
DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB
CLUSTERS

An Adaptation of the LARD Algorithm

Jose Daniel Garcia, Laura Prada
Computer Architecture Group, University Carlos III of Madrid, Avda Universidad Carlos III, 22, Colmenarejo, Madrid, Spain

Jesus Carretero, Felix Garcia, Javier Fernandez, Luis Miguel Sanchez
Computer Architecture Group, University Carlos III of Madrid, Avda de la Universidad, 30, Leganes, Madrid, Spain

Keywords: Web cluster, content replication, reliability.

Abstract: Traditional alternatives for Web content allocation have been full replication and full distribution. An hybrid
alternative is partial replication where each content element is replicated to a subset of server nodes. Partial
replication gives advantages in terms of balancing reliability and storage capacity. However, partial replication
has architectural implications. In this paper we present a Web cluster architecture which may be used in single
switched Web clusters and multiple switched Web clusters. We present an algorithm for Web content allocation
which determines the number of replicas for each content based on its relative importance and that performs
the allocation keeping in mind resource constraints in clusters with heterogeneous storage capacity. We also
provide an adaptation of the LARD algorithm for request dispatching that copes with the fact that contents are
partially replicated. Our evaluations show that performance of partial replication solutions is comparable to
performance of traditional fully replicated solutions.

1 INTRODUCTION

During the last years the demand of high performance
Internet Web servers has increased dramatically. The
target is a solution which is scalable in both perfor-
mance and storage capacity, while reliability is not
compromised. The traditional standalone Web server
approach presents severe scalability limits which may
be partly mitigated by means of hardware scale-up
(Devlin et al., 1999) which may be viewed as a short
term solution. Web server performance may also be
improved by acting on the operating system (Banga
et al., 1998; Pai et al., 2000) or on the Web server
software itself (Pai et al., 1999; Shukla et al., 2004).

Another approach is the distributed Web server
(Cardellini et al., 2002) where a set of server nodes
are used to host a Web site. In those systems, per-
formance scalability may be achieved by adding new
server nodes. Different architectures have been pro-
posed for distributed Web servers. A common feature
to those architectures is the fact that the set of server
nodes offer a single system image to clients. Existing
solutions may be classified in three families:

Cluster based Web Systems. In this solution

(also known asWeb Cluster) server nodes own IP ad-
dresses are not visible to clients. Instead, clients use a
virtual IP address which corresponds to the address of
some request distribution device orWeb Switch. The
Web switch (Aron et al., 1999; Schroeder et al., 2000)
receives requests from clients and sends each request
to a server node.

Virtual Web clusters. All the server nodes share
a single common public IP address (Vaidya and Chris-
tensen, 2001). Each node receives all messages, but
every request is discarded by all nodes except one.

Distributed Web systems. Each node has its
own different publicly visible IP address (Aversa and
Bestavros, 2000; Cardellini, 2003). Request distri-
bution is made by a combination of dynamic DNS
(Brisco, 1995) and request redirection.

Usually, content allocation has been based on full
content replication (where every file is replicated into
every server node) or on full distribution (where every
file is stored in one and only one server node).

With full replication (Kwan et al., 1995; Devlin
et al., 1999) the system is highly reliable and request
distribution is easy to implement, as each request may
be served by any server node. On the other hand, stor-

141
Daniel Garcia J., Prada L., Carretero J., Garcia F., Fernandez J. and Miguel Sanchez L. (2007).
DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB CLUSTERS - An Adaptation of the LARD Algorithm.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 141-149
DOI: 10.5220/0001265201410149
Copyright c© SciTePress

age scalability is minimal, as the full storage capacity
is limited by the server node with the lowest capacity.
Furthermore, adding new server nodes to the system
does not increase storage capacity.

Figure 1: Architecture of a SSWC.

With full distribution the system gives a lower re-
liability (a node failure makes some content unavail-
able) and request distribution needs to use some sort
of directory service (Baker and Moon, 1999; Apos-
tolopoulos et al., 2000) to determine which node is
storing the requested file. On the other hand, storage
scalability is maximum, as adding a new node means
increasing the total amount of available storage.

A third alternative is partial replication (Li and
Moon, 2001; Garcia et al., 2003; Zhuo et al., 2003;
Tse, 2005), where each file is replicated in a possi-
bly different subset of the server nodes. With partial
replication reliability is higher than with full distribu-
tion and lower than with full replication. In terms of
storage capacity, partially replicated solutions provide
less capacity than fully distributed solutions, but far
more than fully replicated solutions. However, an im-
portant difference with full replication is that partial
replication provides storage capacity scalability (i.e.
adding new server nodes increases the system storage
capacity), while full replication does not.

In this paper we present a solution for partial repli-
cation of contents in Web clusters. The paper is orga-
nized as follows. Section 2 discusses alternatives for
the general architecture of a distributed Web server
with partial replication and justifies the selection of
the Web cluster architecture, giving design details for
single switch and multiple switch variants. Section
3 presents our algorithm to determine the number of
replicas for each element of a Web site and to allo-
cate them to a set of server nodes. Section 4 presents
an adaptation of the well known LARD algorithm for
the case of partial replication of contents. Section 5
shows our evaluation results. In section 6 we sum-
marize our conclusions. Finally section 7 outlines our
future work.

2 ARCHITECTURAL
ALTERNATIVES

Partial replication restricts the architectural alterna-
tives for a distributed Web server. When a Web re-
quest arrives into the system, that request cannot be
sent to any node in the system, as not every node
stores every content. Besides, every file is not stored
in a single node. Instead, it is replicated in a set of
server nodes. Thus, a mechanism to determine that
set of server nodes is needed.

Virtual Web Clusterscannot be easily integrated
with the idea of partial replication (Garcia et al.,
2006b). In that case, every request reaches to every
node of the cluster. Nodes not storing the requested
content may ignore the request. But if two or more
nodes store the requested content it is not simple to
determine which node should take the responsibility
of answering the request, because most implementa-
tions make their selection using a hash function based
only on client IP address and port. Such hash func-
tions may lead to select a node not containing the re-
quested file. Furthermore, in most cases communica-
tion among cluster nodes is not feasible, and that fact
excludes the possibility that a node may notify others
when it takes the responsibility of taking in charge of
a request and its response.

In a Distributed Web Systemany request may
reach any node, but it is guaranteed that one request
reaches to one and only one node. However, there is
no guarantee that the node receiving the request con-
tains a replica of the requested node. In that case the
only solution is that the node receiving the request
performs a redirection to another node, which effec-
tively contains the requested resource. This fact in-
troduces additional complexities in the load balancing
mechanisms.

Although it is not impossible to integrate the par-
tial replication strategy into aVirtual Web Clusteror
into aDistributed Web System, we consider that such
strategy can be more easily integrated into aWeb
Cluster. The main difference of aWeb Clusterwith
other architectures is that it has a single point where
every request arrives (theWeb Swtich). In case of
partial replication, the Web Switch must be a con-
tent aware one (Cardellini et al., 2002). That is, the
switch must operate at level 7 of the protocol stack
and it must parse each request before deciding to
which server node that request will be routed. In a
previous work (Garcia et al., 2006a) we showed that
a Web Cluster with partial replication using a small
amount of replicas per file offers a reliability equiv-
alent to that of a fully replicated system and, at the
same time, it offers a much higher storage capacity.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

142

Figure 2: Internal architecture of Web Switch software for
a SSWC.

However, reliability is negatively affected by the fact
of using a singleWeb Swtich, which is a single point
of failure. That flaw is mitigated by using more than
one Web Switch (2 or three are enough).

2.1 Single Switched Web Cluster
Architecture

In a Single Switched Web Cluster (SSWC), every re-
quest arrives into the Web Switch. The Web Switch is
responsible for the selection of the node which must
serve the request (through a dispatching algorithm).
The Web Switch is also responsible for sending the
request to the selected node (through a request routing
algorithm). Existing solutions do not apply, because
they usually assume either that every file is replicated
in every node (full replication of contents) or that ev-
ery file is stored in one and only one node (full distri-
bution of contents). However, the general architecture
is very similar to that of a standard Web Cluster (see
Fig. 1) where every server node has two network in-
terfaces: one connected to the Web Switch network,
and another one connected to a high bandwidth output
link.

In case of partial replication the dispatching algo-
rithm is dependent of the exact set of nodes effectively
containing the requested file. Thus, theWeb Switch
must have the knowledge of the mapping of each file
to nodes (the set of nodes where it resides). It is for
that reason that content blind routing is not applica-
ble. As the dispatching algorithm must use the allo-
cation information, some sort ofdirectory serviceis
needed to keep such information. Although a generic
directory service could lead to excessive delays, it is
possible to build low demanding resources data struc-
tures with lower delays (Apostolopoulos et al., 2000).

As an example, Luo et al. (Luo et al., 2002) imple-
mented a data structure using URL formalization and
multilevel hash tables. Their solution stored the infor-
mation related to 76000 files in 540 KB and the time
needed for a query was about 1.12 microseconds.

Once the dispatching algorithm has selected a
server node for a request, it is necessary to use some
request routing mechanism to effectively send the re-
quest to the selected node. As we have already stated,
request routing needs to be content aware. The rout-
ing mechanism may be implemented at the applica-
tion level (e.g. TCP gateway (Casalicchio and Co-
lajanni, 2001)) or at the operating system kernel level
(e.g. TCP splicing (Maltz and Bhagwat, 1999) or TCP
handoff (Pai et al., 1998)).

Several modules are needed in the Web Switch
software, as depicted in Fig. 2:

• Request dispatchingReceives requests and se-
lects the node which must serve each request. The
request dispatching algorithm uses replica alloca-
tion information (given bydirectory service) and
node state information (given bymonitoringmod-
ule).

• Request Routing Receives dispatched requests
and performs request routing to selected server
node. We propose the usage of TCP handoff for
efficient request routing.

• Directory service Efficiently keeps replica allo-
cation to node information.

• Monitoring Keeps node state information (pro-
vided periodically by each node) which is used
by therequest dispatchingmodule. It also keeps
trace of routed requests information (provided by
therequest routingmodule).

Modules in gray color are new (or need modifica-
tion) in our architecture. Adirectory servicemodule
has to be added to keep track of the mapping of files to
nodes. Besides therequest dispatchingmodule needs
to be modified to use the information of the directory
service.

2.2 Multiple Switched Web Cluster
Architecture

SSWC architecture presents a reliability drawback.
As they have a single switch, that element becomes
in a single point of failure. That is, if there is a failure
in the Web switch, the full system fails. To avoid this
flaw, we propose a modified architecture: the multiple
switched Web Cluster (MSWC) based on the concept
of distributed Web switch.

DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB CLUSTERS - An Adaptation of the LARD
Algorithm

143

Figure 3: Request routing in a MSWC.

The main idea is the usage of a set of Web
switches as front end of the Web cluster. This al-
lows a high increase of the global reliability (Garcia
et al., 2006a). To distribute request arrival among the
Web switches, we use the combination of two mech-
anisms: dynamic DNS and request redirection among
switches.

Dynamic DNS (Andresen et al., 1997) has been
widely used in conjunction withDistributed Web Sys-
temsto share requests from clients among a set of
publicly available nodes. However, this technique is
of limited usefulness due to DNS caching, as several
experiments (Colajanni et al., 1998) have shown.

To complement dynamic DNS, each Web switch
may redirect some requests to another Web switch of
the front end. In our system, when a Web switch is
highly loaded, it redirects incoming requests to an-
other Web switch. That redirection may be performed
by means of standard HTTP redirection.

Fig. 3 shows the flow of a request in a MSWC.
When a client starts a request, it first issues a DNS
resolution request (1), which is answered by the DNS
server (2) with the IP address of a Web switch in the
front end of the cluster. The client then sends a HTTP
request to the selected Web switch (3), which may an-
swer with a redirection to another Web switch (4). In
that case, the client resends the HTTP request to the
newly selected Web switch (5). The Web switch se-
lects a server node through its dispatching algorithm
and resends the HTTP request to it (6). At last, the
selected node answers the client (7).

For the solution to work properly, each Web
switch must monitor its own state and, periodi-
cally, exchange that information with the other Web
switches. This allows that each switch may have
enough information to decide when it is able to trans-
fer some requests to another switch to achieve some
degree of load balancing at the front end level. It is
important to remark that transferring a request to an-
other switch has a lower cost than keeping it in the

original switch. That is because transfer operation
may be performed in a content blind manner at the
TCP level of the protocol stack and may be easily
integrated in the operating system kernel. When a
switch takes the responsibility of managing a request
it selects a server node and it routes the request to that
server node.

The structure of the software running in each
server node (see Fig. 4) is more complex than the one
used for a SSWC. Main modules are listed below:

• Switch routing filter Decides if an incoming re-
quest may be processed by the current switch or if
there is a better switch to serve the request. The
decision is based on the load state of every switch.
That information is provided by the state synchro-
nization module.

• Request dispatchingReceives requests not dis-
carded by the switch routing filter and selects the
node which must serve each request. The request
dispatching algorithm uses replica allocation in-
formation (given by directory service) and system
state information (given by state synchronization).

• Request routing Receives dispatched requests
and performs request routing to selected server
node. We propose the usage of TCP handoff for
efficient request routing.

• Directory service Efficiently keeps replica allo-
cation to node information. To reduce commu-
nication overheads we place a directory service
replicated in every Web Switch of the system.

• Monitoring Keeps node state information (pro-
vided periodically by each node). It also keeps
trace of routed requests information (provided by
the request routing module). The information it
gathers is provided to the state synchronization
module to build an integrated system state view.

• State synchronization Periodically notifies the
rest of Web switches about its own state. This al-
lows that every switch has knowledge about the
state of other switches. That information is inte-
grated with information about server nodes pro-
vided by the monitoring module to help switch
routing filter and request dispatching modules to
make their own decissions.

3 REPLICA ALLOCATION

A key point to use a partial replication strategy is
replica allocation. That means answering two ques-
tions:

WEBIST 2007 - International Conference on Web Information Systems and Technologies

144

Figure 4: Internal architecture of Web Switch software for
a MSWC.

1. How many replicas must be used for each ele-
ment?

2. How must the replicas for different elements be
distributed over the cluster?

For question 1 the most easy solution would be to
use a fixed number of replicas for each element (e.g.
three replicas per file). This solution does not takes
into account the fact that some files do not need to be
replicated as they are rarely accessed. Besides, hav-
ing the same number of replicas for each file leads
to problems when nodes have heterogeneous storage
capacities. Having an architecture that allows hetero-
geneous storage capacities is an useful feature when
scaling up nodes as it is not needed that every node
has the same storage capacity.

To select the number of replicas to be used for
each element, some criteria (or combination of cri-
teria) is needed. That allocation criteria may be ex-
pressed as the relative importance of the element or
file. One example for such criteria is access frequency
to elements. In that case, more replicas could be used
for highly accessed elements, using few replicas for
elements seldomly accessed. Another example of cri-
teria is relative importance for the content provider.
In that case, important elements have more replicas to
provide a better fault tolerance.

Let si be the size of elementei , c j the capacity
of j-th server node andwi the normalized weight for
elementei . A first approach is to assign for each el-
ement an amount of space proportional to its weight,
and determine the number or replicasr i that can fit in
that space, as shown in (1). To ensure that at least one
replica is assigned to every element, only the remain-
ing space after assigning first replica is distributed
among elements.

Table 1: Meaning of symbols used to express replica allo-
cation algorithm.

Symbol Meaning
N Number of elements in Web site
M Number of server nodes
wi Weight for i-th element
c j Storage capacity forj-th server node
si Size ofi-th element
r i Unadjusted number of replicas fori-th

element
r∗i Adjusted number of replicas fori-th el-

ement

r i = 1+

wi

(

M

∑
j=1

c j +
N

∑
k=1

sk

)

si
(1)

However, (1) may lead in results of more than M
replicas for an specific element. To correct this, we
definer∗i to adjust the number of replicas to a value in
the integer interval[1,M], as shown in (2).

r∗i =

{

M if r i > M

⌊r i⌋ if r i ≤M
(2)

Once the number of replicas has been determined
for each element, and in order to answer question 2,
an algorithm is needed to allocate replicas to server
nodes. For this, we use a greedy algorithm which al-
locates first larger files and afterward smaller ones.
Algorithm 1 shows our approach which determines
the number of replicas for each element and allocates
them to server nodes, and Table 1 shows notation for
the algorithm.

Algorithm 1 Greedy algorithm for replica allocation.
for i = 1 toN do

r i ← 1+wi(
M

∑
j=1

c j +
N

∑
k=1

sk)/si

r∗i ←min{M, r i}
j ← k∈ [1,M] |∀lck > cl
for l = 1 to r∗i do

ail ← 1
cl ← cl −si

end for
end for

DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB CLUSTERS - An Adaptation of the LARD
Algorithm

145

4 REQUEST DISPATCHING
ALGORITHM

In both architectures SSWC and MSWC request dis-
patching is a key element, as it receives a request and
it selects the server node responsible for processing
that request. We have adapted LARD (locality aware
request distribution) (Aron et al., 2000) for the context
of partial replication of Web contents. We name our
version PLARD (Partial LARD). LARD tries to max-
imize the hits on file systems caches and Web server
caches. To achieve this goal the algorithm tries to as-
sign all the requests of a file to the same server node,
when that node is below a certain load level. Only
when the server node is highly loaded a new node is
selected to serve requests to that file.

LARD algorithm assumes that every file may be
found on every server node. That is, the algorithm is
suitable for fully replicated Web clusters. In a par-
tially replicated Web clusters some adaptations are
needed:

1. If the number of replicas for a specific file is se-
lected using the probability for that file to be re-
quested, only one replica is used for such file. It is
important to remark that it should be expected for
a large number of files to be in that category, as
many files are rarely accessed. For all those files
the dispatching algorithm is not needed as there is
only one server node capable of serving requests.

2. The algorithm must consider, for each file, only
the server nodes where it is effectively stored.
This means, that the set of nodes assigned to ser-
vice a file must be a subset of the set of nodes
effectively storing that file.

In Table 2 we show the notation we use for our
PLARD algorithm.

Initially (see algorithm 2), a family of setsS is
constructed where each setSi contains the server
nodessj where the fileei is stored. Besides, a sec-
ond family of setsU is constructed where every set
Ui is initially empty. Every setUi is used to store the
server nodes assigned to service requests for an spe-
cific elementei . Additionally, the valuetmod

i is set to
0 for each fileei . That value is used to keep track of
the latest instant in which the corresponding file has
been modified.

When a request reaches the Web switch (see al-
gorithm 3), the number of server nodes capable of
servicing the request is determined (|Si |). If the re-
quested element may be only serviced by on node, the
request is assigned to that node. Otherwise the corre-
spondingUi set is analyzed (i.e. the set of nodes cur-
rently assigned to service requests for that element).

Table 2: Meaning of symbols used to express PLARD algo-
rithm.

Symbol Meaning
N Number of elements in Web site
M Number no server nodes
ai j Element allocation matrix element (1 if

elementi is allocated to serverj)
Si Set containing server nodes where the

i-th element is stored
si
k k-th element of setSi

Ui Set containing nodes currently servic-
ing requests for elementi

ui
k k-th element of setUi

load(si
k) Load level ofk-th node in setSi

tmod
i Instant when setTi was modified last

time
t Current time.

Algorithm 2 Value initialization for PLARD.
for i = 1 toN do

tmod
i ← 0
Si ← /0
Ui ← /0
for j = 1 toM do

if ai j = 1 then
Si ← Si ∪

{

sj
}

end if
end for

end for

When setUi is empty, the least loaded node of
corresponding setSi is selected and added to setUi .
When setUi is non-empty, the least loaded node (ssel)
of setUi is selected, if it is below a load threshold. If
there is no node in setUi below load threshold, a new
node is selected to be added to setUi . A special case
is when all nodes containing replicas of the requested
element are in setUi (i.e. |Ui | = |Si |). In such a case,
the least loaded node inUi is used to serve the request.

When load associated to an element decreases, an
element is eliminated from the correspondingUi set.
To achieve this, whenever setUi is updated the corre-
sponding modification timetmod

i is updated to current
time. If after a timeouttrevno change has happened
to setTi , the least loaded node ofTi is eliminated.

5 PERFORMANCE EVALUATION

Even if reliability and storage capacity are key issues
for a Web server, these goals must be achieved with-
out loss of performance or with a minimum loss. To

WEBIST 2007 - International Conference on Web Information Systems and Technologies

146

Algorithm 3 Request dispatching in PLARD.

if |Si |= 1 then
Select nodesi

1
else

if Ui = /0 then
ssel← si

j ∈ Si |load(si
j) = min

si
k∈Si

{

load(si
k)
}

Ui ←Ui ∪{ssel}
tmod
i ← t
Select nodessel

else
ssel← ui

j ∈Ui |load(ui
j) = min

ui
k∈Ui

{

load(ui
k)
}

if |Ui |= |Si | then
Select nodessel

else if load(ssel) > LMAX and∃si
k|load(si

k) <
LMIN or load(ssel)≥ 2LMAX then

s′sel← si
j ∈ Si |load(si

j) = min
si
k∈Si

{

load(si
k)
}

Ui ←Ui ∪
{

s′sel

}

tmod
i ← t
Select nodes′sel

else
Select nodessel

end if
if |Si |> 1 andt− tmod

i > trev then
selim ← ui

j ∈ Ui |load(ui
j) =

max
ui

k∈Ui

{

load(ui
k)
}

Ui ←Ui−{selim}
tmod
i ← t

end if
end if

end if

evaluate performance of our solutions we have built
a simulation model using the OMNeT++ 3.0 frame-
work (http://www.omnetpp.org).

For our simulations we have used a Web cluster
with 16 server nodes. We have set up 800 client ma-
chines which are continuously performing Web re-
quests to the cluster. Requests are routed using an
one-way strategy (responses from server nodes use a
different connection so they do not return through the
Web switch). Table 3 shows the main simulation pa-
rameters used in the evaluations which are consistent
with other works (Barford and Crovella, 1998; Casal-
icchio and Colajanni, 2001; Cardellini, 2003).

In our evaluation we have compared full replica-
tion of contents (FREP), where every file is replicated
into every node, to partial replication (PREP) where
files are partially replicated. In the latter case we have
used file popularity as selection criteria. We use Zipf

function as as popularity model (Breslau et al., 1999).
We have used two test scenarios: a SSWC and a

MSWC with three Web switches. For each scenario
we performed 35 simulation realizations with differ-
ent random seeds. Table 4 shows mean service time
and variance for SSWC and MSWC.

The obtained results show slight overheads in case
of partial replication over the case of full replication.
To estimate if there is difference in obtained results
we have conducted an analysis of variance (ANOVA)
with α = 0.05 over our simulation results. In both
cases, SSWC and MSWC, we obtained a probability
that there is no difference in results of more than 99%.

Thus, there is no evidence, in our simulation ex-
periments, that the usage of a partial replication strat-
egy affects negatively performance. This is true for
both, our experiments of a SSWC and for our exper-
iment using a front-end of three Web switches. It is
remarkable to note that, even if we admitted that per-
formance is not equal differences in performance are
below 0.5% which makes our solution very useful as
it offers a very good tradeoff between reliability and
storage capacity.

6 CONCLUSION

In this paper we have presented a Web cluster ar-
chitecture which may be used in presence of partial
replication. Our previous works have shown that par-
tial replication allows to balance global reliability and
storage capacity. In this work we have focused on
the needed architecture for a cluster based Web sys-
tem to provide services when contents are partially
replicated. Using the Web cluster as base architecture
allows that key changes are needed only in the Web
switch component.

We have presented two variants of our architec-
ture: one for single switched web clusters and another
one for multiple switched web clusters. Both archi-
tectures share as a key element an efficient directory
service to keep track of file to node mappings.

When using partial replication, two issues have to
be solved: (1) the replica allocation strategy and (2)
the request dispatching algorithm used to select the
server node responsible to service every request. For
replica allocation strategy we have presented an algo-
rithm that keeps in mind storage resource constraints
and gives more replicas to more relevant files. Rele-
vancy of files may be defined in terms of popularity,
relative importance of the content or any other orga-
nization defined criteria. It is remarkable to note that
our algorithm may be used when nodes have hetero-
geneous storage capacities. For request distribution

DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB CLUSTERS - An Adaptation of the LARD
Algorithm

147

Table 3: Simulation parameters used in the evaluation.

Parameter Distribution
Number of embedded files Pareto (α = 2.43,k = 1)
Main files size (body) Lognormal (µ= 7.63,σ = 1.001)
Main files size (tail) Pareto (α = 1,k = 10240)
Embedded files size Lognormal (µ= 8.215,σ = 1.46)
Inter session time Pareto (α = 1.4,k = 20)
Requests per session Inverse gaussian (µ= 2.86,λ = 9.46)
Inactivity time Pareto (α = 1.4,k = 1)
Parsing time Weibull (α = 1.46,β = 0.382)

Table 4: Mean service time and correspondig variance for request processing in SSWC and MSWC.

Replication SSWC MSWC
Mean Percentile-90 Mean Percentile-90

FREP 5.423566866 s. 12.91512182 s. 5.437371853 s. 13.04278589 s.
PREP 5.423986327 s. 12.97181347 s. 5.437461929 s. 13.03745480 s.

we have adapted the LARD algorithm for the case of
partial replication leading to our PLARD.

The performance evaluation suggest, that there is
no significant difference in performance between full
replication and partial replication. Moreover, even if
we assume that there is a difference this would be be-
low 0.5%. The main advantage of our solution is that
is capable to offer a good balance among storage ca-
pacity and reliability.

7 FUTURE WORK

The solution we have presented if of static nature in
the sense that replica allocation is performed at start
phase and it is then frozen. However conditions of a
Web site may vary when new contents are added, or
the usage pattern is modified. It is for this reason that
we plan to redefine our architecture so that replica al-
location may be automatically updated incorporating
properties of self-managed systems. This will be spe-
cially useful in cases where file popularity is used as
replica allocation criteria.

ACKNOWLEDGEMENTS

This work has been partially supported by the Span-
ish Ministry of Science and Education under the
TIN2004-02156 contract and Madrid Regional Gov-
ernment under contract UC3M-INF-05-003.

REFERENCES

Andresen, D., Yang, T., and Ibarra, O. H. (1997). Toward a
scalable distributed www server on workstation clus-
ters. Journal on Parallel and Distributed Computing,
42(1):91–100.

Apostolopoulos, G., Aubespin, D., Peris, V., Pradham, P.,
and Saha, D. (2000). Design, implementation and
performance of a content-based switch. InProceed-
ings of the Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (IN-
FOCOM 2000), volume 3, pages 1117–1126.

Aron, M., Druschel, P., and Zwaenepoel, W. (1999).
Efficient support for P-HTTP in cluster-based web
servers. InProceedings of the 1999 USENIX Annual
Technical Conference, pages 185–198.

Aron, M., Sanders, D., Druschel, P., and Zwaenepoel, W.
(2000). Scalable content-aware request distribution in
cluster-based network servers. InProceedings of the
2000 USENIX Annual Technical Conference, pages
232–336.

Aversa, L. and Bestavros, A. (2000). Load balancing a clus-
ter of web servers: using distributed packet rewriting.
In Conference Proceedings of the 2000 IEEE Interna-
tional Performance, Computing, and Communications
Conference (IPCCC 2000), pages 24–29.

Baker, S. M. and Moon, B. (1999). Distributed cooperative
web servers.Computer Networks, 31(11–16):1215–
1229.

Banga, G., Druschel, P., and Mogul, J. C. (1998). Better
operating system features for faster network servers.
Performance Evaluation Review, 26(3):23–30.

Barford, P. and Crovella, M. (1998). Generating represen-
tative web workloads for network and server perfor-
mance evaluation.SIGMETRICS Performance Evalu-
ation Review, 26(1):151–160.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

148

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S.
(1999). Web caching and Zipf-like distributions: Ev-
idence and implications. InEighteenth Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies (INFOCOMM ’99), volume 1, pages
126–134.

Brisco, T. (1995).DNS Support for Load Balancing. RFC
1794. Internet Engineering Task Force.

Cardellini, V. (2003). Request redirection algorithms for
distributed web systems.IEEE Transactions on Par-
allel and Distributed Systems, 14(4):355–368.

Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S.
(2002). The state of the art in locally distributed Web-
server systems.ACM Computing Surveys, 34(2):263–
311.

Casalicchio, E. and Colajanni, M. (2001). A client-aware
dispatching algorithm for web clusters providing mul-
tiple services. InProceedings of the tenth interna-
tional conference on World Wide Web, pages 535–544.

Colajanni, M., Yu, P. S., and Dias, D. M. (1998). Analy-
sis of task assignment policies in scalable distributed
web-server systems.IEEE Transactions on Parallel
and Distributed Systems, 9(6):585–600.

Devlin, B., Gray, J., Laing, B., and Spix, G. (1999). Scal-
ability terminology: Farms, clones, partitions, and
packs: RACS and RAPS. Technical Report MS-TR-
99-85, Microsoft Research.

Garcia, J. D., Carretero, J., Garcia, F., Calderon, A., Fer-
nandez, J., and Singh, D. E. (2006a). On the reliabil-
ity of web clusters with partial replication of contents.
In First International Conference on Availability, Re-
liability and Security, 2006. ARES 2006., pages 617–
624.

Garcia, J. D., Carretero, J., Garcia, F., Fernandez, J.,
Calderon, A., and Singh., D. E. (2006b). A quanti-
tative justification to partial replication of web con-
tents. InInternational Conference on Computational
Science and its Applications, volume 3983 ofLecture
Notes in Computer Science, pages 1136–1145.

Garcia, J. D., Carretero, J., Prez, J. M., Garcia, F., and Fer-
nandez, J. (2003). A distributed web switch for par-
tially replicated contents. InProceedings of the 7th
World Multiconference on Systemics, Cybernetics and
Informatics (SCI 2003), volume VIII, pages 1–6, Or-
lando, FL, USA.

Kwan, T. T., McGrath, R. E., and Reed, D. A. (1995).
NCSA’s world wide web server: design and perfor-
mance.IEEE Computer, 28(11):68–74.

Li, Q. and Moon, B. (2001). Distributed cooperative
Apache Web server. InProceedings of the tenth inter-
national conference on World Wide Web, pages 555–
564.

Luo, M.-Y., Tseng, C.-W., and Yang, C.-S. (2002). URL
formalization: An efficient technique to speedup
content-aware switching.IEEE Communications Let-
ters, 6(12):553–555.

Maltz, D. A. and Bhagwat, P. (1999). TCP splice for ap-
plication layer proxy performance.Journal of High
Speed Networks, 8(3):225–240.

Pai, V. S., Aron, M., Banga, G., Svendsen, M., Zwaenepoel,
P. D. W., and Nahum, E. (1998). Locality-aware
request distribution in cluster-based network servers.
ACM SIGPLAN Notices, 33(11):205–216.

Pai, V. S., Druschel, P., and Zwaenepoel, W. (1999). Flash:
An efficient and portable Web server. InProceedings
of the USENIX 1999 Annual Technical Conference,
pages 199–212.

Pai, V. S., Druschel, P., and Zwaenepoel, W. (2000). IO-
Lite: A unified I/O buffering and caching system.
ACM Transactions on Computer Systems, 18(1):37–
66.

Schroeder, T., Goddard, S., and Ramamurthy, B. (2000).
Scalable web server clustering technologies.IEEE
Network, 14(3):38–45.

Shukla, A., Li, L., Ward, A. S. P., and Brecht, T. (2004).
Evaluating the performance of user-space and kernel-
space web servers. InProceedings of the 2004 Con-
ference of the Centre for Advanced Studies on Collab-
orative Research, pages 189–201.

Tse, S. S. H. (2005). Approximate algorithms for document
placement in distributed web servers.Transactions on
Parallel and Distributed Systems, 16(6):489–496.

Vaidya, S. and Christensen, K. J. (2001). A single system
image server cluster using duplicated MAC and IP ad-
dresses. InProceedings of the 26th Annual IEEE Con-
ference on Local Computer Networks (LCN 2001),
pages 206–214.

Zhuo, L., Wang, C.-L., and Lau, F. C. M. (2003). Document
replication and distribution in extensible geographi-
cally distributed web servers.Journal of Parallel and
Distributed Computing, 63(10):927–944.

DISPATCHING REQUESTS IN PARTIALLY REPLICATED WEB CLUSTERS - An Adaptation of the LARD
Algorithm

149

