
AN XML-BASED LANGUAGE FOR SPECIFICATION
AND COMPOSITION OF ASPECTUAL CONCERNS

Elisabete Soeiro1, Isabel Sofia Brito2, Ana Moreira1
1 Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

2 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Beja, Beja, Portugal

Keywords: Aspect-Oriented Requirements, Aspect Composition, XML Schema.

Abstract: Separation of concerns refers to the ability of identifying, encapsulating and manipulating parts of software
that are crucial to a particular purpose (Dijkstra, 1976). Traditional software development methods were
developed with this principle in mind. However, certain broadly-scoped properties are difficult to
modularize and keep separated during the lifecycle, producing tangled representations that are difficult to
understand and to evolve. Aspect-oriented software development aims at addressing those crosscutting
concerns, known as aspects, by providing means for their systematic identification, separation,
representation and composition. This paper focuses on the representation and composition activities, by
proposing an XML-based language to specify and compose concerns at the requirements level. An
illustration of the proposed approach to an example supported by a tool is presented.

1 INTRODUCTION

Separation of concerns aims at identifying and
modularizing parts of software that are relevant to a
particular concept, goal or purpose (Dijkstra, 1976).
Traditional approaches to software development,
such as object-oriented and structured methods, have
been created with this principle in mind. However,
certain broadly-scoped properties are difficult to
modularize and keep separated during the lifecycle,
producing tangled representations that are difficult
to understand and to evolve. Typical examples of
such properties are security, synchronization,
logging and tracking. Aspect-Oriented Software
Development (AOSD) aims at addressing such
crosscutting concerns by providing means for their
systematic identification, separation, representation
and composition. Crosscutting concerns are
encapsulated in separate modules, known as aspects,
and composition mechanisms are later used to weave
them back with other core modules.

Traditionally, AOSD has focused mainly on the
implementation phase of the software lifecycle,
where aspects are identified and captured mainly in
code (Kiczales, 1997) (Xerox, 2001) (Bergmans,
2001) (Lieberherr, 2001) (Tarr, 1999). Some work
has also been carried out to incorporate aspects at

the design level mainly through extensions to the
UML meta-model e.g. (Clarke, 2001), (Suzuki,
1999), (Herrero, 2000). However, crosscutting
concerns are often present well before the
implementation, such as in requirements engineering
(Brito, 2003) (Brito, 2004) (Rashid, 2003) (Moreira,
2005) (Clarke, 2005).

This paper builds on our previous work on
Aspect-Oriented Requirements Engineering (AORE)
(Brito, 2003) (Brito, 2004), focusing on two
particular activities of the model presented therein:
concern specification and composition. Concerns
were described in terms of an informal template and
compositions were defined informally with a
minimum set of operators (cf. section 2.2). Concerns
are all treated in a uniform fashion, independently of
their crosscutting nature. In this paper we will
present an XML-based language to specify and
compose concerns.

We have chosen XML because it is a widely used
standard that allows the description of any kind of
data. XML Schema is another standard that allows
the definition of a full specification for a XML
document, enabling the creation of a set of rules to
structure and form that XML document, as well as
rules for data types and integrity. For these reasons
our template for concern representation will be

410
Soeiro E., Sofia Brito I. and Moreira A. (2006).
AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 410-419
DOI: 10.5220/0002494704100419
Copyright c© SciTePress

mapped into a XML Schema, creating a meta-
template that will function as a standard
representation. Any instance that follows the meta-
template must also be correctly validated with the
defined XML Schema.

The contributions of this work are twofold: (i)
define a XML-based language to define concerns;
(ii) define a XML-based language to compose
concerns at requirements level. A tool supports the
end result where concerns and composition rules can
be defined using pre-defined templates. The modules
encapsulating the various requirements and
composition rules are stored in eXist, a native XML
database.

This paper is organized as follows. Section 2
presents some background on aspects and on the
AORE model, serving as basis for our work. Section
3 gives an overview of XML representations of
concerns and composition rules while Section 4
illustrates the ideas with an example. Section 5
presents some related work and Section 6 draws
some conclusions, suggesting directions for future
work.

2 BACKGROUND

2.1 What Are Aspects?

Aspect-Oriented Software Development (AOSD)
attempts to aid developers in the separation of
concerns, or the breaking down of system into
distinct parts that overlap in functionality as little as
possible. In particular, AOSD focuses on the
modularization and composition of crosscutting
concerns. The term crosscutting concerns refers to
properties of software that cannot be effectively
modularized using traditional software development
techniques, such as object-oriented methods. Typical
examples of such crosscutting concerns are non-
functional requirements, such as security, fault
tolerance, persistency. However, crosscutting
concerns can also be functional requirements, such
as auditing, or validation.

Crosscutting concerns are encapsulated in
separate modules, known as aspects, and
composition mechanisms are later used to weave
them back with other core modules, at loading time,
compilation time, or run-time. However, aspects, as
well as their compositions, also have an important
role to play before the implementation activity.
Aspects will allow the modularization of
crosscutting concerns that cannot be encapsulated by

a single use case (Jacobson 1992) or viewpoint
(Finkelstein 1996), for example, and are typically
spread across several of them. Composition, on the
other hand, apart from allowing the developers to
picture the whole system, allows them to identify
conflicting situations whenever a concern
contributes negatively to others (Rashid, 2003). This
offers the opportunity to establish critical trade-offs
before the architecture design is derived, supporting
the necessary negotiations among the stakeholders.

AOSD aims at addressing such crosscutting
concerns at the various levels of the software
development process, by providing means for their
systematic identification, separation, representation
and composition.

2.2 Aspect-Oriented Requirements

The goal of this paper is to offer a systematic and
rigorous mean to support the specification and
composition activities of the Aspect-Oriented
Requirements Engineering (AORE) model presented
in (Brito, 2003) (Brito, 2004). This model is
composed of three main tasks (see Figure 1):
identify concerns, specify concerns, and compose
concerns.

(3) Compose Concerns

(1) Identify Concerns

Templates

Composition
Rules

Models

2.2 Identify
contributions

2.1 Identify
responsibilities

2.3 Identify
priorities

2.4 Identify required
concerns

1.1 Study
information

3.1 Identify
match points

3.2 Identify
crosscuting concerns

3.3 Handle
conflicts

3.4 Define
composition rules

2.5 Synthetise concerns
using visual models

1.2 Reuse
catalogues

Templates

Templates

INPUT
Documents, Catalogues,…

OUTCOME
Templates, Rules,

Visual models

(2) Specify Concerns

Figure 1: A model for Aspect-Oriented Requirements
Engineering.

The task, identify concerns, aims at identifying all
the concerns of a system, where a concern refers to a
matter of interest which addresses a certain problem
that is of interest to one or more stakeholders. Such a
concern can be defined as a set of coherent
requirements, defining a property that the future
system must provide. This can be accomplished by
analysing the initial requirements, transcripts of

AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS

411

stakeholders’ interviews, etc. Good sources for
concern identification are the existing catalogues,
such as the non-functional requirements catalogue
offered by (Chung, 2000).

The task, specify concerns, provides a template,
as shown in Table 1, which collects all the
information about a concern.

Table 1: Template to describe concerns.

Concern Description

Name The name of the concern.

Description Short description of the intended
behaviour of the concern.

Sources Source of information, e.g.
stakeholders, documents, domain,
catalogues and business process.

Classification Helps the selection of the most
appropriate approach to specify the
concern. For example: functional,
non-functional, goals.

Stakeholders Users that need the concern in order
to accomplish their job.

List of Responsibilities

Responsibility

List of what the concern must
perform; knowledge or proprieties
the concern must offer.

List of Contributions

Contribution # List of concerns that contribute or
affect this concern. This contribution
can be positive (+) or negative (-)

List of Priorities by Stakeholder

Stakeholder # Expresses the importance of the
concern for a given stakeholder. It
can take the values: Very Important,
Important, Medium, Low and Very
Low.

List of Required concerns

Required
Concern #

List of concerns needed or requested
by the concern being described.

The Name field names the concern, while the

field Description provides a textual explanation
about the concern’s importance. The Sources field
states the origins of the concern, having several
possible values, as stakeholder requirements,
external catalogues of non-functional requirements
(Chung, 2000), etc. The Classification field
classifies the concern according to its type, e. g.
functional, non-functional. The Stakeholders field
shows which stakeholders interact with the concern.

The Responsibilities entry lists the operations that
the concern should provide, while the Contributions
field offers a list of positive and negative
interactions with other concerns. This field helps
detecting conflicts whenever concerns contribute
negatively to each other. These conflicts may be
resolved through the Stakeholder priorities field,
which assigns priorities to concerns from the
stakeholders’ perspective. Finally, the Required
concerns field acts as a dependency reference to
other concerns in the system. This field will be used
to identify which concerns are crosscutting.

Finally, the task compose concerns, offers the
possibility to compose a set of concerns,
incrementally, until the whole system is obtained.
Each composition takes place in a match point in the
form of a composition rule. A match point tells us
which crosscutting concerns should be composed
with a given (non-crosscutting) concern. A
composition rule shows how a set of concerns can be
weaved together by means of some pre-defined
operators. In order to accomplish this, we need to
identify crosscutting concerns (those that are
required by more than one other concern). At this
point conflicting situations can be identified (if
concerns that contribute negatively between them
have the same priority and need to be composed in
the same match point). Conflicts are solved by using
a simple process to guarantee different priorities to
those concerns (for more information, see (Brito,
2004)).

A composition rule takes the form:
 <Term> <Operator> <Term>

where a Term can be a concern or a sub-composition
(which is another composition rule) and the
Operator represents the operator relating both terms.
The operators we have chosen (enable, disable and
parallel), were inspired in the LOTOS operators
(Brinksma, 1988), where:

− Enabling (denoted by C1>>C2): refers to a
sequential composition and means that the
behaviour of C2 begins if and only if C1
terminates successfully.

− Disabling (denoted by C1[>C2): means that C2
interrupts the behaviour of C1 when it starts its
own behaviour. This allows the representation
of interruptions.

− Full synchronization (denoted by C1||C2): refers
to the parallel operator and means that the
behaviour of C1 must be synchronized with the

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

412

behaviour of C2. It represents concurrent
“execution” of concerns.

3 AN XML-BASED LANGUAGE
TO DEFINE AND COMPOSE
CONCERNS

This section presents two XML Schemas for a
standard representation of concerns and
compositions. We have chosen XML (W3C, 2004)
because it is a widely used standard that allows the
description of any kind of data. Since the XML
schema language is extensible – it is based on XML
itself – it is possible to define a full specification for
a XML document, enabling the creation of a set of
semantically meaningful tags, to structure and form
a XML document, as well as rules for data types and
integrity. Furthermore, XML provides a standard
way to represent and manipulate source code, and
represent meta-information that could be
manipulated by another program.

For the reasons abovementioned, our template for
concern representation will be mapped into a XML
Schema, creating a standard representation. The
resulting XML Schema is compliant with the logic
present in the template previously defined.
Similarly, we will define a XML Schema to
represent the structure of a composition rule. In
order to do that, we first need to study all the
possible logical forms that a composition rule can
take.

3.1 The Concern Type

The construction of the XML Schema has been done
in a modular way, factoring out common definitions
for better understanding. Not all the XML Schemas
could be included here, due to lack of space. Those
shown, however, illustrate the general idea. The
structure of the complex type Concern can be
mapped directly into the logical template illustrated
in Table 1, where:

Name defines a unique name for the concern.
Since all names in our solution are seen as keys,
uniqueness is required.

Description presents a summary description of
the behaviour of concern.

Classification indicates if a concern is functional
or not functional.

ListOfSources lists the information sources that
contributed to the concern creation. A list of four
values (that may be expanded in the future if proved

to be insufficient) is available: stakeholders,
documents, domain, catalogues and business process
(see Figure 2).

Figure 2: ListOfSources tag.

ListOfPrioritiesByStakeholder groups the

Stakeholders and Stakeholder Priorities from the
logic template (in Table 1). It is a list where each
element aggregates one stakeholder together with
his/her priority for the concern. The priority reflects
the degree of importance of that concern to that
stakeholder. This attribute can take the values “Very
Important”, “Important”, “Medium”, “Low” and
“Very Low”. Figure 3 presents its definition.

Figure 3: ListOfPrioritiesByStakeholder tag.

ListOfResponsibilities lists the information of
what the concern must perform (see Figure 4).

Figure 4: ListOfResponsibilities tag.

ListOfContributions defines the contribution

relationship between the concern under study and
other concerns. This contribution can be positive (+),
negative (-), or “don’t care” meaning that one
concern might not have an explicit contribution with
others concerns. Figure 5 illustrates its definition.

Figure 5: ListContributions tag.

ListOfRequiredConcerns defines a list of other

concerns from which the current concern depends,
i.e. the concerns required by the concern under
study. This list can be empty, meaning that the
concern does not need other concerns to fulfil its
objectives (Figure 6).

Figure 6: ListOfRequiredConcerns tag.

Figure 7 aggregates the above presented

definitions to form the XML schema of the type
Concern that defines one concern.

AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS

413

Figure 7: XML Schema of the definition of a concern.

The system will be represented as a list of all its
concerns, together with a list of composition rules.

3.2 Composition Operators

A composition rule defines the order in which
concerns will be applied in a particular match point.
Figure 8 illustrates a simple grammar, where the
terms between simple quotes represent the literals.

(1) Composition Term Operator Term
| (Composition)

(3) Operator ’||’
|’>>’
|‘[>’

(2) Term Composition

| Concern

Figure 8: Composition of concerns using EBNF.

These composition rules have been formally

defined through the meta-language EBNF (Extended
Backus-Naur Form) (Sebesta, 2003).

3.3 Defining XML Schema for
Composition Specifications

The composition rules are based on the information
defined in task 3 of the AORE model. Similarly to
what has been done to define the concern type, the
XML schema will be defined to represent
composition rules. As mentioned before, a
composition rule is defined for each match point by
using the MP tag that encapsulates all its simpler
composition rules. The MP tag is composed of:
Name, ListOfConcerns, CompositionRule,
ListOfCompositionRules.
Name. This element defines a unique name for the
match point. Again, since all names in our solution
are seen as keys, uniqueness is required.

ListOfConcerns. This element lists the concerns
that compose a given match point (see Figure 9).

Figure 9: ListOfConcerns tag.

CompositionRule. This element is structured
according to the rules defined in Figure 8. These
rules are mapped into the XML Schema (with the
additional attribute Outcome) depicted in Figure 10,
where:
(i) a Term that can be a simpler CompositionRule

or a ConcernName;
(ii) an Operator tag defining the operators

described in Section 2.2. It can take the values:
‘>>’, ‘[>’ and ‘||’;

(iii) an OutCome tag expressing the result of
constraining the concerns’ responsibilities by
means of the operators described before. It can
take the values: (a) Satisfied, used to declare
that a concern/responsibility could be
accomplish after the composition rule; (b)
Fulfilled, used to declare that a
concern/responsibility is successfully
accomplish after the composition rule and (c)
Failed, used to declare that a
concern/responsibility is not accomplish after
the composition rule.

Figure 10: CompositionRule tag.

The CompositionRule tag includes the attribute
brackets which value can be set to true or false. The
value true means that open and close brackets are
added to the composition, representing the term
“(Composition)” in Figure 8.

Figure 11 represents the XML Schema for
composition rules in a given match point.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

414

Figure 11: XML schema for composition in a match point.

The ListOfCompositionRules tag represents the

set of all composition rules that take part in a match
point.

3.4 A tool for AORE

A tool, called APOR (AsPect-Oriented
Requirements tool), to support the model presented
in Section 2 has been developed. This tool handles
each concern as defined by the concern type
metadata structure, helps identifying match points
and defining composition rules on those points,
generates the list of crosscutting concerns, and
locates possible conflicting situations (on match
points). This tool is composed of four views (see
Figure 12): Concern View, Stakeholder View,
MatchPoint View and Composite View.

Concern View Stakeholder View

MatchPoint ViewComposition View

Visualize&Specify Concerns

Generate MatchPointsImport/Export XML
Identify Conflicts

Define Composition Rules

Figure 12: APOR tool main modules.

The Concern View supports the visualization of
the concerns being specified, generates a list of
match points needed within the composition task and
offers import and export capabilities for XML
documents describing concerns. This view also
offers information regarding the crosscutting nature
of the concern. The Stakeholder View allows the
definition of priorities for each concern and
identifies conflicting situations. The MatchPoint

View supports the definition of composition rules
for each match point, being also able to generate a
list of both match points and crosscutting concerns.
Finally, from the Composition View the user can
also access and handle composition rules as well as
the import and export features to manage XML
documents defining composition rules.

The tool is developed in Java and JDOM (Hunter,
2005). The import and export features play an
important role, since they offer the possibility to
integrate the models and documentation produced by
our tool with other tools.

4 AN ILLUSTRATIVE EXAMPLE

The example chosen is based on the Washington
subway system taken from (Brito 2004):

“To use the subway, a client has to own a card
that must have been credited with some amount of
money. A card is bought and credited in special
buying machines available in any subway station. A
client uses this card in an entering machine to
initiate her/his trip. When s/he reaches the
destination, the card is used in an exit machine that
debits it with an amount that depends on the distance
travelled. If the card has not enough credits the gates
will not open unless the client adds more money to
the card. The client can ask for a refund of the
amount in the card by giving it back to a buying
machine.”

Task 1: Identify concerns. Based on the
requirements given above, we identify the following
concerns: BuyCard, EnterSubway, ExitSubway,
RefundCard and CreditCard. Functional concerns, as
these, are usually not too difficult to identify. A
closer look at the requirements can also suggest
some non-functional requirements. For example, the
text “special buying machines available in any
subway station”, suggests that “availability” is
important. In fact, from our knowledge of the real
world, the system should be available in 18/7 basis.
Other concerns we should consider is Response
Time, since the system needs to react in a short
amount of time to avoid delaying passengers.
Other concerns can be identified based on the NFR
catalogue (Chung, 2000). For each entry in the
catalogue, we must decide whether it would be
useful in our system or not. For example, the system

AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS

415

Figure 13: Defining EnterSubway concern.

can be used by many passengers at the same time,
then Multi-access is an issue that the system needs to
address. Other concerns identified based on this
catalogue are: Accuracy, Security, Compatibility and
Fault Tolerance. A more detailed analysis of the
NFR framework catalogue for security, for example,
would suggest us to also include in this list its
decompositions, which are Availability and
Integrity. We already have availability, so we also
added integrity. Also, from the catalogue, we can see
that response time is an element of performance.

In a second iteration, and during a more refined
analysis of the templates and while building the use
case diagram, we decided that it would make sense
to factor out from EnterSubway, ExitSubway,
CreditCard and RefundCard the common behaviour
ValidateCard.
Task 2: Specify concerns. In this task we need to
complete the specification of each concern by filling
in an instance of the meta-template in Figure 7. This
is achieved by using the APOR tool. Figure 13
illustrates part of the views (left hand-side)
supported by the tool, together with the
EnterSubway specification template (right hand
side). In particular, the concern view shows the list
of concerns of the subway system. This interface is
conformant with the XML schema defined for the
concern type.

Task 3: Compose concerns. The goal is to compose
all concerns to obtain a picture of the whole system.
A composition rule will be defined per match point.
Its structure is according to the meta-template
specified in XML in Figure 11.

Figure 14, an instance of the definition in Figure
11, shows an extract of the composition rule for the
match point EnterSubway.

This rule is encapsulated in an MP tag and has an
identification attribute “id” that is unique. The Name
tag indicates the match point name (line 2) while
lines 3-12 list the concerns in the match point. The
ListOfCompositionRules tag (line 13) is composed
of seven simpler CompositionRule. Such
composition rules are encapsulated by a
CompositionsRule tag (line 14). Each
CompositionRule is composed by two terms, one
operator and one outcome. Moreover, a Term
encapsulates a ConcernName or a CompositionRule.
Lines 15-21 compose “Availability” (ConcernName
tag) in parallel (Operator tag) with “MultiAccess”
(ConcernName tag). Note that attribute brackets has
value true, which means that open and close brackets
are added to the composition. The outcome of this
composition states that EnterSubway is satisfied,
through the attribute action. Similar rules are
defined between this rule and the remaining
concerns in the match point. For example, lines 25-
34 compose a CompostionRule (composition-
rule_id=5) in sequence with Integrity

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

416

(concernname_id=5). The outcome is the fulfilment
of EnterSubway.

(1) <MP id="1">
(2) <Name>MP EnterSubway</Name>
(3) <ListOfConcerns>
(4) <Concern id="1" name="Performance.ResponseTime" rank="6"/>
(5) <Concern id="2" name="EnterSubway" rank="3"/>
(6) <Concern id="3" name="ValidateCard" rank="4"/>
(7) <Concern id="4" name="Accuracy" rank="5"/>
(8) <Concern id="5" name="Integrity" rank="2"/>
(9) <Concern id="6" name="MultiAccess" rank="1"/>
(10) <Concern id="7" name="Security.Availability" rank="2"/>
(11) <Concern id="8" name="FaultTolerance" rank="7"/>
(12) </ListOfConcerns>
(13) <ListOfCompositionRules>
(14) <CompositionRule id="1“ brackets="true"> >
(15) <Term>
(16) <ConcernName concern_id="7“>Availability</ConcernName>
(17) </Term>
(18) <Operator name="||"/>
(19) <Term>
(20) <ConcernName concern_id="6">MultiAccess </ConcernName>
(21) </Term>
(22) <OutCome action="Satisfied" concernName="EnterSubway"/>
(23) </CompositionRule>
(24) ...
(25) <CompositionRule id="6“ brackets="true >
(26) <Term>
(27) <CompositionRule compositionrule_id="5"/>
(28) </Term>
(29) <Operator name=">>"/>
(30) <Term>
(31) <ConcernName concern_id="5">Integrity</ConcernName>
(32) </Term>
(33) <OutCome action="Fulfilled" concernName="EnterSubway"/>
(34) </CompositionRule>
(35) ...
(36) </ListOfCompositionRules>
(37) </MP>

Figure 14: XML for EnterSubway match point.

Currently, APOR is being changed to incorporate
a parser that checks the correctness of each
composition rule and edits it in the following form:

((Availability || Multiaccess)
 >> ((ValidateCard >> EnterSubway)
 ||
 ResponseTime
 ||
 Accuracy)
 >> Integrity)
[> FaultTolerance

This composition rule expresses the order in
which each concern must be satisfied. The
functional concern EnterSubway requires prior
satisfaction of ValidateCard. These two concerns,
however, can only be satisfied if Avaliability and
MultiAccess are guaranteed (in parallel). The
resulting composition is then offered in parallel with
ResponseTime and Accuracy. And only after the
successful satisfactions of this composition will
Integrity be satisfied. If something goes wrong with
any of the above concerns, FaultTolerance interrupts
the behaviour of that concern and starts its own
behaviour.

5 RELATED WORK

The increasing interest for the aspect oriented
software development has taken researchers to
define modeling languages for aspect models
(Chavez, 2004) (Han, 2004). These languages
extend object languages to portray the same type of
concepts at different abstraction levels. (Bakker,
2005), for example, defines a language to handle
transversal characteristics at the requirements level.
(Moreira, 2002), (Rashid, 2003) and (Sousa, 2004)
use templates to represent candidate aspects and to
show the impact of concerns over others. The
approach in (Rashid, 2003) is based on separating
the specification of aspectual requirements, non-
aspectual requirements and composition rules in
modules representing coherent abstractions and
following well-defined templates.

Our approach differs from the above by offering a
set of operators that are simpler to understand than
those in (Rashid, 2003). Also, our language is at a
more operational level, showing explicitly the order
of composition. Moreover, our concern template is a
lot more complete, offering more information.

A metadata driven approach for the creation of a
repository for aspects is discussed in (Ferreira,
2005). A XML schema is used to represent this
structure in order to guarantee information
independent from representation, traceability of
aspects through the development phases and
versioning control. Our goal is not the creation of a
general repository for aspects. The concerns in a
given project are stored in eXist, a XML native
database.

The Theme approach provides support for aspect-
oriented development at analysis and design levels
(Baniassad, 2004)(Clarke, 2005). At the analysis
level, Theme/Doc is carried out by first identifying a
set of actions in the requirements list which are, in
turn, used to identify crosscutting behaviours. At the
design level, Theme/UML allows a developer to
model features and aspects of a system, and specifies
how they should be combined. Our approach differs
from this one since Theme does not offer a well-
defined concern specification language neither does
it offer the possibility of composing themes together
to study the impact of each crosscutting concern on
the system.

AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS

417

6 CONCLUSIONS AND FUTURE
WORK

This paper focuses on the representation and
composition activities of AORE approach, by
proposing an XML-based language to specify and
compose concerns at the requirements level. The use
of XML ensures that the approach remains adaptable
to other applications and extensible to incorporate
new concerns and composition rules. The reason
why XML schema has been chosen is because it
guarantees information independency between
representations, promoting traceability of concerns
through the software development phases. The
approach is supported by the APOR tool, facilitating
the specification of concerns, identification of
crosscutting concerns, generation of the match point
table and definition of composition rules.

Currently we are rebuilding the tool to adopt an
Model-Driven Development strategy through the use
of the AORE metamodel, together with the XML
Schemas defined here. At the same time, we are
refining the composition rules to define constraints
at the responsibility granularity level. We are also
exploring how fuzzy logic can be applied to help
solving conflicts that can arise when concerns that
contribute negatively to each other need to coexist in
the same match point. In the near future we plan to
integrate with the method, and the tool, a reference
model to support forward and backward traceability.

ACKNOWLEDGEMENTS

This work is supported by the Portuguese FCT Grant
SOFTAS (POSI/EIA/60189/2004).

REFERENCES

Baniassad E., Clarke S., “Theme an Aproach for Aspect-
Oriented Analyssis and Design”, International
Conference on Software, Engineering 2004, Edinburg,
Scootland, 2004.

Bakker J.,Tekinerdogan B.,Aksit M.; Characterization of
early aspects approaches; Proceedings of the Early
Aspects Workshop at AOSD’05, 2005.

Bergmans L. and Aksit M., "Composing Crosscutting
Concerns using Composition Filters", CACM, 44(10),
2001.

Brinksma E. (ed): Information Processing Systems - Open
Systems Interconnection – LOTOS – A Formal
Description Technique Based on the Temporal

Ordering of Observational Behaviour, ISO 8807,
1988.

Brito, I. and Moreira A. “Advanced Separation of
Concerns for Requirements Engineering”. Jornadas.de
Ingenieria del Software y Bases de Datos, Alicante,
Spain, 2003.

Brito, I. and Moreira A. “Integrating the NFR Approach in
a RE Model”. Early Aspects Workshop at AOSD’04.
Lancaster, UK. 2004.

Chavez C.; A Model-Driven Approach to Aspect-Oriented
Design; PhD Thesis, Computer Science Department;
PUC-Rio; Brazil, April 2004.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-
Functional Requirements in Software Engineering,
Kluwer Academic Publishers, 2000.

Clarke, S., Walker, R.J.: Composition Patterns: An
Approach to Designing Reusable Aspects,
Proceedings of ICSE’01, Toronto, Canada, 2001.

Clarke, S., Baniassad E., Aspect-Oriented Analysis and
Desing: The theme Approach, Addision-Wesley, 2005

Dijkstra, E.W., A Discipline of Programming, Prentice-
Hall, 1976.

Ferreira, R., Raminhos, R., Moreira, A.: Metadata Driven
Aspect Specification, Workshop on Aspect Oriented
Modeling, 8th Int. Conf. on MoDELS, Jamaica,
October 2005.

Finkelstein, A. and Sommerville, I.: "The Viewpoints
FAQ." BCS/IEE Software Engineering Journal, 11(1),
1996

Han Y., Gunter Kniesel G. e Cremers A.; A meta model
for AspectJ; Technical Report IAI-TR-2004-3,
Computer Science Department III, University of
Bonn. ISSN 0944-8535. October 2004.

Herrero. J., Sánchez F., Lucio F., Toro M.: Introducing
Separation of Aspects At Design Time, Workshop on
Aspects and Dimensions of Concerns, ECOOP’00,
France, 2000.

Hunter, J., McLaughlin, B., Easy Java/XML integration
with JDOM, http://www.javaworld.com, 2005

Jacobson, I., et al: Object-Oriented Software Engineering
–a Use Case Driven Approach: Addison-Wesley,
1992.

Lieberherr, K. J.; Orleans, D., Ovlinger, J.: Aspect-
Oriented Programming with Adaptive Methods,
CACM, Vol. 44, No. 10, pp. 39-41, 2001.

Kiczales G., Lamping J. , Mendhekar A., Maeda C., Lopes
C., Loingtier J.-M., and Irwin J.. Aspect-oriented
Programming. In ECOOP'97, LNCS 1241, pp 220-
242, Finland, 1997

Moreira, A., Araújo, J., Brito, I.: Crosscutting Quality
Attributes for Requirements Engineering, 14th
International Conference on Software Engineering and
Knowledge Engineering, ACM Press, Italy, July 2002.

Moreira, A., Rashid A., Araújo, J., Multidimensional
Separation of Concerns in Requirements Engineering,
13th International Conference on RE, IEEE Press Paris,
France, August - September 2005

Rashid, A., Moreira, A., Araújo, J.: Modularization and
Composition of Aspectual Requirements", 2nd

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

418

International Conference on AOSD, ACM Press, pp.
11-20, Boston USA, 2003.

Sebesta, Robert, Concepts of Programming Languages,
Sixth Edition, Pearson Education, 2003

Sousa G., Soares S., Borba P., Castro J.; Separation of
crosscutting concerns from requirements to design:
Adapting the use case driven approach, Proceedings of
the Early Aspects Workshop at AOSD’04, UK, 2004.

Suzuki J. and Yamamoto Y., Extending UML with
Aspects: Aspect Support in the Design Phase, ECOOP
Workshop on Aspect Oriented Programming, Lisbon,
Portugal, 1999.

Tarr P. L., Ossher H., Harrison W. H., and Sutton S. M.,
"N Degrees of Separation: Multi-Dimensional
Separation of Concerns", ACM, pp. 107-119, ICSE,
Los Angeles, USA, 1999.

W3C Recommendation, World Wide Web Consortium,
“XML 1.0. (2004) Extensible Markup Language
(XML) 1.0 (Third Edition)”,

 http://www.w3.org/TR/2004/REC-xml-20040204.
Xerox Parc, AspectJ home page, Technical report,

http://www.aspectj.org/, 2001.

AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL CONCERNS

419

