
PROVIDING SCALABLE ACCESS TO LARGE XML DOCUMENTS

Arno Puder
San Francisco State University, Computer Science Department, 1600 Holloway Avenue, San Francisco, CA 94132, USA

Keywords: XML, DOM, Working Set.

Abstract: XML documents often tend to be voluminous and accessing them through a DOM (Document Object Model)
interface poses particular challenges. All the existing DOM implementations require an XML document to
be completely collocated before it can be parsed. This solution does not scale for huge XML documents.
In this paper we introduce an architecture, called VDOM (Virtual DOM) that allows scalable access to large
XML documents through a DOM interface. In the VDOM architecture, the actively used portions of an XML
document are transferred to the application. The application can begin to traverse this portion without requiring
that the complete DOM tree is collocated. As the application traverses the DOM tree, portions of the XML
document are loaded on-demand. Using the VDOM architecture is transparent to the application which uses a
standard DOM interface to access the DOM tree.

1 INTRODUCTION

Nowadays, the eXtensible Markup Language (XML)
is largely used in various domains to structure and
mark-up data. XML allows to define data with a tree-
like extensible data structure using a software and
hardware independent language, which led to its suc-
cess. Numerous tools have been proposed to access
XML documents. Standardized APIs such as DOM
(Document Object Model (W3C, 2004)) and SAX
(Simple API for XML (SAX Project, 2004)) allow
applications to access XML documents. Other tools
such as XSL, XPath, and XQuery provide powerful
means to transform, reference, and query XML doc-
uments. These tools help to structure the XML tool-
chain into components which ultimately leads to their
better reuse (e.g., XPath is used in XSL and XQuery,
and DOM is used in some XSL implementations).

Programmatic access to an XML document from a
high-level programming language is possible through
either a SAX or a DOM interface. Both offer the con-
tents of an XML document through a standard API to
an application. The SAX interface allows an applica-
tion to read the content of an XML document from
beginning to end in the same sequence in which it ap-
pears in the document. While this is suitable in some
contexts, it cannot be used for applications that re-
quire random access to the contents of an XML doc-

ument; in such cases a DOM parser is required. A
DOM interface allows to map a whole XML docu-
ment to a tree-like data structure of a programming
language. The application is then free to traverse the
contents in any order. There exist many DOM imple-
mentations for most programming languages. E.g.,
JDOM (JDOM, 2004) is one implementation for Java.
Many applications using XML documents as well as
higher-level XML tools such as some existing XSL
implementations are built on top of JDOM.

More and more applications have to deal with
XML documents of enormous size. We will introduce
one such application in the following section. While
a DOM API provides the convenient abstraction for a
programmer to access the contents of an XML doc-
ument, all the existing DOM implementations have
the limitation that they need to first load the complete
XML document into main memory in order to parse
and build up the DOM tree. For huge XML docu-
ments this solution does not scale.

This paper introduces the notion of a Virtual DOM
(VDOM) architecture. It allows scalable access to an
XML document of arbitrary size through a DOM API.
The complete XML document does not have to be
collocated for building the DOM tree. Nodes of the
document are loaded on-demand as the application
traverses the data structure which is done transpar-
ently to the application. The application is also able

178
Puder A. (2007).
PROVIDING SCALABLE ACCESS TO LARGE XML DOCUMENTS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 178-183
DOI: 10.5220/0001270801780183
Copyright c© SciTePress



to access the XML document using any standardized
DOM API.

This paper is organized as follows: Section 2 first
introduces a use case from the geo-sciences to moti-
vate our work. Section 3 introduces our VDOM archi-
tecture. Section 4 concludes this paper and presents
an outlook to future work.

2 GEO-SCIENCE USE CASE

In this section we present a use case from the geo-
sciences to serve as one example of a domain where
large XML documents are common place. In a previ-
ous project called NetBEAMS (Networked Bay Envi-
ronmental Assessment Monitoring System (San Fran-
cisco State University, 2003)) we have devised an
end-to-end infrastructure to connect web browsers to
commercially available sensors that measure environ-
mental conditions of the San Francisco Bay (Zam-
brano and Puder, 2006).

In the course of the NetBEAMS project, we de-
veloped theSensor Data Markup Language (SDML)
that allows the description of sensor data and its meta-
data via XML (W3C, 2006a). The following SDML
document shows some sample markup resulting from
our NetBEAMS application:

<sdml>

<metadata id="temperatureRTC">

<metadata id="description">

Temperature @ Romberg Tiburon Center (RTC)

</metadata>

<metadata id="longitude">3.1245</metadata>

<metadata id="latitude">-122.1341</metadata>

<metadata id="altitude">4.242</metadata>

<metadata id="unit">Celsius</metadata>

</metadata>

<!-- More meta-data definitions. -->

<measurement name="temperatureRTC">

<timeStamp>

11/18/05 10:45:06 GMT

</timeStamp>

<value>15</value>

</measurement>

<measurement name="relHumidityRTC">

<timeStamp>

11/18/05 10:47:42 GMT

</timeStamp>

<value>87</value>

</measurement>

<measurement name="temperatureGG">

<timeStamp>

11/18/05 10:48:16 GMT

</timeStamp>

<value>13</value>

</measurement>

<!-- More measurements -->

</sdml>

Different measurements are provided in the above
sample of the SDML document and they are denoted
by the<measurement> tag. Each measurement
is associated with some meta-data marked up via the
<metadata> tag. The purpose of the meta-data
in SDML is to attach a geographic location, a time-
stamp, and an unit to the individual measurements.
The XML excerpt above shows the temperature and
relative humidity of two different locations in the San
Francisco Bay: the Romberg Tiburon Center (RTC)
and the Golden Gate Bridge (GG). Their respective
meta-data definitions are referenced through identi-
fiers temperatureRTC, temperatureGG, and
relHumidityRTC.

One common application in geo-sciences is to
correlate individual measurements by a domain spe-
cific function. One example is the computation of
the probability of fog (Lowe, 1977). This func-
tion requires temperature and relative humidity read-
ings from two locations within a certain time win-
dow (e.g., temperature and relative humidity readings
from different days cannot be combined). The pro-
cess of the computation is sufficiently complex and
goes beyond the capability of the existing implemen-
tations of XQuery and XSL and requires a custom-
implementation based on a high-level programming
language. Different sensors often report their mea-
surements in different units and it is necessary to con-
vert them to a canonical format. The information
about the units can be derived from the meta-data
specification of the SDML. For that reason, the imple-
mentation of the fog-function requires access to dif-
ferent parts of the SDML document during the com-
putation: the meta-data and the measurements. We
refer to those parts aslocalities.

Because localities change in an out-of-order se-
quence during the computation of the fog-function, a
DOM interface is preferred to allow random access to
the content of a SDML document. There exist dif-
ferent DOM implementation for different program-
ming languages and scientists are free to choose their
preferred implementation to access the measurements
and meta-data from the SDML document. E.g., the
aforementioned JDOM can be used to allow a Java
program to access a SDML document, and other sci-
entists may prefer C++ in combination with the DOM
implementation called Xerces. While the existence
of these various implementations leverages the skill-

PROVIDING SCALABLE ACCESS TO LARGE XML DOCUMENTS

179



set of developers, all the implementations possess the
same drawback: SDML documents can be very vo-
luminous and easily reach several gigabytes in size.
Dealing with an XML document of this size does not
scale with any of the existing XML implementations.

While the use case described in this section is do-
main specific, we believe that huge XML documents
are also common in other areas. The work described
in this paper allows access to a large XML document
independent of its size using a familiar DOM API.

3 VDOM ARCHITECTURE

We propose a VDOM architecture that allows scalable
access to large XML documents through the DOM
interface. The VDOM architecture is based on the
client/server model where the required XML docu-
ments are at the server side and the applications ac-
cessing the documents are at the client side. Our gen-
eral idea is as follows. The XML document is par-
titioned into smaller portions that are transferred to
the application piece-by-piece. Without the need to
transfer the whole XML document, the application
can begin to explore the transferred portions of the
document through a DOM interface. The VDOM ar-
chitecture is transparent to the applications that can
access the portions using a DOM API of their choice.

In this section we first explain the design goals of
the VDOM architecture (Section 3.1), followed by its
overall structure (Section 3.2). Section 3.3 describes
the portions of a XML document that can be trans-
ferred in the VDOM architecture. The protocol to re-
quest and transfer these portions is presented in Sec-
tion 3.4.

3.1 Design Goals

We begin our discussion of the VDOM architecture
by formulating our design goals. The purpose of the
design goals is to definewhat we want to accomplish
with our VDOM architecture, but nothow to accom-
plish them. Subsequent sections describing the archi-
tecture will focus on how they are achieved.

The following design goals guide the definition of
our VDOM architecture:

• Client/Server architecture.

• Read-only access.

• Access transparency.

• De-coupling of client and server side technolo-
gies.

The VDOM architecture is based on the
client/server model to allow access to XML
documents. The server stores the XML document
that is accessed by clients. We already established
previously that it is not feasible to transfer a complete
XML document, but that only actively used por-
tions (the aforementioned localities) are transferred
between client and server. At this stage, to limit
the complexity of the VDOM architecture, we only
allow read-only access to the document in order
to avoid synchronization issues between different
clients. While read-only access limits the scope of
applications using our architecture, we believe that in
many cases write-access is not required.

Another design goal is access transparency.
The VDOM architecture follows the client/server
paradigm in which there are two access points: on
the client side, an application will access the VDOM
architecture and on the server side we will need to
connect to a data-source that stores the XML docu-
ment. These access points should be designed such
that neither client nor server need to be modified in
any way in order to work with our VDOM architec-
ture. The applications are free to choose a particular
DOM API and they should not notice that the whole
XML document might not be loaded. The servers can
also store the XML document in various ways such as
an XML database or in a regular file. By doing so, we
achieve access transparency that will enable existing
applications and data-sources to be easily integrated
with our architecture.

The final design goal of our VDOM architecture is
de-coupling of technologies. While there will be dif-
ferent ways to implement our VDOM architecture, we
want to make sure that there is no technology depen-
dency between the client and the server. It should be
possible to provide independent implementations of
the client and server of the VDOM architecture, each
freely choosing their respective technologies such as
the programming language. With this design goal we
want to achieve an open architecture with indepen-
dent, interoperable clients and servers.

Figure 1: VDOM Architecture.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

180



3.2 Architecture

Figure 1 depicts the VDOM architecture. The archi-
tecture is based on the client/server paradigm. The
XML document is stored on the server side at some
data source (at the right side in Figure 1). We impose
no requirements on the data sources (e.g., a source
could be a relational database or an XML database).
A specific wrapper is required for each kind of data
source to allow the data retrieval from the sources.
The wrapper also transforms data to XML format
in case it is stored using another format at the data
server. The VDOM protocol defines the PDUs (Proto-
col Data Units) exchanged between the VDOM client
and the VDOM server; the VDOM protocol will be
explained later. The DOM API wrappers on the client
side offer the underlying services of the VDOM archi-
tecture to the application. The purpose of the DOM
API wrappers is to assure that the application de-
veloper is unaware of using the VDOM architecture.
With the help of these wrappers the application is un-
aware that only a part of the whole XML document
is locally available on the client side. They also al-
low the application to access the document portions
via a familiar API. The API of each specific wrapper
is identical to that of a given XML DOM API in the
given language.

One possible end-to-end scenario is as follows:
the application on the client side uses JDOM to tra-
verse the XML document. But instead of using
JDOM directly, the application uses the JDOM wrap-
per. The wrapper translates the request expressed us-
ing JDOM API into the internal request of the VDOM
architecture. The internal request is forwarded to
the VDOM client. Based on the application’s needs,
the VDOM client will request an appropriate por-
tions of the XML document from the VDOM server.
The VDOM server uses a wrapper to access the data
source, to transform the relational data to XML for-
mat, and to retrieve the requested portion of the XML
document. Upon sending the portion back the VDOM
client, the JDOM wrapper returns to the application
with the requested data expressed using JDOM.

The application is not aware that only a portion of
the requested document is returned. As the applica-
tion eventually reads nodes from the XML document
that lie outside of the returned portion, the VDOM
client will automatically retrieve neighboring portions
including the newly requested nodes. For now we are
only using some static heuristics to determine the size
of the XML document portions to be transferred (i.e.,
the depth and breadth of the portion). We also en-
vision to adapt the size by observing the pattern by
which the application accesses the XML document.

3.3 Working Set

Instead of transferring the whole XML document, the
VDOM architecture allows to transfer smaller por-
tions of the document that are actively used by the
application. We denote the portions of an XML doc-
ument that can be transferred in our VDOM architec-
ture asworking sets. The term working set is inspired
by a concept from operating systems where it refers
to a set of pages in virtual memory actively used by a
process (Tanenbaum and Woodhull, 2006). We adopt
this principle of a working set and transfer it to XML
documents. The working set of an XML document
defines those portions of the document used by an ap-
plication during a certain time interval.

Just like the working set in operating systems de-
fines a certain locality in terms of pages in virtual
memory accessed by a process, our definition of a
working set for XML documents assumes certain lo-
calities in accessing its content. The localities are
determined by the required portions of the document
during a specific time interval.

Before defining the working sets used in our
VDOM architecture, we first give a representation
of an XML document as a tree in the mathemati-
cal sense consisting of nodes and edgesXMLD =
(V,E, nRoot, f) where:

1. V is a finite set of nodes in the tree representing
the XML document; they represent both the ele-
ments and the attributes of the document;

2. E represents the edges: every edge(c, p) ∈ E is
an edge from the parentp to the childc;

3. nRoot ∈ V being the root node of the tree;

4. f : is an injective, partial function assigning an
order number to all nodes except the root node
nRoot. If a node hasn children, then those chil-
dren are assigned order numbers in the interval
[0, . . . , n − 1].

We define a working setWS of a XML document
XMLD = (V,E, nRoot, f) as a set of localities of
the documentWS = {L1, L2, ..., Ln}. Each locality
Li with 0 < i ≤ n is defined as a subset of the nodes
V with the following conditions:

1. Li ⊆ V ;

2. Graph(Li, E) is connected;

3. For every childc ∈ V \Li with parentp, (c, p) ∈
E: there does not existc1, c2 ∈ Li with (c1, p) ∈
E and(c2, p) ∈ E with f(c1) < f(c) < f(c2).

The conditions (1) and (2) basically state that each
locality is a connected sub-tree of the tree correspond-
ing to the XML document. Condition (3) states that

PROVIDING SCALABLE ACCESS TO LARGE XML DOCUMENTS

181



all children of a node in a locality must be immediate
siblings of each other with respect to the order func-
tion f . I.e., the node may have other children that are
not part of the locality, but they can only appear “at
the border” of the locality. Different localities of the
same working set have to be disjoint. For every two
localitiesLj andLk of the same working setWS, the
intersection of nodes belonging toLj andLk has to
be empty.

Figure 2 shows an example of an XML document.
It also shows a working set containing one single lo-
cality whose root node is B. The locality as shown in
this example does not include all children of node B,
but note that all children belonging to the locality are
immediate siblings of each other without a gap (i.e., a
node that does not belong to the locality).

Figure 2: Working set of an XML document with one lo-
cality.

3.4 VDOM Protocol

The VDOM protocol defines the PDUs transferred be-
tween the VDOM client and the VDOM server shown
in Figure 1. The protocol is based on a simple re-
quest/response exchange, where the client makes a
request and the server responds with the appropriate
working set. We first present the marshalling of the
working set, i.e., the PDU the server responds to a
client’s request. We will explain the parameters of the
client request further below.

We use XML notation to represent working sets.
Apart from the document content included in the
working set, it is necessary also to encode addi-
tional information about the environment of the work-
ing set inside the whole document to facilitate de-
cisions within the VDOM client during the applica-
tion’s traversal of the XML document. E.g., it is
beneficial to know if there are more children besides
the one contained in a locality of the working set.
This contextual information is embedded via XML at-
tributes into the working set. For the example shown
in Figure 2, the marshalled XML document of the
working set is as follows:

<vdom:WorkingSet
xmlns:vdom="http://vdom.org/response/">

<B vdom:id="2"
vdom:prev-child="3"
vdom:num-prev-children="1"
vdom:next-child="6"
vdom:num-next-children="2">
<D vdom:id="4" vdom:num-children="2"/>
<E vdom:id="5" vdom:num-children="0"/>

</B>
<!-- Possibily more localities -->

</vdom:WorkingSet>

Every node in an XML document can be uniquely
identified via thevdom:id attribute. The value
of this attribute would usually be an XPath (W3C,
2006b) expression to make use of available XML
standards. For the sake of make the example more
readable, we use the numbers shown in Figure 2 as
the node IDs. E.g., in Figure 2, the node having
the ID 2 can be identified using the XPath expres-
sion /A[1]/B[1]. As can be seen, the additional
markup tells the client about the context of the work-
ing set in the original XML document. Table 1 sum-
marizes the different attributes available to describe
the context.

Table 1: Attributes for describing context of a locality in a
working set.

Attribute Description
id XPath expression of the node

within the XML document.
prev-childXPath expression of the child bor-

dering before the locality. This at-
tribute is missing if there are no
more previous children.

next-childXPath expression of the child bor-
dering after the locality. This at-
tribute is missing if there are no
more children following.

num-prev-
children

Number of children appearing be-
fore the locality. This attribute
is assigned if and only if the
prev-child attribute is present.

num-next-
children

Number of children appearing af-
ter the locality. This attribute
is assigned if and only if the
next-child attribute is present.

num-
children

If none of a node’s children are part
of the locality, this attribute spec-
ifies the number of children of a
node.

The working set is sent by the server in response
to a client’s request. The client can request any work-
ing set of the XML document. By doing so, the client

WEBIST 2007 - International Conference on Web Information Systems and Technologies

182



must provide the root node of every locality of the
working set (denoted by the node’s XPath expression)
as well as the breadth and depth of each locality. The
following request shows the markup for requesting
the working set highlighted in Figure 2:

<VDOMRequest xmlns="http://vdom.org/request/">

<LocalityRoot id="2">

<LeftBorder id="3"/>

<Breadth size="2"/>

</LocalityRoot>

<!-- Possibily more locality requests -->

</VDOMRequest>

The VDOM protocol also allows the reporting
of error conditions (e.g., when the client requests a
node with an invalid XPath expression). The VDOM
protocol must be mapped to some transport mecha-
nism. Since we use XML for the representation of
the VDOM PDUs, Web Services seem to be a natural
choice, although other transport mechanisms such as
CORBA or plain TCP-connections also are possible.

The working sets are identified depending on the
application at the client side and the XML docu-
ment at the server side. For now we only use some
static heuristics to determine the working sets but the
VDOM client can also make use of different parame-
ters to infer suitable working sets in order to minimize
communication overhead. The schema of an XML
document can be used to infer the working sets (e.g.,
the multiplicity of an element can give an indication
to the size of a working set). The application can also
be used to infer the size of working sets. E.g., differ-
ent working sets will be delivered sequentially to the
client if it prefers a breadth-first search or if it prefers
a depth-first search. The usage history can also be
used to help the decision of working sets.

There are two possible strategies for delivering
working sets from the VDOM server to the VDOM
client. The first consists in delivering working sets
only when requested by the VDOM client. Every time
the application reaches a portion of the tree that are
not locally available, the VDOM client automatically
forms a request to the VDOM server for a working
set containing the needed portion. The second strat-
egy consists in estimating the needs of the applica-
tion and delivering some potential working sets before
they are required. Among the two strategies, the first
one makes requests only when some new portions are
required by the application, the response time may in-
crease. The second one estimates the suitable working
set. It is more efficient if the estimate happens to be
mostly correct; while in the inverse case, pre-fetching
several working sets without using them may lead to
lower performance.

4 CONCLUSION AND OUTLOOK

In this paper, we introduced the VDOM architecture
that allows applications to transparently access large
XML documents through a DOM API. In the VDOM
architecture, an XML document is partitioned into
working sets that are transferred individually to the
client. A protocol has been proposed to specify the
request and response PDUs of working sets. DOM
API wrappers are defined to make the whole architec-
ture transparent to the user application. Server wrap-
pers have also been defined to be able to connect to
different kinds of XML document data sources. We
are working on a prototype implementation that uses
JDOM as the client side DOM API and MySQL on
the server side.

Apart from validating our ideas by running some
benchmarks, we plan to generalize some internal pro-
cesses of the VDOM architecture. In particular deter-
mining the size of the working set needs to be further
investigated. We currently only use static (compile-
time) heuristics to determine the size of the requested
working set. One obvious extension would be to ob-
serve the application’s behavior (i.e., the way the ap-
plication traverses the DOM tree) to adapt the size
of the working set at runtime. Other extensions of
the work presented in this paper are read/write access
to the server, as well as generalizing the client/server
model to a peer-to-peer model where the XML docu-
ment is distributed among different peers.

REFERENCES

JDOM (2004).Java DOM-API. http://www.jdom.org/.

Lowe, P. (1977). An approximating polynomial for the
computation of saturation vapor pressure.Journal of
Applied Meterology, 16:100–103.

San Francisco State University (2003).NetBEAMS - Net-
worked Bay Environmental Assessment Monitoring
System. http://www.netbeams.org/.

SAX Project (2004). Simple API for XML (SAX).
http://www.saxproject.org/.

Tanenbaum, A. and Woodhull, A. (2006).Operating Sys-
tems Design and Implementation. Prentice Hall, third
edition.

W3C (2004). Document Object Model (DOM).
http://www.w3.org/DOM/.

W3C (2006a). eXtensible Markup Language (XML).
http://www.w3.org/XML/.

W3C (2006b). XML Path Language 2.0.
http://www.w3.org/TR/xpath/.

Zambrano, B. and Puder, A. (2006). A flexible system
for real-time oceanographic monitoring. Extended ab-
stract, San Francisco State University.

PROVIDING SCALABLE ACCESS TO LARGE XML DOCUMENTS

183


