EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE
TRANSACTIONS FROM EB3 ATTRIBUTE DEFINITIONS

Frédéric Gervais
CEDRIC, CNAM-IIE
18 Allée Jean Rostand, 91025 Evry, France

Panawé Batanado, Marc Frappier
GRIL, Université de Sherbrooke
Sherbrooke (Québec) J1K 2R1, Canada

Régine Laleau
LACL, Université Paris 12
IUT Fontainebleau, 77300 Fontainebleau, France

Keywords:

Abstract:

EB3, trace, pattern matching, transaction, Java, SQL.

EB3 is a formal language for specifying information systems (IS). In EB3, the sequences of events accepted

by the system are described with a process algebra; they represent the valid traces of the IS. Entity type
and association attributes are computed by means of recursive functions defined on the valid traces of the
system. In this paper, we present EB3TG, a tool that synthesizes Java programs that execute relational database
transactions which correspond to EB3 attribute definitions.

1 INTRODUCTION

We are mainly interested in the formal specification
of information systems (IS) (Gervais, 2004). In our
viewpoint, an IS is a software system that allows an
organization to collect and to manipulate all its rele-
vant data. In particular, an IS includes software ap-
plications and tools to query and modify the database
(DB), to friendly communicate query results to users
and to allow administrators to control and modify the
whole system. The use of formal methods to design
IS (Frappier and St-Denis, 2003; Mammar, 2002) is
justified by the high value of data from corporations
like banks, insurance companies, high-tech industries
or government organizations.

Currently, the most widely used paradigm for spec-
ifying IS is the state transition paradigm. In state-
based specifications, a system is generally described
by defining state invariant properties that must be pre-
served by the execution of operations. Thus, data in-
tegrity constraints are described by means of invariant
properties. For instance, existing approaches using
state transitions for specifying IS include RoZ (Dupuy
et al., 2000), OMT-B (Meyer and Souquiéres, 1999)
and UML-B (Laleau and Mammar, 2000). EB* (Frap-
pier and St-Denis, 2003) is a formal language spe-

44

Gervais F., Batanado P., Frappier M. and Laleau R. (2006).

cially created for specifying IS. The language is based
on event traces and the approach is orthogonal in
specification style with respect to formal languages
based on state transitions (Fraikin et al., 2005).

1.1 An Overview of EB3

EB? (entity-based black box) is a formal language in-
spired from the JSD (Jackson system development)
method (Jackson, 1983) and from the black box con-
cept of Cleanroom (Prowell et al., 1999). A black
box is a function from sequences of input events to
outputs. The terms entity type and entity are used
instead of class and object, respectively. In EBS3,
a process algebra inspired from CSP (Hoare, 1985)
and LOTOS (Bolognesi and Brinksma, 1987), is used
to specify IS entities as black boxes. Thus, the se-
quences of events accepted by the IS, which are called
the valid input traces of the system, are described by
process expressions.

The core of EB3 includes a process and a formal
notation to described a precise and complete speci-
fication of the input-output behaviour of IS. An EB?
specification is composed of five parts:

1. A user requirements class diagram describes the
entity types and associations of the IS, and their

EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE DEFINITIONS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 44-51

DOI: 10.5220/0002494800440051
Copyright © SciTePress

EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE

respective actions and attributes. This diagram
is based on entity-relationship (ER) model con-
cepts (Elmasri and Navathe, 2004) and uses a
UML-like graphical notation.

2. A process expression, denoted by main, defines
the valid input traces of the system.

3. Input-output (1/0) rules assign an output to each
valid input trace of the system. Let R denote the
set of 1/0 rules.

4. Recursive functions, defined on the valid input
traces of main, assign values to entity type and as-
sociations attributes.

5. A graphical user interface (GUI) specification de-
scribes the Web interfaces used to interact with IS
end-users.

The current trace of the system is the finite list of
input events accepted and executed by the system; it is
denoted by trace. In EB?, an event is an instance of
an action (i.e., the execution of an action). Lett :: o
denote the right append of an input event o to trace ¢,
and let [] denote the empty trace. The behaviour of
the IS is defined as follows.

trace:= [];
forever do
receive input event o;
if main can accept trace :: o then
trace := trace : o,
send output event o following R;
else
send error message;

A complete description of EB3 can be found in (Frap-
pier and St-Denis, 2003).

1.2 TheAPISProject

The APIs project (Frappier et al., 2002) aims at syn-
thesizing IS directly from eB?® specifications. Fig-
ure 1 represents the different components of the APIS
project. Rather than using refinement techniques to
implement the system like in state-based formal lan-
guages (Edmond, 1995; Mammar, 2002), the IS is in-
terpreted and/or synthesized from the different com-
ponents of an EB® specification. A first tool, called
DCI-Web, allows us to generate Web interfaces from
GUI specifications (Terrillon, 2005). To query and/or
to update the system, an IS end-user generates an
event through the Web interface. This event is then
analysed by EB3PAI, an interpreter for EB3 process
expressions (Fraikin and Frappier, 2002). If it is con-
sidered as valid by the interpreter, then the event is
executed; otherwise, an error message is sent to the
user.

In EB3, the DB is represented by the user require-
ments class diagram and by the attribute definitions.

DEFINITIONS

In this paper, we present EB3TG, a new tool for APIS
that automatically generates, for each EB? action, a
Java program that executes a relational DB transac-
tion. The synthesized transactions correspond to the
specification of IS attributes in EB3. Hence, they can
be used by EB3PAI to query and/or to update the DB
when the corresponding events are considered as valid
by interpretation of EB® process expressions. The tool
EB3TG also generates Java programs that correspond
to the creation and the initialization of the DB. Sev-
eral DB management systems (DBMS), like Oracle,
PostgreSQL and MySQL, are supported by EBTG.

Section 2 briefly introduces the EB? attribute defi-
nitions. In Sect. 3, we present the algorithms for syn-
thesizing relational DB transactions that correspond
to EB? attribute definitions and the EB3TG tool. We
conclude the paper with some perspectives for the tool
and the APIS project in Sect. 4.

2 EB3ATTRIBUTE DEFINITIONS

In this section, we first introduce an example that will
be used in the remainder of the paper and then we
present the EB? attribute definitions.

2.1 Example

To illustrate the main aspects of this paper, an ex-
ample of a library management system is introduced.
The system has to manage book loans by members.
A book is acquired by the library; it can be discarded,
but only if it is not borrowed. A member must join
the library in order to borrow a book and he can relin-
quish library membership only when all his loans are
returned or transferred. A member can also transfer
a loan to another member. A book can be borrowed
by only one member at once. Figure 2 represents the
user requirements class diagram for the library. The
process expression and the input-output rules of this
example can be found in (Gervais et al., 2004).

2.2 Attribute Definitions

The definition of an attribute in EB3 is a recursive
function on the valid traces of the system, that is,
the traces accepted by process expression main. The
function is total and is given in a functional style, as in
CAML (Cousineau and Mauny, 1998). It outputs the
attribute values that are valid for the state in which
the system is, after having executed the input events
in the trace.

We distinguish key attributes from non-key at-
tributes. A key definition outputs the set of exist-
ing key values, while a non-key attribute definition
outputs the attribute value for a key value given as

45

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

IS Specification

GUIL ER
Spec. Diagram

¥ -
®,

Definitions

Attribute 1/0
Rules

Process
Expressions

[

Software

4

/

IS

¥ -
w\ [‘Web
\ e VS Interface

Update
Transactions

DB Schema

User 13 I

Figure 1: Components of the APIS project.

loan

dueDate: DATE

Lend
Return

Transfer

book

member
0.1

bookKey : bK_Set
title: T

Acquire
Discard
Modify
DisplayTitle

memberKey : mK_Set
nbLoans: N
loanDuration : N

borrower

Register
Unregister

Figure 2: £8® specification: user requirements class diagram for the library.

an input parameter. For instance, the key of entity
type book is defined by function book K ey in Fig. 3.
book K ey has a unique input parameter s € 7 (main),
i.e., a valid trace of the system, and it returns the set
of key values of entity type book. Let us note that
type F(bK _Set) denotes the set of finite subsets of
bK _Set. Non-key attributes title and nbLoans are
defined in Fig. 3. For the sake of concision, the defi-
nition of nbLoans is truncated; only the effect of ac-
tion Transfer is kept to illustrate the contribution of
the paper. Expressions of the form input : expr,
like Acquire(bId, ttl) : ttl in title, are called input
clauses.

When an attribute definition is executed, then all
the input clauses of the attribute definition are anal-
ysed, and the first pattern matching that holds is
the one executed. Hence, the ordering of the input
clauses is important. The pattern matching analysis
always involves the last input event of trace s. |If
one of the expressions input matches with the last
event of trace s, denoted by last(s), then the cor-
responding expression expr is computed; otherwise,
the function is recursively called with front(s), that
is, s truncated by removing its last element. This
case corresponds to the last input clause with symbol

_’. eB? attribute definitions always include L, that

46

matches with the empty trace, to represent undefined-
ness; hence, EB? recursive functions are always total.
Any reference to a key e K'ey or to an attribute b in an
input clause is always of the form e Key(front(s)) or
b(front(s),...). For instance, we have the following
values for attribute title:

title([],b1) 2 L

title([Register(m1)], b1) 2 title([],b1) & L
title([Register(my), Acquire(by, t1)], b1) @y,
In the first case, the value is obtained from input
clause (11), since last([]) = L. In the second case,
we first apply the wild card clause (15), since no input
clause matches Register, and then (11). In the last

case, the value is obtained directly from (12).
Expression expr in an input clause of the form
input : expr is a term composed of constants, vari-
ables and attribute recursive calls. if then else end
expressions are also used when the pattern match-
ing condition is not sufficient. For instance, the in-
put clause for Transfer in attribute nbLoans is rep-
resented in Fig. 3. An expression expr without any
condition is called a functional term, while an expres-
sion of the if then else end form is a conditional term.
A more detailed description of EB? attribute defini-
tions can be found in (Gervais et al., 2005a). The at-

EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE

DEFINITIONS

bookKey(s : T(main)) : F(bK_Set) = title(s : T(main),bId : bK_Set) : T =
match last(s) with match last(s) with
1.0, 1.1, (1)
Acquire(bld,_) : bookKey(front(s)) U {bId}, | Acquire(bld,ttl) : ttl, (12)
Discard(bId) : bookKey(front(s)) — {bId}, Discard(bId) : L, (13)
_:bookKey(front(s)); Modify(bld, ttl) : ttl, (14)

_: title(front(s),bld); (15)

match last(s) with

I

;I";ansfer(bld, mld') :

end,

_. nbLoans(front(s), mId);

nbLoans(s : T(main), mId: mK_Set) : N =

if mId = mId'then nbLoans(front(s),mId) + 1
elseif mId = borrower(front(s),bld)
then nbLoans(front(s),mId) — 1 end

Figure 3: Examples of EB® attribute definitions.

tribute definitions of the example are in (Gervais et al.,
2004).

3 EB3TG

In this section, we introduce the main algorithm for
synthesizing relational DB transactions that corre-
spond to EB? attribute definitions and we present the
EB3TG tool.

3.1 Main Algorithm

EB? attribute definitions describe the dynamic be-
haviour of IS data. We have chosen to implement
them by a relational DB. The DB allows us to store
the current value of each attribute, in other words, the
value for the current trace of the system. This choice
avoids keeping track of the system trace, which would
be difficult because of its increasing size. A rela-
tional DB transaction is generated for each action in
the user requirements class diagram. Thus, every time
an event is considered as valid by the interpreter, then
the corresponding transaction updates the attributes
affected by the action.

To generate a program that executes a relational DB
transaction associated with an action a, we must anal-
yse the input clauses of the attribute definitions in or-
der to determine: i) which attributes are affected by
the execution of action «, ii) which tables of the DB
are affected by «a, and iii) what are the effects of a on
the attributes. We note Att(a) the set of attributes af-
fected by a and T'(a) the set of tables affected by a.
The main algorithm is the following.

(1) translate the class diagram

into a relational DB schema
(2) foreach EB? action @

3) analyse the input clauses
4) determine Att(a)
(5) determine 7'(a)
(6) for each table ¢ in T'(a)
@) determine the key values
to delete
(8) determine the key values
to insert and/or to update
9) define the transaction for a

The different steps of the algorithm are only summed
up in this paper; they are detailed in (Gervais et al.,
2004; Gervais et al., 2005b; Gervais et al., 2005a).

Step (1). The DB is generated from the EB® spec-
ification. We use standard algorithms from (Elmasri
and Navathe, 2004) to translate the user requirements
class diagram into a relational DB schema (Batanado,
2005).

Steps (4)-(5). To execute an attribute definition, all
the input clauses are analysed, and the first input
clause that matches with the last event of the trace
is the one executed. Consequently, an attribute is
affected by action « if there exists at least an input
clause of the form a(7) : expr in its definition. To
compute T'(a), a function table, generated in step (1),
associates each attribute to its table in the DB. Hence,
T(a) = {table(d) | b € Att(a)}.

Steps (7)-(8). To execute an attribute definition, if
an input clause matches with the last event of the
trace, then an assignment of a value for each free
variable in the input clause has been determined. For

47

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

mid = mid’ mlid # mid’

=}
nbLoans(mid) + 1 mld = borrower(bld mid # borrower(bld)

nbLoans(mld) - 1 nbLoans(mld)

Figure 4: Decision tree for input clause Transfer in defini-
tion nbLoans.

instance, let suppose that Acquire(number, title) is
the last valid event of the IS. In that case, to exe-
cute title (see Fig. 3), input clause Acquire(bld,)
matches with the event and free variable b1d of the
attribute definition is bound to value numaber. Hence,
the value of the key of title has been entirely deter-
mined.

Nevertheless, when expression expr in an input
clause of the form input : expr contains if then
else expressions, then we must analyse the different
conditions in the if predicates to determine the values
of the key attributes that are not bound by the pat-
tern matching. We use binary trees called decision
trees to analyse the if predicates; their construction
and analysis are detailed in (Gervais et al., 2004). For
instance, the if predicates in the conditional term of
input clause Transfer in nbLoans determine two key
values for mId: mlId’ and borrower(bld). Figure 4
shows the decision tree obtained for this input clause.
For the sake of concision, expression front(s) has
been removed from the attribute recursive calls. The
first leaf corresponds to condition mId = mlId’, and
the second leaf to condition mId # mlId' A mId =
borrower(bId). The last leaf is the recursive call of
nbLoans from the input clause with symbol “_".

SELECT statements are then generated from the
decision trees in order to characterize the key val-
ues to delete, update or insert. Moreover, they allow
us to define transactions independently of the state-
ments ordering. \We have identified the most typi-
cal patterns of predicates and their corresponding SE-
LECT statements in (Gervais et al., 2005b). The
key values to delete are in expressions expr of the
form eKey(front(s)) — {k} in the input clauses of
key definitions. A DELETE statement is then gen-
erated. The other key values correspond either to in-
sertions or updates. We cannot distinguish key values
to insert from key values to update at this step, since
in expressions expr of the form eKey(front(s)) U S,
sets eKey(front(s)) and S are not necessarily dis-
joint. Note that an expression f(front(s)) always
refers to the current value of attribute f, i.e., its value
before the update.

48

Step (9). The ordering of SQL statements in the
generated transactions is the following.

1. list of the SELECT statements identified by the
analysis of the input clauses,

2. list of DELETE statements,

3. list of SQL statements for insertions and/or up-
dates.

We use a high-level pseudo-code to describe the
synthesized transactions; this pseudo-code is trans-
lated into Java in EB3TG. The transaction generated
for action Discard is:

TRANSACTION Discard(mld : bK_Set)
DELETE FROM book /* delete statement */
WHERE bookKey = #bld,;

COMMIT;

Let us note that this transaction should be executed
only when Discard is a valid input event of the sys-
tem. When the action involves updates and/or inser-
tions, then the transaction becomes more complex.
Indeed, tests must be defined to determine whether
the key values already exist in the tables, in order to
distinguish updates from insertions. For instance, the
transaction generated for Acquire is:

TRANSACTION Acquire(bld : bK_Set,hTitle : T)
[* update statement */
UPDATE book SET title = #bTitle
WHERE bookKey = #bld;
[* test to determine whether the
update has been successful */
IF SQL%NotFound
THEN
[* insert statement */
INSERT INTO book(bookKeyititle)
VAL UES (#bld #bTitle);
END;
COMMIT;

The variable “SQL%NotFound” contains a value re-
turned by the DBMS to determine whether the update
has been successful.

3.2 EB3TG

The tool has been implemented in Java. The code in-
cludes 50 classes, 625 methods and 20 KLOCs. The
functional architecture and the various input/output of
EB3TG are described in Fig. 5.

An XML description of the user requirements class
diagram is first checked by EB3TG with respect to the
document type definition (DTD) of the ER model.
Error messages are returned in case of problems.
The tool then generates a relational DB schema from
the XML description. The SQL statements are syn-
thesized following the DBMS chosen by the user.
The current version of EB3TG supports Oracle, Post-
greSQL and MySQL. For instance, the DB schema

EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE

EB3TG

XML verifier

Internal
representation of
the ER diagram

Translator from
‘ ER to SOL

Internal representation
(objects) of the DB
schema

Attribute definitions
verifier

DB transactions
generator

| (Dot OK

Translation
rules from ER
to SQL

Figure 5: Functional behaviour of EB3TG.

generated for the library management system is pre-
sented in Fig. 6. A table is created for each entity
type and association of the system. Referential con-
straints are also automatically generated at the end to
deal with mutual references between tables. For this
example, Oracle is the chosen DBMS.

EB3TG also checks that attribute definitions are
consistent with respect to the class diagram. For in-
stance, Fig. 7 shows two examples of syntax errors. In
the first example, keyword match is missing at col-
umn 9, line 40 of file bookStore . txt where the
attribute definitions are described. The second error
message points out that the number of parameters of
recursive call member.loanDuration does not
correspond to the number of parameters in its defi-
nition. This error is in the input clause associated to
action Lend of attribute definition 1oan . dueDate.

Finally, EB3TG synthesizes the Java programs that
execute relational DB transactions corresponding to
EB? attribute definitions. For instance, the effect of
Transfer(bId, mId) is to transfer the loan of book
bId to member mId. The Java method generated by
EB3TG for this action is represented in Fig. 8. The
JDBC (Java Database Connectivity) technology al-
lows Java programs to access the DBMS. Two classes
of the JDBC programming interface may execute
SQL statements to update and/or to query DB: Pre-
pareStatement and Statement. The former is more ef-
ficient in time since SQL queries are compiled only
once at the beginning of the execution. However,
class Statement is implemented by every DBMS. For
the sake of portability, we have chosen to use the lat-

DEFINITIONS

ter class. Method createStatement() creates a new
object of class Statement, while methods execute-
Update(query) and executeQuery(query) respectively
execute update and query SQL statements. The use of
method executeUpdate is illustrated in lines 29, 32,
36 and 42, in Fig. 8.

In order to keep track of the results of SELECT
statements, we use the class ResultSet, because the
objects of this class are not altered by subsequent up-
dates. For instance, the analysis of attribute nbLoans
requires the construction of a decision tree (Fig. 4). In
lines 8 and 14, rset0 and rset1 respectively store the
results of the SELECT statements associated to the
first and the second leaf of this decision tree. They
are later used in lines 35 and 41 to update the number
of loans of the previous and the new borrower of book
bId. Inthat case, awhile loop is generated since the
result of a SELECT statement can be a bag of values.

4 CONCLUSION

We have presented an overview of EB3TG, a tool for
synthesizing Java programs that execute relational DB
transactions that correspond to EB? attribute defini-
tions. Our programs introduce some overhead, be-
cause they systematically store the current values of
attributes before updating the DB, in order to ensure
correctness. We plan to optimize these programs by
analysing dependencies between update statements
and avoid, when possible, these intermediate steps.
By focusing on the translation of attribute definitions,
the resulting transactions do not take the behaviour
specified by the EB3 process expression into account.
This work must now be coupled with the analysis
and/or the interpretation of EB3 process expressions.
This approach is radically different from paradigms
widely used for specifying IS. The aim of the APIS
project is to automate the synthesis of programs such
that software engineers may focus on IS analysis and
specification phases.

REFERENCES

Batanado, P. (2005). Synthése des transactions de base de
données relationnelle a partir de définitions d’attributs
EB3. Master’s thesis, Département d’informatique,
Université de Sherbrooke, Québec.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the
ISO specification language LOTOS. Computer Net-
works and ISDN Systems, 14(1).

Cousineau, G. and Mauny, M. (1998). The functional ap-
proach to programming. Cambridge University Press,
Cambridge.

49

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

Dupuy, S., Ledru, Y., and Chabre-Peccoud, M. (2000). An
overview of RoZ: a tool for integrating UML and Z
specifications. In Proc. 12th Int. Conf. CAISE’00, vol-
ume 1789 of LNCS, pages 417-430, Stockholm, Swe-
den. Springer-Verlag.

Edmond, D. (1995). Refining database systems. In Proc.
ZUM’95, LNCS, Limerick, Ireland. Springer-Verlag.

Elmasri, R. and Navathe, S. (2004). Fundamentals of
Database Systems. Addison-Wesley, fourth edition.

Fraikin, B. and Frappier, M. (2002). EB3PAI: an interpreter
for the EB? specification language. In 15th Intern.
Conf. on Software and Systems Engineering and their
Applications (ICSSEA 2002), Paris, France. CMSL.

Fraikin, B., Frappier, M., and Laleau, R. (2005). State-
based versus event-based specifications for informa-
tion systems: a comparison of B and EB3. Software
and Systems Modeling, 4(3):236-257.

Frappier, M., Fraikin, B., Laleau, R., and Richard, M.
(2002). Apis - automatic production of information
systems. In AAAI Spring Symposium, pages 17-24,
Stanford, USA. AAAI Press.

Frappier, M. and St-Denis, R. (2003). EB®: an entity-based
black-box specification method for information sys-
tems. Software and Systems Modeling, 2(2):134-149.

Gervais, F. (2004). EB* : Vers une méthode combinée
de spécification formelle des systémes d’information.
Dissertation for the general examination, GRIL, Uni-
versité de Sherbrooke, Québec.

Gervais, F., Frappier, M., and Laleau, R. (2004). Synthesiz-
ing B substitutions for EB? attribute definitions. Tech-
nical Report 683, CEDRIC, Paris, France.

Gervais, F., Frappier, M., and Laleau, R. (2005a). Gener-
ating relational database transactions from recursive
functions defined on EB? traces. In SEFM 2005 - 3rd
IEEE International Conference on Software Engineer-
ing and Formal Methods, Koblenz, Germany. |IEEE
Computer Society Press.

Gervais, F., Frappier, M., Laleau, R., and Batanado, P.
(2005b). EB? attribute definitions: Formal language
and application. Technical Report 700, CEDRIC,
Paris, France.

Hoare, C. (1985). Communicating Sequential Processes.
Prentice-Hall.

Jackson, M. (1983). System Development. Prentice-Hall.

Laleau, R. and Mammar, A. (2000). An overview of a
method and its support tool for generating B speci-
fications from UML notations. In Proc. ASE: 15th
IEEE Conference on Automated Software Engineer-
ing, Grenoble, France. IEEE Computer Society Press.

Mammar, A. (2002). Un environnement formel pour le
développement d’applications base de données. PhD
thesis, CNAM, Paris, France.

Meyer, E. and Souquiéres, J. (1999). A systematic ap-
proach to transform OMT diagrams to a B speci-
fication. In Proc. FM’99, volume 1708 of LNCS,
Toulouse, France. Springer-Verlag.

50

Prowell, S., Trammell, C., Linger, R., and Poore, J. (1999).
Cleanroom Software Engineering: Technology and
Process. Addison-Wesley.

Terrillon, J.-G. (2005). Description comportementale
d’interfaces Web. Master’s thesis, Département
d’informatique, Université de Sherbrooke, Québec.

CREATE TABLE book (

bookKey numeric(5,2),

title varchar (20),

CONSTRAINT PKbook PRIMARY KEY (bookKey)) ;

CREATE TABLE member (

memberKey numeric(5),

nbLoans numeric (5) NOT NULL,
loanDuration numeric(3) NOT NULL,
CONSTRAINT PKmember PRIMARY KEY (memberKey)) ;

CREATE TABLE loan (

borrower numeric(5),

bookKey numeric(5,2),

dueDate date,

CONSTRAINT PKloan PRIMARY KEY (bookKey)) ;

ALTER TABLE loan ADD CONSTRAINT FKloan member FOREIGN KEY
(borrower) REFERENCES member (memberKey) INITIALLY DEFERRED;

ALTER TABLE loan ADD CONSTRAINT FKloan book FOREIGN KEY
(bookKey) REFERENCES book (bookKey) INITIALLY DEFERRED;

Figure 6: DB schema generated for the library.

EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE

1
2
3
4
5
6
7
8

bookStore.txt:40:9: expecting "with", found 'NULL'

>>Error in
Attribute definition : loan.dueDate
Action : Lend(_,mId)
Cause : Invalid number of parameters in attribute recursive call
Clues : The attribute recursive call 'member.loanDuration'
must have exactly 2 parameters

Figure 7: Two examples of error messages.

0 J0 Ul WN

public static void Transfer (int bId,int mId) {
try {
connection.createStatement () .executeUpdate (
"CREATE TABLE eb3Tempmember ("memberKey numeric(5))");
connection.createStatement () .executeUpdate (
"INSERT INTO eb3Tempmember (memberKey) values ("+mId+")");

ResultSet rset0 =connection.createStatement ().
executeQuery ("SELECT C.memberKey,A.nbLoans+1l "+
"FROM eb3Tempmember C,member A "+
"WHERE C.memberKey = "+mId+" "+
"AND A.memberKey = C.mId ");

ResultSet rsetl = connection.createStatement () .
executeQuery ("SELECT G.borrower,E.nbLoans-1 "+
"FROM loan G,member E "+
"WHERE G.bookKey = "+bId+" "+
"AND G.borrower NOT IN ("+
"SELECT C.memberKey "+
"FROM eb3Tempmember C "+
"WHERE C.memberKey = "+mId+") "+
"AND E.memberKey = G.borrower ");

ResultSet rset2 = connection.createStatement ().
executeQuery ("SELECT D.loanDuration "+
"FROM member D WHERE D.memberKey = "+mId+" ");
String var0 = ((rset2.next())?rset2.getDouble(1l)+"":"null") ;

connection.createStatement () .executeUpdate ("UPDATE loan SET "+
"borrower = "+mId+" WHERE bookKey = "+ bId +" ");

connection.createStatement () .executeUpdate ("UPDATE loan SET "+

"dueDate = SYSDATE+"+var0O+" WHERE bookKey = "+ bId +" ");
while (rset0.next ()) {
connection.createStatement () .executeUpdate (
"UPDATE member SET nbLoans = "+rsetO.getDouble(2)+ " "+
"WHERE memberKey = "+ rsetO.getDouble(1l)) ;
while (rsetl.next()) {
connection.createStatement () .executeUpdate (
"UPDATE member SET nbLoans = "+rsetl.getDouble(2)+ " "+
"WHERE memberKey = "+ rsetl.getDouble (1)) ;

}

connection.createStatement () .
executeUpdate ("DROP TABLE eb3Tempmember") ;
connection.commit () ;
} catch (Exception e) {
try{
connection.createStatement () .
executeUpdate ("DROP TABLE eb3Tempmember") ;
connection.rollback() ;
} catch (SQLException s){ System.err.println(s.getMessage());}
System.err.println(e.getMessage()) ;}

Figure 8: Java method for action Transfer.

DEFINITIONS

51

