
MODEL DRIVEN DEVELOPMENT OF DIGITAL LIBRARIES
Validation, Analysis and Code Generation

Esther Guerra
Dep. Computer Science, Universidad Carlos III, Madrid (Spain)

Juan de Lara
Dep. Computer Science, Universidad Autónoma, Madrid (Spain)

Alessio Malizia
Dep. Computer Science, University La Sapienza, Rome (Italy)

Keywords: Digital Library, Model Driven Development, Formal Methods, Meta-modelling, Graph Transformation.

Abstract: This paper shows our model-driven approach for the formal construction and validation of Digital Libraries
(DLs). We have defined a Domain Specific Visual Language (DSVL) called VisMODLE, which allows the
description of a DL using five different viewpoints: services, behaviour, collections, structure and society.
From a meta-model based description of the different viewpoints, we have generated a modelling environment
for VisMODLE. We have provided the environment with a code generator that produces XUL code for the
DL’s user interface and composes the application using predefined components that implement the different
services. Moreover, we have also added validation and simulation capabilities to the environment. Using the
behavioural models (state-machine based), we can visually animate the system. In addition, the combined
behaviour of actors and services can be transformed into a Petri net for further analysis.

1 INTRODUCTION

The concept of Digital Library (DL) seems hard to be
completely understood and evades definitional con-
sensus. Licklider (Licklider, 1965) visualized a col-
lection of digital versions of the worldwide corpus of
published literature and its availability through inter-
connected computers. More recently, a Delphi study
(Kochtanek and Hein, 1999) of DLs coalesced a broad
definition: organized collection of resources, mech-
anisms for browsing and searching, distributed net-
worked environments, and sets of services objecti-
fied to meet users’ needs. The Presidents Information
Technology Advisory Committee (PITAC) Panel on
DLs treats them as the networked collections of dig-
ital texts, documents, images, sounds, scientific data
and software, that make up the core of today’s Internet
and tomorrow’s universally accessible digital reposi-
tories of human knowledge (Reddy and Wladawsky-
Berger, 2001). Underlying these definitions there is
the consensus agreement that DLs are fundamentally
complex due to its inherently interdisciplinary nature.
They are usually built from scratch using specialized

architectures that do not benefit from previous DLs
and software design experiences. The lack of formal
models leads to branching efforts and has made inter-
operability (in both metadata and software levels) a
crucial problem in the DL field.

From the beginning of computer science, software
engineers have sought methods to increase the pro-
ductivity and quality of applications. A means to
achieve such goal is to increase the level of abstrac-
tion of system descriptions. In Model-Driven Soft-
ware Development (MDSD) (V̈olter and Stahl, 2006),
models are the primary asset, from which the code
of the application is generated. The idea is to capi-
talize the knowledge in a certain application domain
by providing developers with DSVLs describing the
domain concepts. DSVLs are less error-prone than
other general-purpose languages and easier to learn
because the semantic gap between the user’s mental
model and the real model is smaller. Thus, from high-
level, possibly visual models, a number of platform
artifacts are generated which sometimes account for
the 100% of the final application. Since the code gen-
eration process is automated from the models, there is

35
Guerra E., de Lara J. and Malizia A. (2007).
MODEL DRIVEN DEVELOPMENT OF DIGITAL LIBRARIES - Validation, Analysis and Code Generation.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 35-42
DOI: 10.5220/0001265900350042
Copyright c© SciTePress



a strong need to validate and verify them. In this re-
spect, techniques for simulating the models (i.e. per-
forming an animation showing their operational se-
mantics) as well as to transform them into formal se-
mantic domains for further analysis are of great inter-
est.

Our work applies MDSD techniques to the DL do-
main. In (Malizia et al., 2006) we presented a DSVL
called VisMODLE oriented to the description of DLs,
and built a modelling tool for it with an integrated
code generator. VisMODLE is visual, which makes
easier for people to learn and interpret; it is domain-
specific, leaving less room for misunderstanding; and
is formal, making possible the simulation and valida-
tion of the models. It allows the specification of the
different aspects of a DL using four dimensions (or
diagrams): services, collections, structure and society
(i.e. interactions of services and actors).

In this work, VisMODLE is extended with a new
type of diagram to specify behaviour (based on state
machines). The operational semantics (i.e. simula-
tor) of the new diagram type is formalized by using
graph transformation (Ehrig et al., 2006). This sim-
ulator allows a visual animation of the models (i.e.
seeing messages being produced/consumed by actors
and services) in order to validate the DL design and
understand its behaviour. We have also designed a
transformation from VisMODLE to Petri nets (Mu-
rata, 1989), a formal notation useful to specify con-
current and distributed systems. Its analysis tech-
niques allow investigating system properties such as
deadlocks, state reachability and invariants.

Paper organization. Section 2 introduces Vis-
MODLE. Section 3 shows our MDSD approach for
generating DLs. Sections 4 and 5 describe the sim-
ulation and analysis techniques we propose, and its
application to VisMODLE. Section 6 presents related
work, and section 7 ends with the conclusions and fu-
ture work. As a running example, we develop a sim-
ple DL for a university library.

2 VISMODLE, A DSVL FOR
DIGITAL LIBRARIES

VisMODLE is a DSVL for the Visual MOdelling of
Digital Library Environments. A preliminary ver-
sion of the language was presented at (Malizia et al.,
2006), but we have added a new diagram type for
expressing behaviour. In this way, the specifica-
tion of a DL in VisMODLE encompasses now five
complementary dimensions: multimedia information
supported by the DL (Collection Model); how that
information is structured and organized (Structural

Figure 1: The VisMODLE Meta-model.

Model); the services of the DL (Service Model); the
societies of actors and services that interact to carry
out the DL behaviour (Societal Model); and the indi-
vidual behaviour of actors and services (Behavioural
Model). Figure 1 shows the complete meta-model.

Collectionsare sets of static (e.g. text) and dy-
namic (e.g. video) elements. Our running example
includes a collection model (not shown for space con-
straints) with a collection (calledLibrary) of two doc-
uments: long1.pdf and long2.pdf. The only relevant
entity for this kind of diagram in the meta-model is
classCollection.

The Structural diagram specifies how parts of a
whole are arranged or organized. Structures can rep-
resent hypertexts, taxonomies, system connections,
user relationships and containment. The window to
the right in Figure 2 shows the structural model for the
running example. Thus, collectionLibrary is made
of documents structured withPublication, Authorand
Title metadata information. The meta-model specifies
that metadata entities (classStruct) can be connected
together with thenoderelation (organized as a tree)
and linked to a collection by alink typerelation.

Servicesdescribe activities, tasks, and operations
(the functionality). Human information needs, and
the process of satisfying them in the context of DLs,
are well suited to description with services, including
fact-finding, learning, gathering and exploring. In this
diagram type, we describe the kind of messages ser-
vices can produce and consume, and their synchro-
nization. The only relevant entity from the meta-

WEBIST 2007 - International Conference on Web Information Systems and Technologies

36



Figure 2: Modelling Environment for VisMODLE.

model for this diagram is classService. In our exam-
ple, we make two services available:FrontDeskand
DoSearch. The former is responsible for managing
communications between actors and is asynchronous
(syncattribute is set tonowait), while the latter exe-
cutes queries on the DL and is synchronous.

A Societyis a set of entities and their relations.
The entities include actors as well as hardware and
software components, which either use or support ser-
vices. Our meta-model is CSCW (Computer Sup-
ported Cooperative Work) oriented and thus includes
the explicit description of the communication be-
tween entities and services. In complex systems such
as DLs it is important to consider also the actors in-
volved in the usage and so we introduced the soci-
ety concept. A society is the highest-level view of a
DL, which exists to serve the information needs of its
entities and to describe the context of its use.Soci-
ety diagrams are similar to UML collaboration dia-
grams. Figure 3 shows the society model for our ex-
ample involving actorsStudentand Librarian. The
scenario represents aStudentborrowing a paper from
the Library; he interacts with theFrontDeskservice
requesting the paper and obtaining a response mes-
sage about its availability. TheFrontDeskservice for-
wards the borrow request to theLibrarian actor. Then
it sends a doc request message to theDoSearchser-
vice, which queries the document collection (get op-
eration) using metadata information provided by the
borrow request, and waits the result to send back the
response. The service returns anis availableboolean
message which is propagated as a response to theLi-
brarian and eventually to theStudent.

Behaviouraldiagrams are used to specify the in-
dividual high-level activity of both services and ac-
tors by means of state machines. The transitions
of the state machines are fired whenever a certain
event occurs, which corresponds to the arrival of a
message to the actor or service. In the transition,
an action can also be specified, which is the send-
ing of another message. Figure 4 shows the be-

Figure 3: ASocietalModel.

Figure 4: ABehaviouralModel.

havioural diagram for theLibrarian (initially in state
active). If he receives an eventborrow request, he
sends adoc requestmessage to serviceDoSearchand
changes his state toborrow request. Then, if he re-
ceives an eventis available, he becomesactiveagain
and sends theavailability to serviceFrontDesk. For
the current DL example, we have defined four differ-
ent behavioural models, for actorsStudentandLibrar-
ian as well as for servicesFrontDeskandDoSearch.

3 MODEL DRIVEN APPROACH
TO DIGITAL LIBRARIES

The overall architecture of our MDSD approach for
DLs is shown in Figure 5. The upper part depicts the
process of designing the DSVL VisMODLE with the
help of experts in the field of DLs, and its implemen-
tation in the meta-modelling tool AToM3.

The environment for VisMODLE was defined by
using the meta-modelling capabilities of AToM3. Fig-
ure 6 shows a step in its definition. The window
at the background (labelled “1”) partially shows the
complete VisMODLE meta-model. The tool allows
splitting the meta-model into different diagram types
(calledviewpoints). The five VisMODLE viewpoints
are shown in the window labelled “2” in the figure.

MODEL DRIVEN DEVELOPMENT OF DIGITAL LIBRARIES - Validation, Analysis and Code Generation

37



Figure 5: The MDSD Architecture for DLs.

Figure 6: Building the Environment for VisMODLE.

Window “3” contains the portion of the meta-model
belonging to theStructural viewpoint. A special
viewpoint namedrepositoryDigitalLibrary contains
the complete meta-model. In this way, in the gen-
erated environment, the user builds instances of the
different viewpoints, and a repository model is cre-
ated in the background with the gluing of the differ-
ent diagrams the user has built. Consistency relations
(shown as arrows in window “2”) specify how the dif-
ferent diagram elements are copied into the reposi-
tory, how the different diagrams are kept consistent
and how changes are propagated to the other diagrams
if necessary. These arrows contain triple graph gram-
mar (TGG) rules, which are automatically generated
by AToM3 (Guerra and de Lara, 2006b). In addition,
a semantic view has been defined that allows express-
ing the semantics of the repository by using a trans-
formation into Petri nets (see section 5). This is also
performed by using TGG rules.

Figure 7: Generated GUI for the Example DL.

With the information described before, AToM3

generated a customized modelling environment for
VisMODLE (shown at the background of Figure 2).
DL designers can use this environment to build Vis-
MODLE models (layer “DSVL use” in Figure 5). The
environment also integrates a simulator that allows
the visual animation of the models. The simulator
helps to validate and understand the DL design by ob-
serving the message flow between services and actors
(see section 4). As stated before, some analysis ca-
pabilities have been also integrated based on model
transformation into Petri nets (see section 5).

Finally, we have provided the environment with
a code generator (called “LibGen” in Figure 5) able
to produce XUL code for the user interface (UI) of
the DL. The generator also selects predefined service
components to implement the required functionalities
of the VisMODLE models (Malizia et al., 2006). Fig-
ure 7 shows the generated interface for the example
(for theLibrarian). The generated UI is built upon a
set of XUL template files that are automatically spe-
cialized depending on the attributes and relationships
designed in the modelling phase. The layout template
for the UI is divided into two columns. The left part
manages the collections of documents and its meta-
data information. The right part manages visualiza-
tion and multimedia information obtained from docu-
ments. The basic features provided with the UI tem-
plates are document loading and visualization, meta-
data organization and management.

4 SIMULATION OF DL MODELS

In order to visualize and better understand the be-
haviour of a DL, we have built a simulator for VisMO-
DLE. The simulation is performed in the repository,
since it needs all the dynamic information expressed

WEBIST 2007 - International Conference on Web Information Systems and Technologies

38



in VisMODLE (i.e. the societal and behavioural mod-
els). The simulation consists of the animation of the
state machines that describe the behaviour of actors
and services. In the simulation, it is checked that the
events and actions specified in the state machines are
coherent with the message interchange specified in
the society. Note how simulation is a useful tool for
the early detection of design errors.

The repository has been enriched with special el-
ements used only for simulation purposes, but not for
system specification. These elements are not part of
VisMODLE; therefore, they do not appear in any di-
agram type. Thus, behavioural elements (i.e. actors
and services) can receivemessagesthrough a special
element calledinput, which in addition has a pointer
to the current state of their state machine. Messages
are depicted as blue rectangles with its name inside,
while input elements are shown as black small rect-
angles. In the simulator, for a transition to be ex-
ecuted, a message matching the event specified in
the transition has to be found in the behavioural el-
ement’s input. The other possibility is that the transi-
tion does not require any event. On the other hand,
when a transition that defines an action with form
“target element.message” is executed, then such mes-
sage is created in the target element’s input.

Figure 8 shows the DL example being simulated.
A student has asked for a book, so he is in statestu-
dentborrow (i.e. the input for actorStudenthas a
pointer to thestudentborrow state). That means that
the transition going from statestudentactive to the
current state has been executed, so a messageborrow
has been sent to serviceFrontDesk, as the action of
such transition indicates. Indeed, the state machine
for serviceFrontDesk(upper left corner) has a mes-
sageborrowas input. The next simulation step would
execute the transition going from the service’s current
state to statefront deskborrow, since the transition
requires an eventborrow, available in the input.

This simulator has been built by using the graph
transformation capabilities of AToM3. Graph trans-
formation (Ehrig et al., 2006) is an abstract, declar-
ative, visual, formal and high-level means to express
computations on graphs. Roughly, graph grammars
are composed of rules, with graphs in their left and
right hand sides (LHS and RHS respectively). In or-
der to apply a rule to a graph (calledhost graph),
first a matching (an occurrence) of the LHS has to be
found on it. Then, the rule is applied by substituting
the match in the host graph by the rule’s RHS. In ad-
dition, rules can define application conditions that re-
strict their applicability. One of the most used are the
so-called Negative Application Conditions (NACs).
These are graphs that must not be present in the host

Figure 8: A Step in the Simulation of the Example DL.

Figure 9: Simulation Rulecreate input.

graph for the rule to be applied. On the contrary, Pos-
itive Application Conditions (PACs) are graphs that
must be present in the host graph in order to apply the
rule. Finally, we can combine meta-modelling and
graph transformation allowing abstract nodes to ap-
pear in rules (Ehrig et al., 2006). In this way, nodes
can be matched to instances of any subclass, greatly
improving the expressive power of rules.

Our simulator is made of five rules, three of them
shown in Figures 9, 10 and 11. Rule in Figure 9 as-
signs aninput element to each behavioural element,
that is, to each actor and service in the repository
(i.e. each possible concrete subclass of classBe-
haviouralElement). Initially, the input does not con-
tain any message, and points to the initial state of
the behavioural element’s state machine. If the be-
havioural element already has an associated input el-
ement (NAC), the rule is not applied. In this way, we
are sure there is only one input for service and actor.

The other four simulation rules perform a simula-
tion step (i.e. a state transition if the required event
was produced) for different cases. For example, the
rule in Figure 10 considers transitions where no ac-
tion is defined. In this case, if a behavioural element
receives a message whose label matches some of its
outgoing transitions (LHS), then the message is pro-
cessed and the current state is changed (RHS). The
attribute condition in the LHS checks that the mes-
sage name in the input is equal to the event specified

MODEL DRIVEN DEVELOPMENT OF DIGITAL LIBRARIES - Validation, Analysis and Code Generation

39



Figure 10: Simulation Ruleprocess event.

Figure 11: Simulation Ruleprocess event with action.

in the outgoing transition of the current state.
Similarly, rule in Figure 11 considers transitions

with an action that sends a message to another be-
havioural element (i.e. the action has the form “tar-
get element.message”). Here, in addition to the pre-
vious conditions for a behavioural element to change
its state, it is necessary that the target element ac-
cepts messages of that kind. This is given by the PAC
below, which checks that the corresponding link has
been specified in the societal model. Indeed, one of
these three positive conditions has to be fulfilled in
order to be able to apply the rule: either the source
element is an actor that sends a message to a service
(first case), or it is a service that sends a message ei-
ther to an actor (second case) or to another service
(third case). The use of abstract nodes (labels 8 and
11) together with the three PACs allows using a single
rule for the three cases. This rule deletes the message
from the input, changes the current state and creates a
message in the target element input. The action below
the RHS assigns the message specified in the action’s
transition as the name of the newly created message.

Finally, two similar rules (not shown in the pa-
per) consider transitions where either an action is per-

formed without the necessity of an event, or a transi-
tion occurs with neither event nor action associated.

5 ANALYSIS OF DL MODELS

We have provided the VisMODLE environment with
some analysis mechanisms to validate the dynamics
of a DL specification. More in detail, given the set of
models that conform a DL design, we can:

1. check if some behavioural element reaches a
deadlock state (i.e. local deadlock). In the case of
services, we normally want to keep them always
available, so they should not define final states.
Final states are shown highlighted in the model as
result of the analysis, and they are presented tex-
tually in a dialog window as well.

2. check whether a given behavioural element
reaches certain state. The sequence of state transi-
tions leading to the requested state is shown high-
lighted as a result, and also textually.

3. ask if a given message is always sent in any pos-
sible execution flow. The answer (true or false) is
shown in a dialog window.

4. check if the system execution always finishes (i.e.
global deadlock).

5. detect if there is some state for a behavioural el-
ement that is never reached in the given society.
This may be considered a design error, since we
should not define states that are not possible.

6. check if some behavioural element can receive an
unbounded number of messages at some point,
which could lead to an overflow.

In order to provide these analysis mechanisms, we
have expressed the operational semantics of the mod-
els by means of Petri nets (Murata, 1989) (using a
semantic view, see Figure 6). Thus, we have defined
a triple graph transformation system (TGTS) (Guerra
and de Lara, 2006a) that transforms the repository
into the equivalent Place/Transition Petri net. Once
the net is obtained, we internally use analysis tech-
niques based on the reachability/coverability graph,
as well as model-checking (de Lara et al., 2003). Sim-
ilarly to graph grammars, TGTSs are made of rules
that contain, in this case, triple graphs (instead of
simple ones). Triple graphs are made of three dif-
ferent graphs: source, target and correspondence. In
our case, the source graph is the repository, the tar-
get graph is the Petri net resulting from the transfor-
mation, while the correspondence graph contains ele-
ments relating the elements in the other two graphs.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

40



Figure 12: Triple RuleSM state to PN place.

Figures 12 and 13 show some rules of the TGTS
that build the Place/Transition Petri net from the Vis-
MODLE repository. The idea of the transformation is
transforming the state machines of each behavioural
element into what we call Petri net modules. With this
purpose, states are translated into places (triple rule
shown in Figure 12) and transitions between states
are translated into transitions between places (triple
rule in Figure 13). If a state is initial, then the as-
sociated place will contain one token. In other case,
the place will be empty. In addition, an extra place
is created for each possible message invocation (i.e.
for each possible event and action specified in each
state machine). These places are theinterfaceof the
Petri net module of the behavioural element. If a tran-
sition needs an event for being executed, then an arc
is created from the place corresponding to the event
message, to the Petri net transition corresponding to
the state machine transition. In that case, the Petri net
transition can be executed only if an event of that type
is received (i.e. a token is in the right interface place),
and in addition, the behavioural element is in the right
state (i.e. a token exists in the place corresponding
to the state source of the transition). Similarly, if a
transition specifies an action, an arc is created from
the Petri net transition to the right place of the be-
havioural element’s interface specified in the action.
In this way, executing the transition implies creating
a token in the right interface place, and results in the
interconnection of the different modules. Figure 14
shows the resulting Petri net after applying the TGTS
to the DL example.

Each analysis provided to the VisMODLE mod-
elling environment implies evaluating a CTL logical
expression on the net’s coverability graph (de Lara
et al., 2003). With this purpose, we use a function that
calculates the coverability graph of the net, as well as
a model checker to evaluate the expression, both im-
plemented in AToM3. In order to use these analysis
techniques, users of the VisMODLE environment do
not have to know Petri nets at all. All the analysis pro-
cess is hidden. CTL expressions are defined when the

Figure 13: Triple RuleSM transition to PN transition.

Figure 14: Place/Transition Petri Net for the DL Example.

modelling environment is generated, and hidden to
the final user. The results of analysing the Petri net are
back-annotated and shown to the user in the VisMO-
DLE notation, which is the notation that he knows.
This is possible since we maintain in the correspon-
dence graph the relations between the elements in the
DL and the ones in the Petri net. AToM3 provides
declarative back-annotation mechanisms that allow
the specification of the elements to highlight in the
source model as a result of the analysis. For the ex-
ample, the net showed neither global nor local dead-
locks, all the states were reachable, and the tool sig-
nalled the possibility of unbounded number ofborrow
andborrow requestmessages.

6 RELATED WORK

Formal models for DLs are rarely found, likely due to
the complexity of the field. The approach of (Wang,
1999) defines DLs as a combination of a special-
purpose database and a hypermedia-based UI, and
formalizes them by using the Z language. In (Castelli
et al., 2002) a multidimensional query language for
DLs is used that rely on the notions of views and
versions, metadata formats and specifications, and a
first-order logic based language. (Gonçalves et al.,
2004) presents a formal foundation theory on DLs,
called 5S, based on streams, data structures, spaces,
scenarios and societies. We were inspired on it in or-
der to design VisMODLE. However, these formal ap-

MODEL DRIVEN DEVELOPMENT OF DIGITAL LIBRARIES - Validation, Analysis and Code Generation

41



proaches do not formally specify how to derive the
DL implementation from the DL model.

Other declarative approaches, such as the Digi-
tal Library Definition Language (Maly et al., 2000),
the METIS framework (Anderson et al., 2003) and
the FEDORAs structoid approach (Dushay, 2001), are
not supported by a strict underlying formal theory.

To the best of our knowledge, none of these ap-
proaches provide a customized environment support-
ing code generation as well as validation (animation)
and analysis techniques. By using MDSD techniques,
we help DL experts to cope with the complexity of DL
designs without dealing with coding. In addition, the
use of a DSVL makes it easier for people to learn the
domain concepts and interpret the models, and allows
modelling interactions among DL systems and users
(as proposed in the HCI field). Finally, our approach
generalizes some metadata schemas such as DC, in
the sense that DC data structures can be modelled by
using our structure entities and their relationships.

7 CONCLUSIONS

In this paper, we have presented VisMODLE, a DSVL
for building DLs in a model-driven way. The lan-
guage is made of five diagram types (services, col-
lections, structure, society and behaviour) to describe
the aspects of a DL. We have generated a modelling
environment for it with the AToM3 tool. The environ-
ment integrates a code generator in order to produce
the DL. Although it is in its alpha version, we have al-
ready used it to build prototypes. In addition, we have
built a visual simulator using graph transformation to
graphically validate the DL behaviour at the model
level. In order to perform further analysis, a transfor-
mation into Petri nets has been designed, which al-
lows checking model properties, such as reachability
or deadlocks. This analysis is made by internally per-
forming model-checking of the coverability graph by
using predefined temporal logic formulae.

In the future, we intend to support XDoclet for the
specification of the VisMODLE services. It allows
automatic code generation, compliant with a stan-
dard, which simplifies coding for various technolo-
gies, such as Java or Web Services. It would be also
interesting to generate code for some orchestration
language to reflect the overall behaviour of the soci-
etal model.

ACKNOWLEDGEMENTS

Work supported by projects MODUWEB (TIN2006-
09678) and MOSAIC (TIC2005-08225-C07-06) of
the Spanish Ministry of Science and Education.

REFERENCES

Anderson, K. M., Andersen, A., Wadhwani, N., and Bar-
tolo, L. M. (2003). Metis: Lightweight, flexible, and
web-based workflow services for digital libraries. In
JCDL, pages 98–109.

Castelli, D., Meghini, C., and Pagano, P. (2002). Founda-
tions of a multidimensional query language for digital
libraries. InECDL, pages 251–265.

de Lara, J., Guerra, E., and Vangheluwe, H. (2003). Meta-
modelling, graph transformation and model checking
for the analysis of hybrid systems. InAGTIVE’03,
volume 3062 ofLNCS, pages 292–298. Springer.

Dushay, N. (2001). Using structural metadata to localize
experience of digital content.CoRR, cs/0112017.

Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006).
Fundamentals of Algebraic Graph Transformation.
Springer-Verlag.

Gonçalves, M. A., Fox, E. A., Watson, L. T., and Kipp,
N. A. (2004). Streams, structures, spaces, scenarios,
societies (5s): A formal model for digital libraries.
ACM Trans. Inf. Syst., 22(2):270–312.

Guerra, E. and de Lara, J. (2006a). Attributed typed triple
graph transformation with inheritance in the double
pushout approach. Technical Report UC3M-TR-CS-
06-01, Universidad Carlos III (Madrid).

Guerra, E. and de Lara, J. (2006b). Model view manage-
ment with triple graph transformation systems. In
ICGT’06, volume 4178 ofLNCS, pages 351–366.

Kochtanek, T. R. and Hein, K. K. (1999). Delphi study of
digital libraries.Inf. Proc. Manag., 35(3):245–254.

Licklider, J. C. R. (1965).Libraries of the Future. MIT
Press, Cambridge, Mass.

Malizia, A., Guerra, E., and de Lara, J. (2006). Model-
driven development of digital libraries: Generating the
user interface. InProc. MDDAUI’06.

Maly, K., Zubair, M., Anan, H., Tan, D., and Zhang,
Y. (2000). Scalable digital libraries based on nc-
strl/dienst. InECDL, pages 168–179.

Murata, T. (1989). Petri nets: Properties, analysis and ap-
plications.Proc. of the IEEE, 77(4):541–580.

Reddy, R. and Wladawsky-Berger, I. (2001). Digital li-
braries: Universal access to human knowledge—a re-
port to the president. InPITAC, Panel on DLs.

Völter, M. and Stahl, T. (2006).Model-Driven Software
Development. Willey.

Wang, B. (1999). A hybrid system approach for supporting
digital libraries.JDL, 2(2-3):91–110.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

42


