
DOMAIN MODELING WITH OBJECT-PROCESS
METHODOLOGY

Arnon Sturm
Department of Information Systems Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel

Dov Dori
Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technology, Haifa, 32000, Israel

Onn Shehory
IBM Haifa Research Lab, Haifa University Campus, Haifa, 31905, Israel

Keywords: Domain Engineering, Modeling, Methodology.

Abstract: Domain engineering can simplify the development of software systems in specific domains. During domain
analysis, the first step of domain engineering, the domain is modeled at an abstract level providing
guidelines for application modeling within that domain. Most domain analysis approaches suffer from low
accessibility and limited expressiveness. In this paper we utilize the application-based domain modelling
(ADOM) approach and apply it to the Object-Process Methodology (OPM) modelling language. We do that
by extending Object-Process Methodology (OPM) to support domain analysis. We also performed an
experiment to verify that the proposed extension improves the model quality compared to quality arrived at
without the extension. Our experimental results show that, when presented with a set of requirements,
subjects that used OPM with the domain analysis extension arrived at a system model which is ten percents
better than the system model arrived at by subjects that used OPM alone in terms of model correctness.

1 INTRODUCTION

Domain engineering is concerned with building
reusable software core assets and components in a
specific domain of human interest (Carnegie Mellon,
2002 and Cleaveland, 2002). Software reuse is
viewed as a way of reducing product cycle time,
thereby allowing industry to quickly deliver new
products to the market. Software reuse, of which
domain engineering is an important means, has
therefore become a major goal for many
organizations who seek to shorten time-to-market.

Domain engineering activities include domain
analysis, domain design, and domain
implementation. Domain analysis can be defined as
a process by which information used in developing
software systems in a specific domain is identified,
captured, and organized with the purpose of making
it reusable when creating new systems in that
domain. Domain analysis concerns the identification

of a domain (or a set of related domains) and
capturing the domain ontology and its variations
within the domain. Subsequent stages of domain
engineering, namely domain design and domain
implementation are concerned with mechanisms for
translating the requirements into systems that are
made up of components with the intent of reusing
these components to the highest extent possible. In a
more refined formulation, domain analysis is the
activity of identifying objects and operations of a
class of similar systems in a particular domain
(Valerio et al., 1997). Domain analysis should
"carefully bound the domain being considered,
consider commonalities and differences of the
systems in the domain, organize an understanding of
the relationships between the various elements in the
domain, and represent this understanding in a useful
way" (Carnegie Mellon, 2002). Domain analysis
may be followed by the construction of a generic,

144
Sturm A., Dori D. and Shehory O. (2006).
DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 144-151
DOI: 10.5220/0002494601440151
Copyright c© SciTePress

reusable code and even a domain code generator (de
Champeaux,, 1993).

Several methods have been developed to support
domain analysis as reviewed by Czarnecki and
Eisenecker (2000) and by Sturm and Reinhartz-
Berger (2004), but these methods suffer from the
following weaknesses. (1) They lack formality,
rendering validation of a domain-specific application
against its domain model difficult to perform. (2)
They require the use of several views for both
domain specification and application specification,
resulting in limited accessibility. (3) They use
different notions and notations for the domain
models and for the application models, reducing the
collaboration between the various stakeholders
engaged in the development process. (4) They
address primarily the static characteristics and
constraints of the domain, but their treatment of the
domain's dynamic aspect is limited.

The Application-based Domain Modeling
(ADOM) approach (Sturm and Reinhartz-Berger,
2004 and Reinhartz-Berger and Sturm, 2004)
addresses the above mentioned problems. This
approach treats a domain as a reference application
that needs to be modeled before systems in that
domain are specified and designed. It also advocates
handling the domain as a regular application. That
is, it encourages the use of the same means for
specifying domains and applications. The domain
structure and behavior modeled serve to define and
enforce static and dynamic constraints on models of
application in that domain. The ADOM approach
consists of three-layers: (1) the language layer,
which handles modeling language ontologies and
their constraints, (2) the domain layer, which holds
the building elements of domains and the relations
among them, and (3) the application layer, which
consists of domain-specific system models. The
ADOM approach further defines dependency and
enforcement relations between these layers. While
ADOM builds on UML as the modeling language,
its developers note that it can be applied using other
modeling language as well.

In this paper, we validate the suitability of the
ADOM approach to Object-Process Methodology
(OPM) (Dori, 2002), which is an integrated
approach to the study and development of systems.
As a general-purpose system modeling method,
OPM has been used to model systems in various
domains, including pattern recognition in
mechanical engineering drawings (Dori, 1995),
computer integrated manufacturing documentation
and inspection (Dori, 1996), and web application
(Reinhartz-Berger et al., 2002). These systems were

modeled without first devising a domain-specific
ontology infrastructure. OPM was selected as the
alternative modeling technique due to its supremacy
over UML with respect to comprehension and
construction of system models. This has been shown
experimentally by Peleg and Dori (2000), Reinhartz-
Berger and Dori (2004), and Siau and Cao (2001).

The contribution of this paper is threefold. First,
we extend OPM with facilities to support domain
engineering principles for developing domain-
specific applications. These facilities make OPM
more accessible and efficient for modeling domain-
specific systems and products. Second, we validate
the suitability of the ADOM approach to modeling
languages other than UML. Third, we experiment
and provide an empirical proof of the advantage of
using the ADOM-OPM-based approach over using
the generic version of OPM.

The rest of this paper is organized as follows. In
Section 2 we introduce the ADOM-OPM extension
for domain analysis and demonstrate its use within
the domain of access control system. In Section 3 we
describe an experiment we performed in order to
establish the suitability of ADOM-OPM for
application modeling compared with OPM and
report the results. Section 4 concludes with summary
and future research.

2 ADOM-OPM

To implement the ADOM approach using OPM, we
had to extend it with only two new features: (1) A
role, which is a stereotype-like element emphasizing
additional semantic for an OPM thing. Roles will be
used within an application model. (2) A multiplicity
indicator, which constrains the number of OPM
things of some class that can be modeled in an
application. The multiplicity indicator will be used
within the domain model.

The rest of this section presents the domain and
application layers of ADOM-OPM. This is done for
the example domain of access control (AC) systems,
and specifically for the Drink Vending Machine
(DVM) application within the AC systems domain.
Applications in the AC domain are concerned with
the problem of accessing entities, objects and
resources using well-defined access policies and
procedures (Duffy, 2004). Application areas within
the AC domain include all kinds of product vending
machines, automated teller machines (ATM), all
kinds of systems that access databases using batch
and interactive interfaces, gambling machines, and
local (batch, interactive) and remote access to

DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY

145

software and hardware objects in a computer
network.

The DVM application manages several machines
that belong to various companies. Each machine is
identified by its location and the company that owns
it. The system keeps the name and telephone number
of each company. Each machine works with several
coin types. The products sold in each machine are
identified by their name and producer. When a
customer buys a drink from the system, he or she
first needs to check whether the product is available
and, if needed, whether coins for change are
available. When the customer asks to buy a drink,
the system creates a transaction, updates the relevant
information and notifies the machine about the
product and coins it needs to deliver. A machine
operator can perform two operational activities:
drinks filling and coins loading.

2.1 The ADOM-OPM Domain
Layer

As noted, the domain in the ADOM approach should
be modeled as a regular application. OPM is thus the
modeling technique for both the domain model and
the application model, and each will be constructed
as an OPM model with its OPD set.

Figure 1, which depicts the system diagram (SD,
top level) of the AC domain, shows that it consists
of three external entities—Client, Machine, and
Maintenance Entity, two processes—Operate and
Maintain, and four system objects—Owner,
Company, Transaction, and Machine Info. The
symbols "m" and "+" at the right-bottom edge of
some OPM things (objects and processes) indicate

the multiplicity constraints of these things within the
application model. The symbol "m" indicates zero to
many and the symbol "+" indicates 1 to many. For
example, at least one object of type Client should
appear within the application model related to that
domain. In addition to defining OPM things that
serve as building blocks in an application in that
domain, links are defined too. For example, the
Operate process yields a Transaction. This
constraint should hold in any applications within the
AC domain.

Machine Info is unfolded in Figure 2. Machine
Info consists of many Item objects and many
Money Availability objects. Item exhibits Item
Identifier and at least one Item Attribute and refers
to many Transactions and to at least one Owner.
Money Availability exhibits Money Amount and
refers to Money Type, which exhibits Money Value
and at least one Identification Sign. Machine Info
exhibits at least one Machine Identifier and an
optional Balance. Machine Info refers to a
Company and to many Transactions. Company
exhibits Company Identifier. Transaction exhibits
Transaction Date and optionally refers to Owner
which exhibits at least one Owner Details.

In Figure 3 the Operate process is elaborated
using the in-zooming scaling mechanism of OPM.
The order of the processes depicted in that figure is
the following:
1. An optional (as indicated by the multiplicity

indicator "m") Identification process, which
requires a Company object, an Owner Object,
and a Machine Info object and yields a Can
Operate object;

Figure 1: System Diagram of the AC domain.

+

++

+

+

+m

+

+

++

+

+

+m

+

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

146

2. At least one (as indicated by the "+"
multiplicity indicator) Item Availability
Checking process, which requires an Item
object and yields a Can Operate object;

3. At least one Money Availability Checking
process, which requires a Money Amount
object and yields a Can Operate object;

4. A Transaction Creating process, which is
activated if the Can Operate object is true, in
which case it yields a Transaction object;

5. At least one Money & Machine Updating
process, which requires the Transaction

object and affects Balance, Money Amount,
and Machine; and

6. At least one Item Updating & Machine
Operating process, which requires
Transaction and affects Item Attribute and
Machine.

Figure 2: Machine Info Unfolded.

Figure 3: Operate process in-zoomed.

+

+

+

+ +

+

+

+
+

+

+

m

*

+

+

+

+ +

+

+

+
+

+

+

m

*

DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY

147

2.2 The ADOM-OPM Application
Layer

In ADOM, the application layer uses the domain
layer as a validation template. In this section we
provide a specification of the Drink Vending
Machine (DVM) application which is classified by
Duffy (2004) as belonging to the domain of access
control systems. The requirements of the DVM
application were presented in the beginning of
Section 2.

Figure 4 presents the system diagram of the
DVM application. In the application layer model,
each thing (i.e., an object or a process) is associated
with a role. For example, the object Customer is
associated with a Client role, which is an object in
the domain layer model. The Drink Buying process
is associated with the Operate role, a process in the
domain layer model.
Note that objects that are classified as Owner and
Company, which were specified in the domain layer
model, do not appear in the application layer model
since they are not required at the lower level OPDs
of this application. This shows the ability of the
ADOM-OPM approach to capture variability within
a domain using the multiplicity constraints.
The system exhibits three top-level processes:
1. Drink Buying, which is triggered by a

Customer, yields a Buy Transaction, and
affects DVM and DVM Info. This process

stands for the constraints that were specified
with the Operate process in the domain layer
model in Figure 1.

2. Drink Updating, which is triggered by the
Operator and affects DVM and DVM Info.

3. Coin Updating, which is triggered by the
Operator and affects DVM and DVM Info.

Both Drink Updating and Coin Updating conform
to the constraints associated with the Maintain
process in the domain level model.

Figure 5 shows an OPD in which DVM Info is
unfolded. This OPD relates to the domain OPD
depicted in Figure 2 as its validation template. The
roles specified within the domain model are mapped
to the application classes of both objects and
processes. For example, the Producer labeled with
the role Owner exhibits Producer Name and
Producer Address, which are labeled with the role
Owner Details. This relation also demonstrates how
the domain layer model serves as a guideline for
modeling the application.

The Drink Buying process, which is in-zoomed
in Figure 6, follows the constraints specified in the
domain layer, as described in Figure 3. Overall, the
sequence of application processes follows the
pattern specified in the domain layer model, yet an
Identification process is missing, as it was specified
as optional.

Figure 4: System diagram of the Drink Vending Machine.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

148

Figure 5: DVM Info Unfolded.

Figure 6: Drink Buying process in-zoomed.

3 EVALUATING ADOM-OPM

The ADOM-OPM approach has been applied in
several domains, including multi-agent systems,
discrete simulation event, resource allocation and
tracking, process control, and databases. We also
conducted an experiment to compare ADOM-OPM
with OPM. The goal of the experiment was to
determine whether modeling that is based on a
domain model improves the resulting application
model compared with an application model that is
developed without the support of a domain model. In

this section, we present the experiment and its
results.

3.1 Experiment Hypothesis

Our conjecture prior to carrying out the experiment
was that an application model constructed using
ADOM-OPM is more complete and more correct
than the model of the same system resulting from
using OPM alone. The reason for this conjecture was
that the domain model in ADOM-OPM provides a
framework that guides the modeler in creating the
application model within the domain of discourse.

DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY

149

3.2 Experiment Settings

The subjects of the experiment were 120 third year
students in a four-year engineering B.Sc. program at
the Technion – Israel Institute of Technology, who
took the course “Specification and Analysis of
Information Systems” at the winter semester of the
2004-5 academic year. The students had no previous
knowledge or experience in system modeling and
specification. During the course, the students studied
various modeling techniques, including Data Flow
Diagram (DFD), UML, Statecharts, and OPM. The
last lecture was devoted to the ADOM approach and
its application in UML and OPM.

Table 1: Students' distribution by exam version and
domain (question).

 Exam
 Version
Domain

V1 V2 V3

Resource Allocation
and Tracking (RAT)

OPM (32)
ADOM-

OPM (40)

Process Control (PC)

ADOM-
OPM (38)

OPM (28)

Access Control (AC) ADOM-
OPM (41)

OPM (32)

The experiment took place during the final

examination of the course. The examination
consisted of three questions relating to different
domains. In each question the students were
provided with application requirements similar to
the requirements for the DVM application in Section
2. We had three different examination versions, such
that in each question (domain) about half of the
students were also provided with the OPM-based
domain layer model.

The students were divided arbitrarily into three
groups, labeled V1, V2, and V3, and each group
responded to a different examination version. Each
version included one question with a domain model
and one question without a domain model. The
distribution of students into the three groups and the
three domains (questions) is given in Table 1, where
the numbers of students who responded to each
question in each version appear in parenthesis.

3.3 Experiment Results

All the questions were graded by the course staff.
Each one of the graders checked a question in one
domain for all students according to a pre-defined
set of criteria. Each question could score up to 34
points. Table 2 summarizes the average scores

students achieved for each question in OPM and in
ADOM-OPM.

Table 2: Average scores.

Total AC PC RAT Domain
Method

25.6 25.06 27.07 23.06 OPM
27.55 28.19 30.64 25.00 ADOM-OPM
p<0.0

1 P<0.02 p<0.01 p<0.05 Significance

Table 2 clearly shows that using the ADOM-

OPM the students achieved better results than with
OPM alone, and these results are domain
independent. Performing a mean comparison
statistical analysis we found that the differences
between the two methods were significant. This
confirms our conjecture regarding the benefits of
modeling with ADOM-OPM compared with generic
OPM modeling. Examining the results in detail we
found out that the models done using ADOM-OPM
scored better than models done with OPM alone in
terms of correctness of objects, processes, and links
and in terms of model completeness.

4 SUMMARY

In this paper, we present our extension for the
Object-Process Methodology (OPM) to handle
application domain modeling (ADOM) approach.
The OPM extension includes roles, which are
stereotypes-like elements, and multiplicity
indicators. We demonstrated the use of the resulting
ADOM-OPM approach by applying it to the domain
of access control systems and a corresponding
application—the drink vending machine. Finally, we
examined the ADOM-OPM approach via a
controlled experiment and established that it helps
create better models than those obtained using OPM
alone.

In addition, analyzing the empirical results and
the theoretical aspects, we found that the ADOM-
OPM approach addresses the following problem:
1. The multiple view problem: OPM supports

system specification in a single, unifying view,
or diagram type. Since a domain is modeled just
like an application within a domain, domain
modeling benefits from all the advantages of
OPM, including its single view, the combination
of formality with intuition, and the bimodal
graphic-textual representation.

2. Relationships between the domain and
application models: The ADOM-OPM approach
utilizes the domain model while modeling the

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

150

application in the following ways: (1) labelling
of the application model entities with roles
defined in the domain model; and (2) validating
the relationships among the application model
elements (entities and links) according to the
thing roles and link constraints defined in the
domain model.

3. The models incompatibility problem: both the
domain and the application OPM models use
the same notations and semantics, so no mental
model transformation is needed.

Moving forward from domain analysis, domain
design in OPM is similar to domain analysis, as it
employs the same terminology while deepening the
level of details and shifting the focus from the
problem domain to the solution domain. The
transformation to domain implementation can be
done using the Generic Code Generator (GCG)
(Reinhartz-Berger and Dori, 2004) associated with
OPCAT (Dori et al, 2003). Utilizing the GCG and
roles within a domain can be a basis for developing
infrastructure components and using them to
generate application code.

The implementation of the ADOM-OPM
analysis approach is currently being integrated into
OPCAT. We plan to add negation constraints as well
as extending the application model so that it can be
based on more than one domain model. We also
intend to experimentally compare the ADOM-OPM
approach with ADOM-UML approach.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Iris Reinhartz-Berger
for her insightful remarks and comments and for her
help in designing the experiment.

REFERENCES

Carnegie Mellon - Software Engineering Institute, 2002.
Domain Engineering: A Model-Based Approach,
http://www.sei.cmu.edu/domain-engineering/.

de Champeaux, D., Lea D., and Faure P., 1993. Object-
Oriented System Development, Addison Wesley.

Cleaveland, C., 2002. Domain Engineering,
http://craigc.com/cs/de.html.

Czarnecki, K. and Eisenecker, U. W., 2000. Generative
Programming - Methods, Tools, and Applications,
Addison-Wesley.

Dori, D., 2002. Object-Process Methodology - A Holistic
Systems Paradigm, Springer Verlag.

Dori, D., 1995. Representing Pattern Recognition-
Embedded Systems through Object-Process
Diagrams: the Case of Machine Drawing

Understanding System, Pattern Recognition Letters,
16(4), pp. 374-384.

Dori, D., 1996. Object-Process Analysis of Computer
Integrated Manufacturing Documentation and
Inspection, International Journal of Computer
Integrated Manufacturing, 9(5), pp. 339-353.

Dori, D., Reinhartz-Beger, I., and Sturm, A., 2003.
OPCAT – A Bimodal CASE Tool for Object-Process
Based System Development, The fifth International
Conference On Enterprise Information
Systems (ICEIS).

Duffy, D. J., 2004. Domain Architectures: Models and
Architectures for UML Applications, John Wiley &
Sons.

OMG-MOF, 2002. Meta-Object Facility (MOF™),
version 1.4.

OMG-UML, 2003. The Unified Modeling Language
(UML™), version 1.5.

Peleg, M. and Dori, D., 2000. The Model Multiplicity
Problem: Experimenting with Real-Time Specification
Methods, IEEE Transaction on Software Engineering,
26 (8), pp. 742-759.

Reinhartz-Berger, I., Katz, S., and Dori, D., 2002.
OPM/Web - Object-Process Methodology for
Developing Web Applications, Annals on Software
Engineering - Special Issue on OO Web-based
Software Engineering, pp. 141-161.

Reinhartz-Berger, I. and Dori, D., 2005. OPM vs. UML –
Experimenting Comprehension and Construction of
Web Application Models, Empirical Software
Engineering Journal, 10 (1), pp. 57-80.

Reinhartz-Berger, I. and Dori, D., 2004. Object-Process
Methodology (OPM) vs. UML: A Code Generation
Perspective, EMMSAD, 2004.

Reinhartz-Berger, I. and Sturm, A., 2004. Behavioral
Domain Analysis – The Application-based Domain
Modeling Approach, the 7th International Conference
on the Unified Modeling Language (UML'2004),
LNCS 3273, pp. 410-424.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W., 1991. Object-Oriented Modeling and
Design, Prentice-Hall International Inc.

Siau, K. and Cao, Q., 2001. Unified Modeling Language:
A Complexity Analysis, Journal of Database
Management, 12 (1), pp. 26-34.

Sturm, A. and Reinhartz-Berger, I., 2004. Applying the
Application-based Domain Modeling Approach to
UML Structural Views, the 23rd International
Conference on Conceptual Modeling (ER'2004),
LNCS 3288, pp. 766-779.

Valerio, A., Succi, G, and Fenaroli, M., 1997. Domain
analysis and framework-based software development,
ACM SIGAPP Applied Computing Review, 5 (2).

DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY

151

