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Abstract: SQL queries involving join and group-by operations are fairly common in many decision support applications
where the size of the input relations is usually very large, so the parallelization of these queries is highly
recommended in order to obtain a desirable response time. The most significant drawbacks of the algorithms
presented in the literature for treating such queries are that they are very sensitive to data skew and involve
expansive communication and Input/Output costs in the evaluation of the join operation. In this paper, we
present an algorithm that overcomes these drawbacks because it evaluates the ”GroupBy-Join” query without
the need of the direct evaluation of the costly join operation, thus reducing its Input/Output and communication
costs. Furthermore, the performance of this algorithm is analyzed using the scalable and portable BSP (Bulk
Synchronous Parallel) cost model which predicts a linear speedup even for highly skewed data.

1 INTRODUCTION

Aggregate functions used to summarize large volume
of data based on a designated grouping are widely em-
ployed in applications such as: the decision support
application, OnLine Analytical Processing (OLAP)
and Data Warehouse (Taniar et al., 2000), because
in such applications, aggregated and summarized data
are more important than detailed records (Datta et al.,
1998). Aggregate operations may be applied on the
output of the join of multiple tables having potentially
billions of records. These tables may rapidly grow ev-
ery day especially in OLAP systems. Moreover, the
output of these queries must be obtained in a reason-
able processing time. For these reasons, parallel pro-
cessing of such queries results in huge performance
gain especially in PDBMS. However, the use of ef-
ficient parallel algorithm in PDBMS is fundamental
in order to obtain an acceptable performance (Bamha
and Hains, 2000; Seetha and Yu, 1990).
Several parallel algorithms for evaluating ”GroupBy-
Join” queries were presented in the literature (Shatdal
and Naughton, 1995; Taniar et al., 2000), but these
algorithms are inefficient due to their high communi-

cation cost because all the tuples of the relations are
redistributed between processors. Some of these tu-
ples may not even contribute in the result of the join
operation.
In addition, these algorithms fully materialize the in-
termediate results of the join operations and the In-
put/Output cost is very high where it is reasonable
to assume that the output relation cannot fit in the
main memory of every processor, so it must be reread
from disk in order to evaluate the aggregate func-
tion. Finally, these algorithms cannot solve the prob-
lem of data skew because data redistribution is gener-
ally based on hashing data into buckets and hashing
is known to be inefficient in the presence of high fre-
quencies (Bamha, 2005; Seetha and Yu, 1990).

In this paper, we present a new parallel algo-
rithm used to evaluate the ”GroupBy-Join” queries on
Shared Nothing machines (a distributed architecture
where each processor has its own memory and own
disks), when the join attributes are different from the
group-by attributes. Our main contribution is that, in
this algorithm, we do not need to materialize the join
operation as in the traditional algorithms where the
join operation is evaluated first and then the group-by

246
Al Hajj Hassan M. and Bamha M. (2007).
AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN DISTRIBUTED ARCHITECTURES.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 246-252
DOI: 10.5220/0001281302460252
Copyright c© SciTePress



and aggregate functions (Yan and Larson, 1994). It is
also insensitive to data skew and its communication
and Input/Output costs are reduced to a minimum.

In this algorithm, we partially evaluate the aggre-
gate function before redistributing the tuples. This
helps in reducing the cost of data redistribution. We
use the histograms of both relations in order to find
the tuples that participate in the result of the join oper-
ation. It is proved in (Bamha and Hains, 2005; Bamha
and Hains, 2000), using the BSP model, that his-
togram management has a negligible cost when com-
pared to the gain it provides in reducing the commu-
nication cost.
In traditional algorithms, all the tuples of the output of
the join are redistributed using a hash function. In the
contrary, in our algorithm we only redistribute the re-
sult of the semi-join of the histograms which are very
small compared to the size of input relations. This
helps in reducing the amount of data transferred over
the network and therefore the communication cost.
The performance of this algorithm is analyzed using
the BSP cost model which predicts for our algorithm
a linear speedup even for highly skewed data.

2 COMPUTATION OF
”GROUPBY-JOIN” QUERIES

In DBMS, we can distinguish two types of ”GroupBy-
Join” queries. In the first type the join attributes and
the group-by attributes are the same. In this case,
it is preferable to carry out the group-by and aggre-
gate functions first and then the join operation (Taniar
et al., 2000), because this helps in reducing the size
of the relations to be joined and consequently de-
creasing the communication cost and the query exe-
cution time. In the contrary, this can not be applied
on the second type of queries, because the join at-
tributes are different from the group-by attributes

(

see
(Al Hajj Hassan and Bamha, 2007) for a long and de-
tailed version of this paper

)

. In this paper, we will fo-
cus on this type of ”GroupBy-Join” queries where we
present an algorithm which partially evaluates the ag-
gregate functions before redistributing the tuples us-
ing histograms, thus reducing the communication cost
as much as possible.

3 GROUPBY-JOIN QUERIES: A
NEW APPROACH

In this section, we present a detailed description
of a new parallel algorithm used to evaluate the

”GroupBy-Join” queries when the group-by attributes
are different from the join attributes. We assume
that the relationR (resp. S) is evenly partitioned
among processors by horizontal fragmentation such
that |Ri| ≃

|R|
p (i = 1, ..., p) wherep is the number

of processors.
For simplicity of description and without loss of gen-
erality, we consider that the query has only one join
attributex and that the group-by attribute set consists
of one attributey of R and another attributez of S.
We also assume that the aggregate function is applied
on the values of the attributeu of S.

In the rest of this paper we use the following nota-
tion for each relationT ∈ {R,S}:

• Ti denotes the fragment of relationT placed on
processori, a sub-relation ofT ,

• Histw(T ) denotes the histogram1 of relation T
with respect to the attributew, i.e. a list of pairs
(v, nv) wherenv 6= 0 is the number of tuples of
relationT having the valuev for the attributew.
The histogram is often much smaller and never
larger than the relation it describes,

• Histw(Ti) denotes the histogram of fragmentTi

while Histw
i (T ) is processori’s fragment of the

histogram ofT ,

• Histw(T )(v) is the frequency (nv) of valuev in
relationT while Histw(Ti)(v) is its frequency in
sub-relationTi,

• AGGRw
f,u(T ) 2 is the result of applying the aggre-

gate functionf on the values of the attributeu of
every group of tuples ofT having identical val-
ues of the group-by attributesw. AGGRw

f,u(T ) is
formed of a list of tuples(v, fv) wherefv is the
result of applying the aggregate function on the
group of tuples having valuev for the attributew
(w may be formed of more than one attribute),

• AGGRw
f,u(Ti) denotes the result of applying the

aggregate function on the attributeu of relation
Ti while AGGRw

f,u,i(T ) is processori’s fragment
of the result of applying the aggregate function on
T ,

• AGGRw
f,u(T )(v) (resp.AGGRw

f,u(Ti)(v)) is the re-
sult fv of the aggregate function of the group of
tuples having valuev for the group-by attributew
in relationT (resp.Ti),

• ‖T‖ denotes the number of tuples of relationT ,
and |T | denotes the size (expressed in bytes or
number of pages) of relationT .

1Histograms are implemented as a balanced tree (B-
tree): a data structure that maintains an ordered set of data
to allow efficient search and insert operations.

2AGGRw
f,u(T ) is implemented as a B-tree.
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The algorithm proceeds in six phases. To study
the cost of each phase we use the scalable and
portable Bulk-Synchronous Parallel(BSP) cost
model which is a programming model introduced
by L. Valiant (Valiant, 1990). In this algorithm, the
notation O(...) hides only small constant factors:
they depend only on the program implementation but
neither on data nor on the BSP machine parameters
(Al Hajj Hassan and Bamha, 2007).

Phase 1: Creating local histograms
In this phase, the local histogramsHistx,y(Ri)(i =

1, ..., p) of blocks Ri are created in parallel by a
scan of the fragmentRi on processori in time
ci/o ∗ maxi=1,...,p |Ri| where ci/o is the cost of
writing/reading a page of data from disk.

In addition, the local fragmentsAGGR
x,z
f,u(Si)(i =

1, ..., p) of blocks Si are also created in parallel
on each processori by applying the aggregate
function f on every group of tuples having identical
values of the couple of attributes(x, z) in time
ci/o ∗ maxi=1,...,p |Si|.

In this phase we also compute the frequency
of each value of the attributex in Histx,y(Ri) and
AGGR

x,z
f,u(Si) needed in phase 2. So while creating

Histx,y(Ri) (resp. AGGR
x,z
f,u(Si)), we also create

on the fly their local histogramsHist
′x(Ri) (resp.

Hist
′x(Si)) with respect tox, i.e. Hist

′x(Ri) (resp.
Hist

′x(Si)) holds the frequency of each value of
the attributex in Histx,y(Ri) (resp. AGGR

x,z
f,u(Si))

where we count tuples having the same values of the
attributes(x, y) only once.
We use the following algorithm to createHist

′x(Ri)

and a similar one is used to createHist
′x(Si).

Par (on each node in parallel) i = 1, ..., p

Hist
′x(Ri) = NULL 3

For every tuple t that will be inserted or used to
modify Histx,y(Ri) do
If Histx,y(Ri)(t.x, t.y) = NULL Then 4

freq1 = Hist
′x(Ri)(t.x)

If freq1 6= NULL Then

Increment the frequency of t.x in Hist
′x(Ri)

Else

Insert a new tuple (t.x, 1) into Hist
′x(Ri)

EndIf
EndIf

EndFor
EndPar

In principle, this phase costs:
Timephase1 = O

�
ci/o ∗ maxi=1,...,p(|Ri| + |Si|)

�
.

Phase 2: Local semi-joins computation
In order to minimize the communica-

tion cost, only tuples of Histx,y(R) and

AGGR
x,z
f,u(S) that will be present in the join re-

sult are redistributed. To this end, we compute
Hist

x,y
(Ri) = Histx,y(Ri) ⋉ AGGR

x,z
f,u(S) and

AGGR
x,z
f,u(Si) = AGGR

x,z
f,u(Si) ⋉ Histx,y(R) using

proposition 2 presented in (Bamha and Hains, 2005),
where we apply the hash function on the tuples of
Hist

′x(Ri) and Hist
′x(Si). In fact the number of

tuples of Hist
′x(Ri) and that ofHistx(Ri) are equal,

what differs is only the value of their frequency
attribute, so |Hist

′x(Ri)| = |Histx(Ri)| (this also
applies to Hist

′x(Si) and Histx(Si) ). Hence the
cost of this phase is (Bamha and Hains, 2005):
Timephase2 =

O
�

maxi=1,...,p ||Histx,y(Ri)|| +

maxi=1,...,p ||AGGR
x,z
f,u(Si)||

+min
�
g∗|Histx(R)|+||Histx(R)||, g∗ |R|

p
+ ||R||

p

�
+min

�
g ∗ |Histx(S)| + ||Histx(S)||, g ∗ |S|

p
+

||S||
p

�
+ l

�
.

whereg is the BSP communication parameter andl
is the cost of a barrier of synchronization.
During semi-join computation, we store for each
value d ∈ Hist

′x(R) ∩ Hist
′x(S) an extra infor-

mation calledindex(d) ∈ {1, 2, 3} which will allow
us to decide if, for a given valued, the frequencies
of tuples ofHistx,y(R) andAGGR

x,z
f,u(S) having the

value d are greater (resp. lesser) than a threshold
frequencyf0. It also permits us to choose dynami-
cally the probe and the build relation for each valued
of the join attribute. This choice reduces the global
redistribution cost to a minimum.
In the rest of this paper, we usef0 = p ∗ log(p) as the
threshold frequency (Bamha and Hains, 2000).
For a given valued ∈ Hist

′x(R) ∩ Hist
′x(S) 5, the

value index(d) = 3, means thatHist
′x(R)(d) < f0

and Hist
′x(S)(d) < f0, while index(d) = 2,

means thatHist
′x(S)(d) ≥ f0 and Hist

′

x(S)(d) >

Hist
′x(R)(d) and index(d) = 1, means that

Hist
′x(R)(d) ≥ f0 andHist

′x(R)(d) ≥ Hist
′x(S)(d).

Note that unlike the algorithms presented in (Shatdal
and Naughton, 1995; Taniar et al., 2000) where both
relations R and S are redistributed, we will only
redistributeHist

x,y
(Ri) and AGGR

x,z
f,u to find the

final result. This reduces the communication costs to
a minimum.
At the end of this phase, we will divide
Hist

x,y
(Ri) and AGGR

x,z
f,u(Si) on each pro-

cessor i into three sub-histograms such

that: Hist
x,y

(Ri) =

3[
j=1

Hist
(j)x,y

(Ri) and

5The intersection ofHist
′x(R) andHist

′x(S) is found
while computing the semi-joins (c.f proposition 2 presented
in (Bamha and Hains, 2005))
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AGGR
x,z
f,u(Si) =

3[
j=1

AGGR
(j)x,z
f,u (Si) where all the

tuples ofHist
(1)x,y

(Ri) (resp. AGGR
(1)x,z
f,u (Si)) are

associated to valuesd such thatindex(d) = 1 (resp.
index(d) = 2), while that of Hist

(2)x,y
(Ri) (resp.

AGGR
(2)x,z
f,u (Si)) are associated to valuesd such

that index(d) = 2 (resp. index(d) = 1), and all
the tuples ofHist

(3)x,y
(Ri) andAGGR

(3)x,z
f,u (Si) are

associated to valuesd such thatindex(d) = 3.

Phase 3: Creating the communication tem-
plates
The tuples of relations Hist

(3)x,y
(Ri) and

AGGR
(3)x,z
f,u (Si) (have very low frequencies for

the join attribute) have no effect neither on Attribute
Value Skew (AVS) nor on Join Product Skew (JPS) so
they are redistributed using a hash function. However
the tuples ofHist

(1)x,y
(Ri) andAGGR

(1)x,z
f,u (Si) are

associated to high frequencies for the join attribute
so they have an important effect on AVS and JPS. So
we will use an appropriate redistribution algorithm in
order to efficiently avoid both AVS and JPS (Bamha
and Hains, 2000).
3.a To this end, we partition the histogram
Hist

′x(R ⋊⋉ S) (which is simply the intersection of
Hist

′x(R) and Hist
′x(S)) into two sub-histograms:

Hist(1,2)′x(R ⋊⋉ S) and Hist(3)
′x(R ⋊⋉ S) where

the valuesd ∈ Hist(1,2)′x(R ⋊⋉ S) are associ-
ated to high frequencies of the join attribute (i.e.
index(d) = 1 or index(d) = 2) while the values
d ∈ Hist(3)

′x(R ⋊⋉ S) are associated to low fre-
quencies (i.e.index(d) = 3). This partition step is
performed in parallel, on each processori, by a local
traversal of the histogramHist

′x
i (R ⋊⋉ S) in time:

Time3.a = O
�
maxi=1,...,p ||Hist

′x
i (R ⋊⋉ S)||

�
.

3.b Communication templates for high frequencies:
We first create a communication template: the list of
messages which constitutes the relations’ redistribu-
tion. This step is performed jointly by all processors,
each one not necessarily computing the list of its own
messages, so as to balance the overall process.
So each processori computes a set of neces-
sary messages relating to the valuesd it owns in
Hist

(1,2)′x
i (R ⋊⋉ S). The communication template of

Hist
(1)x,y

(R) is derived by applying the following
algorithm. We also apply the same algorithm to com-
pute the communication template ofAGGR

(1)x,z
f,u (S),

but we replaceHist
′x(R) by Hist

′x(S).

if
�
Hist

′x(R)(d)mod(p) = 0
�

then

each processor j will hold a block of size

blockj(d) =
Hist

′x(R)(d)

p
of tuples of value d.

else
begin
Pick a random value j0 between 0 and (p − 1)

if
�
processor’s index j is between j0 and

j0 +
�
Hist

′x(R)(d)modp
��

then

processor of index j will hold a block

of size: blockj(d) = ⌊
Hist

′x(R)(d)

p
⌋ + 1

else
processor of index j will hold a block

of size: blockj(d) = ⌊
Hist

′x(R)(d)

p
⌋

end.

In the above algorithm,⌊x⌋ is the largest integral
value not greater thanx andblockj(d) is the number
of tuples of valued that processorj should own after
redistribution of the fragmentsTi of relationT .
The absolute value ofRestj(d) = Histj(T )(d) −
blockj(d) determines the number of tuples of value
d that processorj must send (ifRestj(d) > 0) or
receive (ifRestj(d) < 0).

For d ∈ Hist
(1,2)′x
i (R ⋊⋉ S), processori owns

a description of the layout of tuples of valued
over the network. It may therefore determine the
number of tuples of valued which every processor
must send/receive. This information constitutes the
communication template. Only thosej for which
Restj(d) > 0 (resp. Restj(d) < 0) send (resp.
receive) tuples of value ofd. This step is thus com-
pleted in time:Time3.b = O

�
||Hist(1,2)′x(R ⋊⋉ S)||

�
.

The tuples associated to low frequencies (i.e. tuples

havingd ∈ Hist
(3)′x
i (R ⋊⋉ S)) have no effect neither

on the AVS nor the JPS. These tuples are simply
mapped to processors using a hash function.
Thus the cost of creating the communication tem-
plates is: Timephase3 =

O
�
maxi=1,...,p ||Hist

′x
i (R ⋊⋉ S)|| + ||Hist(1,2)′x(R ⋊⋉

S)||
�
.

Phase 4: Data redistribution
4.a Redistribution of tuples having d ∈

Hist
(1,2)′x
i (R ⋊⋉ S): Every processori holds,

for every one of its locald ∈ Hist
(1,2)′x
i (R ⋊⋉ S), the

non-zero communication volumes it prescribes as a
part of communication template:Restj(d) 6= 0 for
j = 1, ..., p. This information will take the form of
sending orderssent to their target processor in a first
superstep, followed then by the actual redistribution
superstep where processors obey all orders they have
received.

Each processori first splits the processors indices
j into two groups: those for whichRestj(d) > 0 and
those for whichRestj(d) < 0. This is done by a
sequential traversal of theRest..(d) array.
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Let α (resp. β) be the number ofj’s
where Restj(d) is positive (resp. negative) and
Proc(k)k=1,...,α+β the array of processor in-
dices for which Restj(d) 6= 0 in the manner
that: Restproc(j)(d) > 0 for j = 1, ..., α and
Restproc(j)(d) < 0 for j = 1 + α, ..., β.
A sequential traversal ofProc(k)k=1,...,α+β deter-
mines the number of tuples that each processorj will
send. The sending orders concerning attribute value
d are computed using the following procedure whose
maximal complexity isO

�
||Hist(1,2)′x(R ⋊⋉ S)||

�
because for a givend, no more than(p−1) processors
can send data and each processori is in charge of re-
distribution of tuples havingd ∈ Hist

(1,2)′x
i (R ⋊⋉ S).

i := 1; j := α + 1;

while (i ≤ α) do
begin
n tuples = min(Restproc(i)(d),−Restproc(j)(d));

order to send(Proc(i),Proc(j),d,n-tuples);

Restproc(i)(d) := Restproc(i)(d) - n tuples;

Restproc(j)(d) := Restproc(j)(d) + n tuples;

if Restproc(i)(d) = 0 then i := i + 1; endif
if Restproc(j)(d) = 0 then j := j + 1; endif

end.

For each processori and d ∈ Hist
(1,2)′x
i (R ⋊⋉ S),

all the orderto send(j, i, ...) are sent to processorj
whenj 6= i in time O

�
g ∗ |Hist(1,2)′x(R ⋊⋉ S)| + l

�
.

Thus, this step costs:Time4.a =

O
�
g∗|Hist(1,2)′x(R ⋊⋉ S)|+||Hist(1,2)′x(R ⋊⋉ S)||+l

�
.

4.b Tuples ofHist
(3)x,y

(Ri) andAGGR
(3)x,z
f,u (Si) (i.e.

tuples havingd ∈ Hist
(3)′x
i (R ⋊⋉ S)) are associated

to low frequencies, they have no effect neither on the
AVS nor the JPS. These relations are redistributed
using a hash function.
At the end of steps4.a and 4.b, each processori,
has local knowledge of how the tuples of semi-joins
Hist

x,y
(Ri) andAGGR

x,z
f,u(Si) will be redistributed.

Redistribution is then performed in time:
Time4.b = O

�
g ∗

�
|Hist

x,y
(Ri)| + |AGGR

x,z
f,u(Si)|

�
+

l
�
.

Thus the total cost of the redistribution phase is:

Timephase4 = O
�

g ∗ max
i=1,...,p

�
|Hist

x,y
(Ri)| + |AGGR

x,z

f,u(Si)|

+ |Hist
(1,2)′x

(R ⋊⋉ S)|
�

+ ||Hist
(1,2)′x

(R ⋊⋉ S)|| + l
�

We mention that we only redistribute the tuples
of the semi-joins Hist

x,y
(Ri) and AGGR

x,z
f,u(Si)

where|Hist
x,y

(Ri)| and|AGGR
x,z
f,u(Si)| are generally

very small compared to|Ri| and |Si|. In addition
|Hist

′x(R ⋊⋉ S)| is generally very small compared to
|Histx,y(R)| and|AGGR

x,z
f,u(S)|. Thus we reduce the

communication cost to a minimum.

Phase 5: local computation of the aggregate
function

At this step, every processor has partitions of

Hist
x,y

(R) and AGGR
x,z
f,u(S). Using equation 2

in (Bamha, 2005), we can deduce that the tuples
of Hist

(1)x,y
(Ri), Hist

(2)x,y
(Ri), Hist

(3)x,y
(Ri)

can be joined with the tuples ofAGGR
(2)x,z
f,u (Si),

AGGR
(1)x,z
f,u (Si), AGGR

(3)x,z
f,u (Si) respectively. But

the frequencies of tuples ofHist
(1)x,y

(Ri) and
AGGR

(1)x,z
f,u (Si) are by definition greater than the

corresponding (matching) tuples inHist
(2)x,y

(Ri)

andAGGR
(2)x,z
f,u (Si) respectively. So we will choose

Hist
(1)x,y

(Ri) and AGGR
(1)x,z
f,u (Si) as the build

relations andHist
(2)x,y

(Ri) and AGGR
(2)x,z
f,u (Si) as

probe relations. Hence, we need to duplicate the
probe relations to all processors in time:
Timephase5.a = O

�
g ∗

�
|Hist

(2)x,y
(R)| +

|AGGR
(2)x,z
f,u (S)|

�
+ l

�
.

Now, using the following algorithm, we are able
to compute the local aggregate function on every
processor without the necessity to fully materialize
the intermediate results of the join operation.

In this algorithm, we create on each processor
i, the relationAGGR

y,z
f,u((R ⋊⋉ S)i) that holds the

local results of applying the aggregate function on
every group of tuples having the same value of the
couple of attributes (y, z). AGGR

y,z
f,u((R ⋊⋉ S)i) has

the form(y, z, v) wherey andz are the group-by at-
tributes andv is the result of the aggregate function.

(1)Par (on each node in parallel) i = 1, ..., p

(2) AGGRy,z

f,u
((R ⋊⋉ S)i) = NULL; 6

(3) For every tuple t of relation Hist
(1)x,y

(Ri) do

(4) For every entry v1 = AGGR
(2)x,z

f,u (Si)(t.x, z) do
(5) v2 = AGGRy,z

f,u
((R ⋊⋉ S)i)(t.y, z);

(6) If v2 6= NULL Then
(7) Update AGGRy,z

f,u
((R ⋊⋉ S)i)(t.y, z)=F (v1, v2)

where F () is the aggregate function;

(8) Else
(9) Insert a new tuple (t.y, z, v1) into the

histogram AGGRy,z

f,u
((R ⋊⋉ S)i);

(10) EndIf
(11) EndFor
(12) EndFor
(13) Repeat steps (3)...(12) but replace

Hist
(1)x,y

(Ri) in (3) by AGGR
(1)x,z

f,u (Si)

and AGGR
(2)x,z

f,u (Si)(t.x, z) in (4) by

Hist
(2)x,y

(Ri)(t.x, y);

(14) Repeat steps (3)...(12) but replace

Hist
(1)x,y

(Ri) in (3) by Hist
(3)x,y

(Ri)

and AGGR
(2)x,z

f,u (Si)(t.x, z) in (4) by

AGGR
(3)x,z

f,u (Si)(t.x, z);

(15)EndPar

The cost of applying this algorithm is:
Timephase5.b =
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ci/o ∗ O
�

maxi=1,...,p

�
|Hist

(1)x,y
(Ri) ⋊⋉

AGGR
(2)x,z
f,u (S)|+

|Hist
(2)x,y

(R) ⋊⋉ AGGR
(1)x,z
f,u (Si)|+

|Hist
(3)x,y

(Ri) ⋊⋉

AGGR
(3)x,z
f,u (Si)|

��
So the total cost of this phase is simply the sum of
Timephase5.a andTimephase5.b.

Phase 6: global computation of the aggregate
function

In this phase, a global application of the aggregate
function is carried out. For this purpose, every
processor redistributes the local aggregation results,
AGGR

y,z
f,u((R ⋊⋉ S)i), using a common hash func-

tion whose input attributes arey andz. After hashing,
every processor applies the aggregate function on the
received messages in order to compute the global
resultAGGR

y,z
f,u(R ⋊⋉ S). The time of this step is:

Timephase6 = O
�
min

�
g ∗ |AGGR

y,z
f,u(R ⋊⋉ S)|+

||AGGR
y,z
f,u(R ⋊⋉ S)||, g ∗ |R⋊⋉S|

p
+

||R⋊⋉S||
p

�
+ l

�
where we apply proposition 1 in (Bamha and Hains,
2005)) to redistributeAGGR

y,z
f,u((R ⋊⋉ S)i).

The global cost of evaluating the ”GroupBy-
Join” queries in this algorithm is of order:
Timetotal = O

�
ci/o ∗ maxi=1,...,p(|Ri| + |Si|)

+min
�
g ∗ |Histx(R)| + ||Histx(R)||, g ∗ |R|

p
+ ||R||

p

�
+min

�
g ∗ |Histx(S)| + ||Histx(S)||, g ∗ |S|

p
+ ||S||

p

�
+g ∗ maxi=1,...,p

�
|Hist

x,y
(Ri)| + |AGGR

x,z
f,u(Si)|

+|Hist(1,2)′x(R ⋊⋉ S)|
�

+ ||Hist(1,2)′x(R ⋊⋉ S)||

+g ∗
�
|Hist

(2)x,y
(R)| + |AGGR

(2)x,z
f,u (S)|

�
+ci/o ∗ maxi=1,...,p

�
|Hist

(1)x,y
(Ri) ⋊⋉

AGGR
(2)x,z
f,u (S)|

+|Hist
(2)x,y

(R) ⋊⋉ AGGR
(1)x,z
f,u (Si)|

+|Hist
(3)x,y

(Ri) ⋊⋉ AGGR
(3)x,z
f,u (Si)|

�
+min

�
g ∗ |AGGR

y,z
f,u(R ⋊⋉ S)|+ ||AGGR

y,z
f,u(R ⋊⋉ S)||,

g ∗ |R⋊⋉S|
p

+ ||R⋊⋉S||
p

�
+ maxi=1,...,p ||Histx,y(Ri)||

+ maxi=1,...,p ||AGGR
x,z
f,u(Si)|| + l

�
.

Remark 1
In the traditional algorithms, the aggregate function
is applied on the output of the join operation. The
sequential evaluation of the ”groupBy-Join” queries
requires at least the following lower bound:

boundinf1
= Ω

(

ci/o ∗ (|R| + |S| + |R ⋊⋉ S|)
)

.

Parallel processing withp processors requires there-
fore: boundinfp = 1

p
∗ boundinf1 .

Using our approach, the evaluation of the ”GroupBy-

Join” queries when the join attributes are different
from the group-by attributes has an optimal asymp-
totic complexity when:

max |Hist
(2)x,y

(R)|, |AGGR
(2)x,z
f,u (S)|, |Hist(1,2)′x(R ⋊⋉

S)|

≤ ci/o ∗ max(
|R|

p
,
|S|

p
,
|R ⋊⋉ S|

p
),

this is due to the fact that the local join results
have almost the same size and all the terms in
Timetotal are bounded by those ofboundinfp

. This
inequality holds if we choose a threshold frequency
f0 greater thanp (which is the case for our threshold
frequencyf0 = p ∗ log(p)).

4 CONCLUSION

In this paper, we presented a parallel algorithm used
to compute ”GroupBy-Join” queries in a distributed
architecture when the group-by attributes and the join
attributes are not the same. This algorithm can be
used efficiently to reduce the execution time of the
query, because we do not materialize the costly join
operation which is a necessary step in all the other al-
gorithms presented in the literature that treat this type
of queries, thus reducing the Input/Output cost. It also
helps us to balance the load of all the processors even
in the presence of AVS and to avoid the JPS which
may result from computing the intermediate join re-
sults.

In addition, the communication cost is reduced to
the minimum owing to the fact that only histograms
and the results of semi-joins are redistributed across
the network where their size is very small compared
to the size of input relations.
The performance of this algorithm was analyzed us-
ing the BSP cost model which predicts an asymptotic
optimal complexity for our algorithm even for highly
skewed data.

In our future work, we will implement this algo-
rithm and extend it to a GRID environment.
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