) is a struc-
ture adapted from Bloom Filter to summarize XML
data on content and structure. In this section we de-
scribe how to summarize XML data using Bloom Fil-
ters. Then we present a method to distribute and query
efficiently it on a DHT network. Finally we propose
a technique to control the probability of false positive
to guarantee good performance.

2.1 Content and Structure Filter

We use Bloom Filter to check the presence of a struc-
tural expression correlated with a value in peers data.
Keys inserted in the filter are composed of a path and

0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1

0 1 1 0 1 0 1
H1(key)
H2(key)

seg. 0 seg. 1 seg. N

Figure 1: Distributed Bloom Filter and Shadow Segment.

a value. Every XML document can be mapped to a set
of value-localization-pathsVLP = {vlpi} wherevlpi

is of type: /a1/.../ai[V ]. Only the nodeai contains
the valueV . When an element node contains several
words, it could be split into a set of value-localization-
paths. For example,<Book><Title> XML
Introduction </Title></Book> produces
two value-localization-paths/Book/Title[XML]
and/Book/Title[Introduction].

The k Hi functions are used to determine which
array entries of the filter to set to 1. Each function cap-
tures both structure and value information;Hi func-
tion is composed ofHpi, a path coding function, and
Hvi, a value coding function:

Hi(key) = Hpi(key.path) ∗Hvi(key.value)

TheHvi function is a typical hash function with value
range from 0 to(m − 1), wherem is the size of the
array. TheHpi function uses a path encoding tech-
nique described in (Jagadish et al., 2005). The main
idea is to map the path domain to a range of value
between 0 and 1. Each unique path is mapped to
a unique value. More details can be found in (Ja-
gadish et al., 2005). TheHi function sets a bit to
1 in the Bloom Filter array, with range from 0 to
(m− 1). Thus, two different value-localization-paths
with same value (e.g.,/Book/Title[XML] and
/Article/Title[XML]) will set to 1 different
entries of the Bloom Filter.

2.2 Distributing a Bloom Filter

To distribute the filter, the bit array is split into
segments of equal size. Segments are distributed
over peers in a DHT network using the primitive
put(key, value); the segment number is used
as a routing key. This splitting method implies two
major problems:

• each peer responsible of a segment number will
receive segments from every peers in the network,

• checking each of thek hash functions requires to
contact many peers as the set ofHi function could
cover several segments.

To distribute more evenly segments, we introduce
the notion of document theme. Each document that

WEBIST 2007 - International Conference on Web Information Systems and Technologies

262



a peer intends to publish or query is associated to
a theme. A user can find the relevant themes from
a catalog of all existing predefined themes shared
in the network. The theme is combined with the
segment number to determine the key used for the
put(key,value). Therefore, theith segments of
the DBF are not indexed on a same peer as they be-
long to different themes.

To avoid checking several segments, we constraint
H2 to Hk functions to cover a single segment. Con-
sequently, theH1(key) function plays two roles: fil-
tering and routing purpose. It filters values as a tradi-
tional hash function, and it is also used to determine
the segment number where other hash functions are
constrained. The segment number (m ÷ H1(key),
m being the DBF size), combined with the theme, is
used as the key of the primitiveput(key, value)
for determining the peer storing the segment to check.

2.3 Controlling Segment Selectivity

The selectivity of a Bloom Filter depends on the size
m of the filter, the numberk of functions, and the
numbern of keys inserted. The probability of having
false positive answers (i.e., the probability of having
thek positions set to 1 for an element not in the set) is
given by (1−e−kn/m)k. As the numberk of function
is fixed, the probability depends on the ration/m.

The false positive probability may imply a lot of
useless network communications. In fact, each time
a value is successfully filtered, the peer that created
this filter is contacted. Therefore, controlling the false
positive probability by keeping it below a threshold is
important as it will reduce network traffic.

When a source peer adds, removes, or modifies
documents, its DBF must reflect the changes. Some
techniques (Fan et al., 2000) are available to support
removal in Bloom Filter. Our goal is to maintain un-
der a threshold the selectivity of a Bloom Filter af-
ter insertions.For controlling the selectivity, we intro-
duce shadow segments. When the ration/m makes
the probability exceed the threshold, a shadow seg-
ment with an augmented size is used. Each segment
keeps the number of keys inserted so far. The shadow
segment size is computed so that the ration/mkeeps
the probability under the threshold. When a shadow
segment is created, keys have to be rehashed in the
shadow segment using the new hash functions. The
H1 function remains the same, determining the seg-
ment number, and othersHi functions range is mod-
ified to cover the shadow segment interval. With this
approach we can adjust the size of a bloom filter dy-
namically according to the required need.

3 LOCATING DATA SOURCES

3.1 Network Architecture

As in traditional P2P networks, a peer can be aclient,
a server, or a router. We add a fourth role: a peer is
also acontroller for managing segments of DBF. The
client role is used for querying the network. A server
peer shares data on the network. For a server peer,
the DBF created from its data is split into segments;
segments are distributed through the network using
the DHT put(key, value) function for send-
ing the segment to a controller peer. The message
sent through the network contains:(i) The segment
of the distributed Bloom Filter.(ii) A set of Bloom
Filter hashing functions (H2(key)...Hn(key)). (iii)
The IP address of the server peer. Each peer is a
router, routing messages according to the DHT princi-
ples. A controller peer manages distributed segments
of others peers. The role of a controller peer is to
check managed segments according to the Bloom Fil-
ter principles.

3.2 Locating Relevant Sources

Queries processed in our system are simple content
and structure queries with absolute path expressions
(i.e. only child axis). A query can be expressed as a
tree of path expression where keywords are attached
to leaf nodes, and a theme. A query tree is decom-
posed into value-localization-paths, as an XML docu-
ment. Each value-localization-path is inserted in a de-
mand message, used to resolve in a distributed man-
ner the query. A demand, illustrated at bottom of fig-
ure 2, is organized as follows:

• a step attribute indicating the current process:
checking the DBF (checkingDBF) or contacting
server peers (checkingSRC),

• afrom attribute for the client peer address,

• vlp elements representing value-localization-
paths of the query. It stores thetheme of the
query, thepath and thevalue to search. The
state attribute indicate wether it has been re-
solved on a controller peer (found) or in instance
to be (looking),

• aresults element storing source peers filtered
by DBFs.

Client Peer At creation time, a new demand mes-
sage is created with step set tocheckingDBF. The al-
gorithm 1 describes the behaviours at the client peer.
First, from the query tree, a set of value-localization-
paths is extracted. The value-localization-paths (vlps)

DISTRIBUTED BLOOM FILTER FOR LOCATING XML TEXTUAL RESOURCES IN A P2P NETWORK

263



theme:Store book

author

name

”Meier”

title

”XML”

<Dem step="checkingDBF" from="193.51.25.187">
<vlp state="looking" theme="Store">
<path>/Book/Author/Name</path>
<value>Meier</value>

</vlp>
<vlp state="looking" theme="Store">
<path>/Book/Title</path>
<value>XML</value>

</vlp>
<results/>

</Dem>

Figure 2: Query tree and routing demand.

are ordered in the demand according to their value is-
sued from theH1 function (l.4) for further routing
process and initialized tolooking. Then, the query
is routed in the network (l.6). The client peer waits
for results messages from other peers (l.7). If aNo
result answer is received from a controller peer, the
process ends because a part of the user query could
not be resolved. Otherwise, the client peer receives
the number of potential answering server peers (l.10)
and waits for answers (l.11). Documents results are
stored (l.13) and global result is returned once every
server peer sends its answers (l.17).

Controller Peer The demand keeps the list of po-
tential results (i.e. the results answering resolved
vlps). The controller peer updates this list of ad-
dresses containing potential results (l.1). For each
value-localization-pathwith state set tolooking hav-
ing their key value comprised in the key interval of
the controller peer (l.2), the addresses are updated by
checking segments (l.3) and the value-localization-
path state are set tofound. If a controller peer con-
cludes that no server peer can answer, aNo Re-
sult message is sent to the client peer and the rout-
ing process ends (l.5-6). When all segments for
this controller peer have been checked, the demand
is routed to the controller peer for the next un-
resolved value-localization-path(l.13). When every
value-localization-pathhas been resolved (l10-11) the
demand is forwarded to servers peers.

Server Peer A server peer is contacted when its
DBF segments have filtered successfully each value-
localization-path of the query demand. The server re-

Algorithm 1 Client Send request.
Require: XQT: a Query Tree.
Ensure: A set of documents collection
1: V ← A set of value-localization-paths
2: Wait← ⊘
3: for value-localization-pathvi in V do
4: D ← D ∧ Order(H1(si), Demand(si))
5: end for
6: Route(D).
7: if (Receive(W) = No Results)then
8: Return⊘
9: else

10: Wait← NumberOfResults(R)
11: while (notAllReceived(Wait))

∧ Receive(W )) do
12: if (emptyDoc(W)6= ⊘) then
13: R← R∧ Document(W)
14: end if
15: end while
16: end if
17: return R

Algorithm 2 Controller peer.
Require: D; the demand.
Ensure: a set of relevant server peer addresses
1: R← Server Peer addresses computed so far.
2: while P respOfKey H1(nextUncheckedV lp)

do
3: R← R ∧ check(nextUncheckedV lp)
4: if (R = ⊘) then
5: Send ”No results” to client peer.
6: Terminate process.
7: end if
8: end while
9: if (nextUncheckedV lp = ⊘) then

10: Route(D, R)
11: Send R to Client Peer
12: else
13: Route(D,H1(nextUncheckedV lp)).
14: end if

ceives the demand for computing results. False pos-
itive due to the probabilistic structure of DBF are re-
moved at this phase.

Query Routing We illustrate the routing process in
a Chord network of the message at bottom of fig-
ure 2 on the figure 3. At beginning, the client peer
P1 fills the demand with value-localization-paths and
the demand is routed to controller peers. The value-
localization-paths are resolved in the order of their
key value (computed fromH1 and theme). The de-
mand is routed, using the Chord principles, to con-

WEBIST 2007 - International Conference on Web Information Systems and Technologies

264



P1, key=10

P2, key=25

P3, key=35

P4, key=40

P5, key=60

P6, key=68

P7, key=74

P8, key=83 1

2

3

4

6

5

Figure 3: Query Routing.

troller peers P4 (step 1 and 2) and then P6 (step
4) responsible of DBF segment for the two value-
localization-paths; server peers addresses success-
fully filtered are filled in the demand. Next, only
server peer P8 filtered by both DBFs (answering
the two parts of the query) is contacted (step 4).
The client peer P1 waits for incoming results (step
5). Servers peers filtered as potential relevant data
sources send results (step 6).

4 EXPERIMENTS

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
al

se
 p

os
iti

ve
 (

%
)

n/m ratio

False Positive for a 152 Ko Document

Figure 4: False positive rate.

For the representation efficiency of the DBF
model, the first experiment shows the percentage of
false positive answers of our DBF. A XML document
of 152 Kb is randomly generated, that contains 12260
value-localization-paths. We construct a DBF for this
document with 10 hash functions. In Figure 4, each
measure is the percentage of false positive for 500

queries when the DBF size varies (the size is deter-
mined by the ration/m). According to the figure, we
can deduce that an acceptable percentage of false pos-
itive (less than 4%) require a ration/mequal to 0.04.
The compression ratio is 6.79% of the original data.

We compare the connection cost of peers on two
P2P network platforms: a Chord network (calledBa-
sic Chord) indexing XML content as in most KaDop
or PathFinder systems and a Chord with DBF (called
DBF Chord).

Table 1 exhibits in the third column (Messages)
the number of messages and the total size of data tran-
siting in the network for indexing peers data (each
peer shares data).

In theDBF Chord, the number of messages sends
for indexing peer data depends on the network size
and the number of segments created. In theBasic
Chord, the number of messages sent depends on the
number of keys. As described in our data model, the
number of messages remains constant inDBF Chord
with a growing key number. These results show that
our data model requires a bounded number of mes-
sages that allows a fast connecting process.

The fourth column (Messages Size) of Table 1 re-
ports the total size (in byte) of data exchanged in the
network. InBasic Chord, we use messages contain-
ing a 4 byte key, and the server peer address. The
key size is the average size for value and structure
indexing numbering scheme used to address XML el-
ements. The ration/m for DBF Chord is 0.08. We
observe that the total size for theDBF Chord is ex-
tremely small compare to theBasic Chordsize. In
both case, the size is correlated to the number of mes-
sages sent in the network.

Finally the fifth and sixth columns show the index
size (i.e. stored at controller peers) with respect to the
original size. For both, compression ratio is accept-
able (20%) and roughly equivalent.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

N
um

be
r 

of
 h

op
s

Number of vlps

BloomFilter Routing Ordered Demand
Chord Routing Demand

Figure 5: Communication messages for routing a demand.

DISTRIBUTED BLOOM FILTER FOR LOCATING XML TEXTUAL RESOURCES IN A P2P NETWORK

265



Table 1: Network Performance : Chord Key Indexing vs. Chord DBF Indexing.

Network Messages Data
Network Number Number Size (byte) Data Size Index Size (byte)

size (peers) of keys Chord DBF Chord DBF (byte) Chord DBF
8 11860 11456 256 400960 36640 147529 34624 28704
16 24480 22728 512 795480 74136 303168 68696 58264
32 47720 41654 1024 1457890 146632 591350 125986 114888

The Figure 5 focus on the number of hops (i.e.
number of peers contacted during the process) for re-
solving a query. Queries are composed of one or
more value-localization-paths. The graph compares
a Basic Chordusing theget(key)primitive to a DBF
network with ordering message. The network using
DBF is more efficient in term of hops compared to
Basic Chord. Indeed, inBasic Chordevery value-
localization-path is sent in the network and a response
is systematically returned to the sender. In compar-
ison, a single message is routed in the network us-
ing DBF until it reaches the source peers. Then, the
source peers send the results to the client peer. These
curves show that our new routing protocol requires
fewer messages than a traditional approach.

5 CONCLUSION

In this paper, we have proposed a new P2P indexing
model based on Bloom Filters. This model is used
to index XML document content and structure. We
design a Distributed Bloom Filter to summarize peer
content. Compared to other proposals, Distributed
Bloom Filter is a non dense index, offering a good
compression ratio of the original data. We proposed
technique to distribute this Bloom Filter on a DHT
based network and provide algorithms to localize rel-
evant sources. The main benefice of our approach is
to reduce the network communication for connecting,
disconnecting and updating peers; few messages are
required despite the number of value to index. We
also demonstrated that our query routing method re-
duce the network traffic despite false positive.

Future works are focused on integrating DBF into
the XLive mediation architecture (Dang-Ngoc et al.,
2005). Peers are mediator connected to the network,
publishing data of mediated sources. Data are indexed
in the network using Distributed Bloom Filters.

REFERENCES

Abiteboul, S., Manolescu, I., and Preda, N. (2005). Sharing
Content in Structured P2P Networks. InBDA, pages
51–58.

Bloom, B. H. (1970). Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. Communications of the
ACM, 13(7):422–426.

Dang-Ngoc, T.-T., Jamard, C., and Travers, N. (2005).
XLive : An XML Light Integration Virtual Engine.
In BDA, pages 399–404.

Fan, L., Cao, P., Almeida, J. M., and Broder, A. Z. (2000).
Summary Cache: a Scalable Wide-area Web Cache
Sharing Protocol.ACM Trans. Netw., 8(3):281–293.

Gardarin, G., Dragan, F., and Yeh, L. (2006). P2P Semantic
Mediation of Web Sources. InICEIS (1), pages 7–15.

Halevy, A. Y., Ives, Z. G., Mork, P., and Tatarinov, I. (2003).
Piazza: data management infrastructure for semantic
web applications. InWWW, pages 556–567.

Jagadish, H. V., Ooi, B. C., and Vu, Q. H. (2005). BATON:
A Balanced Tree Structure for Peer-to-Peer Networks.
In VLDB, pages 661–672.

Koloniari, G., Petrakis, Y., and Pitoura, E. (2003). Content-
Based Overlay Networks for XML Peers Based on
Multi-level Bloom Filters. InDBISP2P, pages 232–
247.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. M., and
Shenker, S. (2001). A Scalable Content-addressable
Network. InSIGCOMM, pages 161–172.

Rousset, M.-C., Adjiman, P., Chatalic, P., Goasdoué, F., and
Simon, L. (2006). Somewhere in the semantic web. In
SOFSEM, pages 84–99.

Rowstron, A. and Druschel, P. (2001). Pastry: Scalable,
Decentralized Object Location and Routing for Large-
Scale Peer-to-Peer Systems.Lecture Notes in Com-
puter Science, 2218:329–350.

Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakr-
ishnan, H. (2001). Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. InProceed-
ings of the 2001 ACM SIGCOMM Conference, pages
149–160.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

266


