
WEB-BASED ANNOTATION AND COLLABORATION
Electronic Document Annotation Using a Standards-compliant Web Browser

Trev Harmon
School of Technology, Brigham Young University, 265 CTB, Provo, Utah, USA

Keywords: Annotation, collaboration, web-based, e-learning.

Abstract: The Internet provides a powerful medium for communication and collaboration through web-based
applications. However, most web-based annotation and collaboration applications require additional
software, such as applets, plug-ins, and extensions, in order to work correctly with the web browsers
typically found on today’s computers. This in combination with the ever-growing number of file formats
poses an obstacle to the wide-scale deployment of annotation and collaboration systems across the
heterogeneous networks common in the academic and corporate worlds. In order to address these issues, a
web-based system was developed that allows for freeform (handwritten) and typed annotation of over
twenty common file formats via a standards-compliant web browser without the need of additional software.
The system also provides a multi-tiered security architecture that allows authors control over who has access
to read and annotate their documents. While initially designed for use in academia, flexibility within the
system allows it to be used for many annotation and collaborative tasks such as distance-learning,
collaborative projects, online discussion and bulletin boards, graphical wikis, and electronic grading. The
open-source nature of the system provides the opportunity for its continued development and extension.

1 INTRODUCTION

While the telegraph and telephone may have cracked
open the door of instantaneous, worldwide
communication, the Internet has flung it wide open.
No longer is it necessary for collaborators to be
situated physically close to one another. With its
ubiquitous nature, the Internet allows for space- and
time-shifting in many collaborative projects and
breaks down the barriers of distance and time zones.
 Due to the laissez-faire nature of the Internet, the
divergent approaches and capabilities of web
browsers plagued early web developers. Cross-
browser, let alone cross-platform, web development
could be quite difficult. However, with the advent of
modern web browsers that adhere more strictly to a
standard Document Object Model (DOM) than
earlier browsers, web application development has
grown drastically forming the movement known
colloquially as Web 2.0.
 Mainstay technologies in the web application
arena include applets, plug-ins and extensions.
These serve the important purpose of extending web
browser functionality, as the original designers of
many of the technologies utilized by web browsers

did not foresee the broad spectrum of uses expected
of their technologies by today’s users. While serving
this useful purpose, such add-on software can
become problematic in some circumstances because
specialized versions must be made for each web
browser on each operating system. While one could
argue the majority of computer systems are made by
a handful of hardware and software companies, one
would be ignoring the many niche user bases in the
Internet world culture.
 There are many users using different web
browsers with varying goals. Just as with other web
development projects, electronic annotation and
collaboration systems face the following problem:

“Even when the interface to the server is public,
the small installed base of a single system does
not encourage external development of clients.”
(Kim, Slater, and Whitehead, 2004)

 This often leads to such systems becoming
obsolete. (Olsen, Taufer, and Fails, 2004). However,
the advances in web browser technology and their
adherence to standards provide a basis for the
development of promising new web applications to
aid in annotation and collaboration. If a web browser

321Harmon T. (2007).
WEB-BASED ANNOTATION AND COLLABORATION - Electronic Document Annotation Using a Standards-compliant Web Browser.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Society, e-Business and e-Government /
e-Learning, pages 321-329
DOI: 10.5220/0001277803210329
Copyright c© SciTePress

is DOM-compliant and supports other standards
such as CSS, XHTML, DHMTL, JavaScript, and
XML, it should be able to use web applications using
only those standards, regardless of the client’s
underlying system specifications. To show this in
practical terms, the On-line Annotation System
(OAS) was developed.

1.1 The OAS System

OAS is a web application providing freeform (i.e.,
handwritten/drawn) and typed annotation function-
ality for a range of file formats while only requiring
a standards-compliant web browser for a client.
 While developed mainly for the world of
academia, OAS is flexible enough to address the
annotation and collaboration needs of other process
domains. For example, it allows students to submit
work to professors using alternate office software,
consultants to easily make presentations using only a
web browser, engineers to remotely make notes on
designs in the office using a kiosk at a conference,
and collaborators to have “graphical” conversations.
 OAS was designed and implemented in order to
demonstrate the technical feasability of such a
system. Additional testing, especially in the realm of
usability and other human factors, is needed in order
to develop a refined application.

1.2 Usage Scenarios

The ability to annotate a large number of document
formats using both freeform and typed annotations
in a standards-compliant web browser offers a wide
range of usage possibilities. These possibilities are
even more exciting when considered in light of the
collaborative functionality provided. This section
will describe several hypothetical scenarios
highlighting this functionality.

1.2.1 Document Collaboration

An engineer working for a design firm in California
has just finished the design of a new cog for an
important client in Europe. He posts the design to
OAS from his workstation. The lead engineer, who is
at a conference in New York securely logs into the
system via one of the conference kiosks. She makes
some handdrawn annotations as suggestions on the
document. The client, using one of their
workstations, reviews the annotated document,
adding their own comments to the design. All the
comments are then reviewed by the engineer when
making the final changes to the design.

1.2.2 Online Grading

A journalism student uses a word processor that her
professor does not own. When she finishes typing
her paper, she uploads it to OAS, which converts it
to a generic image file format. The professor is able
to read and annotate the paper from home on his PC
using his web browser. Later, the student accesses
OAS from her dorm room and is able to review the
professor's comments online.

1.2.3 Discussion Boards

A person is struggling with a certain software
package. He accesses OAS and posts a screenshot,
annotating it with his question. One helpful user
answers the question and draws a circle on the
screenshot to indicate the problem area.

1.2.4 Field Presentations

A sales representative is at a client's site discussing
the proposed design of a new product. The client's
computers, however, do not have the software
needed to display the design. So, the sales
representative logs into OAS using the client's web
browser and is able to continue with the
presentation. During the presentatin both the client
and the sales representative are simultaneously
making notes on the design, which can be reviewed
at a future time by either party.

1.2.5 Annotating for Collaboration

As can be seen, online anotation provides a great
tool for collaboration. Through the use of Internet
standards, OAS provides this functionality, which
can be easily extended to satisfy the needs of many
different types of users. Only with the support of
robust annotation functionality can true online
collaboration flourish.

2 RELATED WORK

Humans have been attempting to relate to their
world through “annotations” since the earliest cave
paintings (Hansen, 2006). It is part of the knowledge
acquisition process – a fact not lost on researchers
who have shown annotations do, in fact, support a
number of objectives in the learning process and can
affect a reader’s response to a document on both the
cognitive and emotional levels (Wolfe, 2000).
Indeed, it is usually the case that “personal

WEBIST 2007 - International Conference on Web Information Systems and Technologies

322

annotations reflect unselfconscious reactions to
reading material” (Marshall and Brush, 2004).
 In today’s technology-driven world, an
increasing number of people consume the majority
of their reading material in a digital format (Olsen,
Taufer, and Fails, 2004). With this shift in human
reading habits, efforts have been made to
accommodate the related human urge to create a
“personal geography” of their digital reading
material through the use of the underlining,
asterisks, and notes often seen adorning used college
textbooks (Marshall and Bush, 2002).

2.1 Annotation Process Model

A large number of annotation system frameworks
and implementations have been developed by both
commercial and academic research to address the
needs of different user bases. However, while each
annotation system implementation uses a unique
approach to the annotation model, the underlying
meta-process is actually the same. This meta-process
has four basic parts:

 Creation of content
 Retrieval of content
 Annotation of content
 Archiving of content

The relationship between these parts is shown in
Figure 1. As the user supplies content to the system,
it flows through the different cyclic stages shown.
 In actual implementations, credential verification
methods vary widely. They may simply be using a
user-supplied alias to tag the annotation or full-
blown security systems. Also, all content must be
stored in some type of data archive (e.g., file system,
database, etc.).

Figure 1: Annotation Process Model used in OAS.

2.2 Historical Approaches

Several annotation system implementations have
described or addressed key issues that affected the
design of OAS. These are discussed below.

 Xlibris, a hardware device roughly the size of a
large book, was originally presented in 1998 as a
device allowing users to not only read electronic
documents, but also to annotate them in order “to
organize their reading for later review and retrieval”
through the use of “different colors of highlighters
and pens to increase users’ flexibility of expression”
(Schilit, Golovchinsky, and Price, 1998). While
providing a theoretical basis for many of the
annotation systems that followed, Xlibirs suffers
from the fact that it is a dedicated hardware device,
thereby limiting widespread acceptance.
 Following on the paper metaphor used in Xlibris,
ALT is an A4-size device that enables “users to
annotate and sketch on paper in collaboration with a
remote peer” (Gabrielli and Law, 2003). Like
Xlibris, it has the drawbacks of a hardware device.
 ScreenCrayons attempted to address the wide
range of file formats that exist. By using screen
captures, it makes the bold claim of being able to
“[collect] annotations on any type of document or
visual information from any application.” However,
it has the problem that when content is “currently
scrolled out of sight” the “non-visible context is
lost.” (Olsen, Taufer, and Fails, 2004)
 The Annotea project, along with the related web
browser Amaya, shows the benefits of text
annotation functionality as a native browser feature.
Both are under the auspice of the W3C and are
based entirely on their published standards (Kahan
and Koivunen, 2001 and Koivunen, 2005). While
this project works well for text, it does not provide
support for freeform annotation.
 The Digital Graffiti project allowed users to use
a variety of portable devices, such as PDAs and cell
phones, to annotate content on Plasma Posters,
“large-screen, interactive, digital community bulletin
boards [located] in public spaces” (Carter et al.,
2004). In this case, the user-centric design
essentially allows users to choose their own tools.
However, it does require the devices to have special
software in order to operate.
 While annotation is not its main purpose, the
Tablet PC supports annotating digital content when
used in conjunction with applications such as
Microsoft Journal and OneNote that provide
freeform ink capabilities (Mock, 2004). Through the
use of a virtual printer driver, any printable content
can be imported into Microsoft Journal for
annotation (Willis and Miertschin, 2004). As with
Digital Graffiti, the requirement for special software
is the major drawback to this approach.

WEB-BASED ANNOTATION AND COLLABORATION - Electronic Document Annotation Using a
Standards-compliant Web Browser

323

2.3 Other Considerations

People have a propensity to mimic the real world
inside the computer’s digital realm. One needs look
no farther than the desktop metaphor used by many
GUI-based operating systems. Unfortunately, digital
documents do not always behave the same as their
physical counterparts. Therefore, a number of issues
related to this must be addressed by any digital
annotation system for electronic documents.

2.3.1 Freeform Annotation

When working with a digital representation of a
paper document, users would like to interact with the
digital version the same way as they do with the
hardcopy. Basically, they want to be able to doodle.

“[Freeform ink annotation] allows the reader to
mark anywhere on the document, does not
constrain the shape of the marks, and does not
impose any structure on them.” (Golovchinsky
and Denoue, 2002)

The user needs the freedom to annotate
anywhere on digital content (Plimmer and Mason,
2006). These annotations, while bearing no special
meaning to the annotation device, are rich in
meaning to the user (Schilit, Golovchinsky, and
Price, 1998). Restricting this freedom only limits the
device’s effectiveness, as it does not allow the user
to take advantage of the full descriptive power and
meaning a few small marks can easily portray.

2.3.2 Anchoring

From the user’s perspective, annotations are attached
to a certain place within the document, known as an
anchor (Golovchinsky and Denoue, 2002). The
anchoring of annotations to digital content is a
difficult problem, especially when the document’s
content is allowed to change (Plimmer and Mason,
2006). This is because, if not handled correctly,
annotations can lose “the links to their proper
positions within the document” (Brush, 2002).
Known as orphaning, this loss of position is a
problem is unique to annotation for digital content.

Each time the content of a digital document
reflows to a new layout, any digital ink
annotations must also reflow to keep up with it.
(Bargeron and Moscovich, 2003)

Annotations must be controllable and anchored
appropriately. Without this, annotations easily loose
their contextual relevance. When the content can be
changed to a static form, such as a graphic, this
problem is avoided.

2.3.3 Layering of Annotations

Often annotations are stacked on top of one another
in the order they were created, thereby forming a
relationship between the annotations – a simple
timeline. This technique was described as glosses in
the Fluid Document system (Zellweger et al., 2001).
While this is a common approach, careful design of
the layering procedure is necessary to avoid “Z-
fighting, a classical 3D graphics problem” (Hong,
Chi, and Card, 2005). Otherwise, it is possible for
annotations to lose their position in the stack,
effectively destroying these temporal relationships.

3 OAS SYSTEM DESIGN

OAS is a multi-faceted system that needed to be
generic while still providing a simple process for
adding future updates and extensions. Consequently,
the bulk of the system was designed as an API using
the Model-View-Controller paradigm.

3.1 Design Goals

With many example systems to look to for ideas, the
design of OAS attempted to pull the best practices
and design principles together into a single system.
The following were the stated design goals for OAS:

 No specialized or proprietary software should
be required to access or use any functionality.

 The user should be able to submit documents to
the system in a wide variety of file formats.

 The user should be able to annotate the
documents using freeform drawing or text
entry via a keyboard.

 The user should be able to take advantage of
time-shifting when interacting with OAS.

 The system should be available at any given
time of day or night via the Internet.

 The system should maintain copies of both the
original and annotated document.

 The system should support contextual
annotations, regardless of the document's
original file format. However, the layout of
the original document should not be altered by
the addition of annotations.

 Constraints should be designed into the system
to control access.

 The design and implementation of new system
extensions to support additional process
domains should be simple.

 In order to encourage continued and future the
development, it is desirable that the system

WEBIST 2007 - International Conference on Web Information Systems and Technologies

324

and API be built with open-source tools and
technologies as much as possible.

3.2 Development

OAS consists of three physical parts: the Linux
server, Win32 server, and client(s).
 The Linux server consisted of an Intel Pentium 4
CPU (3.20GHz) with 1GB of RAM running the
Fedora Core 5 distribution, Apache 2.2.2, and
MySQL v5 Community Edition. The majority of the
server-side programming was done with Perl 5. The
Image::Magick library was used for rendering
freeform annotations.
 The Win32 server, used for rendering Microsoft
Office formats, used an Intel Pentium 4 Mobile CPU
(1.60GHz) with 1GB of RAM running Windows XP
Home Service Pack 2. ActiveState Perl provided the
network communications framework and access to
the Microsoft Office application objects via the
Win32::COM module.
 Clients consisted of several web browser and
operating system pairs. In all cases, the web
browsers are commonly considered to be standards-
compliant. Client-side programming used DHTML
(i.e., JavaScript, CSS, and HTML/XHTML).

3.3 Testing Procedures

A series of tests were needed to ascertain web
browser compliance and system performance.

3.3.1 Compliance Testing

OAS was tested to insure support for the most
popular web browsers on the most popular operating
systems. In order to ascertain whether or not OAS
supported a certain web browser, the web browser
had to be capable of completing the following tasks:

 Log into OAS
 Open and view documents
 Create new documents
 Create free-form annotations
 Create text annotations
 View annotations
 Edit text annotations
 Delete annotations
 Delete documents

 Each of these tasks was considered to be atomic,
with only two considered states: successful or
unsuccessful. As each of these tasks deals either
with capturing and submitting data or rendering the
resulting HTML, the success or failure of the test
was easy to ascertain visually.

3.3.2 Performance Testing

The scalability performance of OAS was tested. A
test script was developed using Perl's LWP modules,
which created virtual web users. Each virtual web
user completed the following three steps, which
mimic the actual chain of actions that occur with a
real user using a web browser:

1. Download a random page in the document.
2. Add a random sample annotation to the page.
3. Re-download the page.

This script was run as multiple instances on

multiple computers to test OAS’s ability to handle
concurrent connections. This was done in concert
with the continual testing of OAS in a single-user
development environment.

4 RESULTS

In general, OAS was successful in attaining its
design goals and objectives. However, there were a
few areas that did not go as well as planned.

4.1 Document Acceptance

Table 1 shows the list of document file formats OAS
recognizes (via file extension) and is able to convert.
Source code is listed separately because OAS applies
context-sensitive highlighting and alternate layouts
to these formats. As can be seen, OAS was
successful in handling many of the common file
formats used in academia, as well as a few less
common formats.
 The process used to handle the different file
formats varies depending on the nature of the file.
Specifics for some of the file format families will be
discussed individually. All file formats are rendered
to one or more image files for display (one image
per page). Consequently, documents become static
once submitted to OAS, which addresses the reflow
problem inherent in many annotation systems. The
document in its original file format is also archived
and available to the users.

4.1.1 PS/PDF Strategy

With the exception of images, all file formats are
first rendered to either a PostScript (PS) or Portable
Document Format (PDF) file. This intermediate file
is then processed by GhostScript, which handles
pagination. This strategy works well because many
applications can either create a PDF directly or print
to a file via a PostScript printer driver.

WEB-BASED ANNOTATION AND COLLABORATION - Electronic Document Annotation Using a
Standards-compliant Web Browser

325

Table 1: File formats accepted by OAS.

File
Extension

File Format
Name

C/c++/h C/C++ Source Code

css CSS Source Code

csv Comma-delimited Spreadsheet

doc Microsoft Word Document

gif GIF Image

htm/html HTML Source Code

jpg/jpeg JPEG Image

js JavaScript Source Code

odg OpenOffice.org Draw Drawing

odp OpenOffice.org Impress Presentation

ods OpenOffice.org Calc Spreadsheet

odt OpenOffice.org Writer Document

pdf Portable Document Format

pl/pm Perl Source Code

png PNG Image

ppt Microsoft PowerPoint Presentation

ps Postscript File

rtf Rich-Text Format Document

sh Shell Programming Source Code

txt Plain Text

wpd Word Perfect Document

wrl VRML Source Code

xls Microsoft Excel Spreadsheet

4.1.2 OpenOffice.org

OpenOffice.org documents proved to be a special
challenge, as a bug in the version used did not allow
for headless OpenOffice.org servers to directly
create PDF files. Consequently, vncserver was used
to create a virtual X server where a full version of
the OpenOffice.org server could be instantiated. This
poses some security issues, as the virtual X server
created with vncserver is owned by the OAS user id
but needs to be accessible by the Apache user.
However, locking inbound connections to the virtual
X server to localhost minimizes the risk.

With the virtual X server in place, the converter
software can load OpenOffice.org into a full GUI
environment. From the shell command line, an
OpenOffice.org BASIC macro is called, which

handles the conversion of the document to PDF.
This is then converted to the final format using the
PS/PDF strategy previously described.

As an additional note, OpenOffice.org can
convert all of the Microsoft Office formats.
However, it was found these conversions were
generally not as good as those produced using native
Microsoft Office programs due to missing fonts,
layout differences, etc. The only exception to this is
PowerPoint presentations, which are rendered using
OpenOffice.org. Therefore, if need be, OAS can run
without the Win32 server.

4.1.3 Microsoft Office

With the exception of PowerPoint presentations, the
Win32 server handles all Microsoft Office file
formats by default. The server software receives the
original file from the Linux server. It then creates an
application object for the appropriate Office software
product via ActiveState Perl’s Win32::COM module.
Once the object is created, it is used to open the file
in the appropriate application and print it to a file
using a PostScript printer driver. The resulting
PostScript file is returned to the Linux server where
it is rendered to an image format using the PS/PDF
strategy described previously.

4.2 Annotation

Annotation creation is a multistage process
dependent on the type of annotation being created.
In either case, the user begins the process by tracing
the area where the annotation is to appear using the
cursor controlled by the mouse, stylus, etc. During
tracing, the web browser captures the cursor
coordinates using JavaScript. OAS uses this captured
information to create the actual annotation.
 Figure 2 shows examples of both freeform and
typed annotations on part of a document in OAS.
The rough circle is an example of a freeform
annotation. The shaded box is a typed annotation.
Both of these methods will be discussed below.

4.2.1 Freeform Annotation Mode

In the freeform mode, the trace path becomes the
actual annotation. The user is able to change pen
size and colour mid-annotation – the new size and
colour being effective for all subsequent tracings.
 Once the user has completed tracing the new
annotation, they select the Create Annotation button
that sends the captured coordinates, along with pen
size and colour data to the server. The server then
uses this data to render an image file. Through a

WEBIST 2007 - International Conference on Web Information Systems and Technologies

326

forced reload of the web page, this new image is
layered on top of the document in the correct
location using DHTML. As the background of the
image is transparent, it appears on the page just as an
ink annotation would on a piece of paper.

4.2.2 Typed Annotation Mode

While in typed annotation mode, the trace path
determines the boundaries of the rectangular box
that will hold the typed annotation.
 Once the user has mapped out the location for
the new annotation, they press the Create
Annotation button, which brings up the dialog for
text entry. In addition to allowing any length of text
to be typed or copied into the dialog, the user has
control of font size, colour, and type.
 When the user is satisfied with the text of the
new annotation, the information is submitted to the
server, which builds the necessary HTML to add the
new annotation to the document. A forced reload of
the web page is then used to have the new
annotation appear in its correct location. A scrollbar
is added to all text annotations that are too large to
fit in the annotation area defined by the user.
 Once created, text annotations may be edited or
deleted by users with appropriate user rights.
Freeform annotations may only be deleted. The user
may also temporarily hide any given annotation.

4.2.3 The Tracer

One of the largest challenges with this system was
the providing of proper feedback to the user during
the annotation creation process (i.e., a visual
representation of the annotation being created in real
time). Several approaches were explored. For
example, on-the-fly creation of text-based vector
graphic formats such as VRML or SVG did not have
enough native support within the different web
browsers. Also, preliminary testing of the rendering
capabilities of the server suggested that it could not
keep up with an AJAX solution.

 The approach used for OAS was to use a small
(10x10) image of a ball to trace the path created with
the cursor. So, as the user creates a new annotation,
the tracer image is continuously moved along the
trace path using DHTML. Once it reaches the end of
the trace path, it starts over. The user controls the
speed of the tracing action. Consequently, the
annotation line cannot be seen in its entirety while it
is being drawn, only when the annotation has been
completed and rendered by the server. If the
completed annotation is unsatisfactory, it must be
deleted and redrawn by the user.
 While this method did provide some feedback to
the user, it is still inadequate. This is especially true
for Tablet PC users, who want to use the stylus to
write comments directly onto the document. Not
having the lines that have been drawn show up
immediately can be rather disconcerting in this case.
Consequently, this is an area that needs further
research in order to refine the user interface.

4.3 Web Browser Support

OAS supports the web browsers shown in Table 2,
per compliance requirements discussed previously.
 As can be seen, support is strong through the
major web browsers across multiple platforms. The
only issue is the tracer must be turned off in Safari in
order for it to function correctly while doing
freeform annotations. This is due to event ordering
in Safari’s event structure.

4.4 Results of Performance Testing

While web browser testing went well, performance
testing did not. Five Ubuntu Linux systems were
used as clients to perform load testing on OAS. Each
created five simultaneous instances of the test script,
which connected to the OAS server over one of the
university's networks. This created a continuous load
of twenty-five concurrent virtual users on OAS.
Because these were virtual users being controlled by
scripts, the natural delay associated with human
interaction was not present, resulting in an effective

Figure 2: Example of Annotations in OAS.

WEB-BASED ANNOTATION AND COLLABORATION - Electronic Document Annotation Using a
Standards-compliant Web Browser

327

Table 2: Web browsers supported by OAS.

Operating System Web Browser Supported?

Internet Explorer 6.0 Yes

Firefox 1.0 Yes

Windows XP Home

Opera 9.0 Yes

Internet Explorer 7.0
RC1

Yes

Firefox 1.5 Yes

Windows XP Tablet
PC Edition 2005

Mozilla 1.7.3 Yes

Mac OS X Jaguar Safari 1.3 Yes (no tracer)

Firefox 1.5 Yes

Opera 9.00 Yes

Mozilla 1.7.13 Yes

Konquerer 3.5.3 Yes

Linux Fedora Core 5

“Epiphany” GNOME
Web Browser 2.14.2.1

Yes

load much higher than what would be produced by
twenty-five concurrent human users.

While the test was running, a large number of
entries began appearing in Apache's error log. This
was unexpected, as OAS had been continually
monitored during development in a single-user
environment. Most errors were caused by undefined
variable values generally populated either by
database calls or by Apache when it created the
environment for the Perl handlers. The population of
these fields, however, occur at different stages of the
Apache request cycle. Errors were occurring in
stages where no custom Perl handlers were being
used. This suggested the errors are occurring as a
result of the corruption of the Apache child process
being used to handle the requests. This is supported
by the fact that restarting Apache would temporarily
correct the problem.

Attempts were made to tweak the settings in the
httpd.conf file to force Apache to recycle its child
processes at a faster rate. However, this had no
noticeable effect on the problem. Eventually, it was
determined the maximum number of concurrent
users was three. Occasionally, a fourth could be
temporarily added.

The evidence suggests this problem is probably
not hardware related, but is caused instead by
memory corruption in one of the C libraries called
by one the Perl handlers. Identifying and moving the
offending routines out of the Perl handler and into a
CGI script to localize the damage could temporarily
fix the problem. However, this does not address the

underlying problem. This is an area of future
research and development.

4.5 Usability Testing

Official usability testing was not conducted with
human participants because of the persistence of the
noted problems with OAS, as they would have
artificially skewed the results. Once these problems
have been properly addressed, meaningful usability
testing can be performed.

5 CONCLUSIONS

OAS was designed to address some of the issues
with earlier annotation systems, as described in
Section 2.2. Many of these shortcomings centred on
the need for specialized hardware and/or software.
OAS addressed this by using only a standards-
compliant web browser for the client. Overall, OAS
was able to meet its design goals. However, there
were still problems with the implementation.
 OAS is able to accept over twenty different file
formats for both freeform and typed annotations.
Through the use of web standards, support for a
number of web browsers on several different
operating systems was achieved. This means greater
flexibility for the user, who is able to access their
information from an employer’s workstation, school
lab machine, friend’s personal system, or even an
airport kiosk just as easily as they can from their
own laptop or home computer. As OAS renders all
documents to images, client systems do not need to
have the software required by the original file
format. So a student may submit a paper written
using OpenOffice.org to a professor who only uses
Microsoft Office, and the professor will still be able
to read and annotate the document.

By utilizing the multi-tier security and
document permission model, OAS can easily support
any number of annotative or collaborative tasks
through user and group permissions.

While the design goals were reached, there are
still areas of OAS that need improvement. One area
that needs work is the providing of proper feedback
to the user during the annotation process. The tracer
method, while functional, does not provide the
desired nor needed level of feedback. The other area
needing more research is the correction of the
memory corruption issues when multiple users are
accessing the system at a single time. These
represent areas of future research and development,
which should be followed with full user testing to

WEBIST 2007 - International Conference on Web Information Systems and Technologies

328

address any additional user experience and interface
issues that may arise.
 However, even with the problems faced in the
current iteration of OAS, it provides insights into an
exciting area of future web applications. Additional
research and development could make OAS into a
practical and powerful tool for online annotation and
collaboration in both academia and industry.

ACKNOWLEDGEMENTS

I would like to thank the following faculty members
of the School of Technology at Brigham Young
University, without whose help this project would
not have been possible: C. Richard Helps, Joseph J.
Ekstrom, and Michael G. Bailey.

REFERENCES

Bargeron, D., Moscovich, T., 2003. Reflowing digital ink
annotations [Electronic version]. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 385-393. ACM Press.

Brush, A., 2002. Annotating digital documents:
Anchoring, educational use, and notification
[Electronic version]. In CHI '02 Extended Abstracts on
Human Factors in Computing Systems, 542-543.
ACM Press.

Carter, S., Churchill, E., Denoue, L., Helfman, J., Nelson,
L., 2004. Digital Graffiti: public annotation of
multimedia content [Electronic version]. In CHI '04
Extended Abstracts on Human Factors in Computing
Systems, 1207-1210. ACM Press.

Gabrielli, S., Law, A., 2003. Annotation in the wild:
Benefits of linking paper to digital media [Electronic
version]. In CHI '03 Extended Abstracts on Human
Factors in Computing Systems, 890-891. ACM Press.

Golovchinsky, G., Denoue, L., 2002. Moving markup:
Repositioning freeform annotations [Electronic
version]. In Proceedings of the 15th Annual ACM
Symposium on User Interface Software and
Technology, 21-30. ACM Press.

Hansen, F., 2006. Ubiquitous annotation systems:
Technologies and challenges [Electronic version]. In
Proceedings of the Seventeenth Conference on
Hypertext and Hypermedia, 121-132. ACM Press.

Hong, L., Chi, E., Card, S., 2005. Annotating 3D
electronic books [Electronic version]. In CHI '05
Extended Abstracts on Human Factors in Computing
Systems, 1463-1466. ACM Press.

Kahan, J., Koivunen, M., 2001. Annotea: An open RDF
infrastructure for shared Web annotations [Electronic
version]. In Proceedings of the 10th International
Conference on World Wide Web, 623-632.

ACM Press.

Kim, S., Slater, M., Whitehead, E., 2004. WebDAV-based
hypertext annotation and trail system [Electronic
version]. In Proceedings of the Fifteenth ACM
Conference on Hypertext and Hypermedia, 87-88.
ACM Press.

Koivunen, M., 2005. Annotea project. W3C. Available
from http://www.w3.org/2001/Annotea/; Accessed
September 20, 2006.

Marshall, C., Brush, A., 2002. From personal to shared
annotations [Electronic version]. In CHI '02 Extended
Abstracts on Human Factors in Computing Systems,
812-813. ACM Press.

Marshall, C., Brush, A., 2004. Exploring the relationship
between personal and public annotations [Electronic
version]. In Proceedings of the 4th ACM/IEEE-CS
Joint Conference on Digital Libraries, 349-357.

ACM Press.
Mock, K., 2004. Teaching with Tablet PC's [Electronic

version]. In Journal of Computing Sciences in
Colleges, 20, no. 2 (Dec. 2004):17-27. Consortium for
Computing Sciences in Colleges.

Olsen, D., Taufer, T., Fails, J., 2004. ScreenCrayons:
Annotating anything [Electronic version]. In
Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology, 165-174.
ACM Press.

Plimmer, B., Mason, P., 2006. A pen-based paperless
environment for annotating and marking student
assignments [Electronic version]. In Proceedings of
the 50th Conference on User Interfaces 2006, 50:37-
44. Australian Computer Society.

Schilit, B., Golovchinsky, G., Price, M., 1998. Beyond
paper: Supporting active reading with free form digital
ink annotations [Electronic version]. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, 249-256. ACM Press/Addison-
Wesley Publishing Co.

Willis, C., Miertschin, L., 2004. Tablet PC's as
instructional tools or the pen is mightier than the
'board! [Electronic version]. In Proceedings of the 5th
Conference on information Technology Education,
153-159. ACM Press.

Wolfe, J., 2000. Effects of annotations on student readers
and writers [Electronic version]. In Proceedings of the
Fifth ACM Conference on Digital Libraries, 19-26.
ACM Press.

Zellweger, P., Bouvin, N., Jehøj, H., Mackinlay, J., 2001.
Fluid annotations in an open world [Electronic
version]. In Proceedings of the Twelfth ACM
Conference on Hypertext and Hypermedia, 9-18.
ACM Press.

WEB-BASED ANNOTATION AND COLLABORATION - Electronic Document Annotation Using a
Standards-compliant Web Browser

329

