
ALGORITHMS FOR INTEGRATING TEMPORAL PROPERTIES
OF DATA IN DATA WAREHOUSING

Francisco Araque
Department of Software Engineering, University of Jaén, Jaén, Spain

Alberto Salgueroa, Cecilia Delgadob, Eladio Garvíb, José Samosb
a E.T.S.I.I., University of Granada, Granada, Spain

b Department of Software Engineering, University of Granada, Granada, Spain

Keywords: Data Warehouse, Temporal integration, Middleware Integration, Organisational Issues on Systems
Integration.

Abstract: One of the most complex issues of the integration and transformation interface is the case where there are
multiple sources for a single data element in the enterprise data warehouse. While there are many facets to
the large number of variables that are needed in the integration phase, what we are interested in is the
temporal problem. It is necessary to solve problems such as what happens when data from data source A is
available but data from data source B is not. This paper presents our work into data integration in the Data
Warehouse on the basis of the temporal properties of the data sources. Depending on the extraction method
and data source, we can determine whether it will be possible to incorporate the data into the Data
Warehouse. We shall also examine the temporal features of the data extraction methods and propose
algorithms for data integration depending on the temporal characteristics of the data sources and on the data
extraction method.

1 INTRODUCTION

Many information sources have their own
information delivery schedules, whereby the data
arrival time is either predetermined or predictable. If
we use the data arrival properties of such underlying
information sources, the Data Warehouse
Administrator (DWA) can derive more appropriate
rules and check the consistency of user requirements
more accurately. The problem now facing the user is
not the fact that the information being sought is
unavailable, but rather that it is difficult to extract
exactly what is needed from what is available.

For example, there is a data element a in the
enterprise DW with a source data element b from
legacy application B and a data element c from
legacy application C. To make things more
complicated, legacy application B is in IMS and
legacy application C is in Adabas (Inmon, 2002).

The first complication arises when more than
one condition is satisfied. In this case, the designer
must decide how to make tie breakers. The second

complication lies in accessing all of the legacy data
in order to determine the proper value of a. One
problem here are the resources required to examine
all the data. Although in some cases, the data needed
to satisfy the logic is readily available, in other
cases, the data is anything but available, and lengthy
calculations are needed in order to satisfy even the
simplest logical condition. The third issue is one of
timing. What happens when data from data source B
is available but data from data source C is not?. The
fourth complication is that of documenting the audit
trail for the calculation of a. At a later point in time,
an analyst might want to know the origins of a. In
such a case, the origins are anything but
straightforward. How will the DSS analyst be able to
determine exactly which path of logic was used to
form the basis of a?. The fifth complication is that of
specifying temporarily available data as part of the
condition set required to calculate the value of a.

The ability to integrate date from a wide range of
data sources is an important field of research in data
engineering (Haas et al., 1998). Data integration is a
prominent theme in many areas and enables widely

193
Araque F., Salguero A., Delgado C., Garví E. and Samos J. (2006).
ALGORITHMS FOR INTEGRATING TEMPORAL PROPERTIES OF DATA IN DATA WAREHOUSING.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 193-199
DOI: 10.5220/0002493801930199
Copyright c© SciTePress

Data sources

Operational
dbs

External
sources

Extract
Transform
Load
Refresh

Data Warehouse

Data Marts

Analysis
OLAP
Servers

Data Mining

Query/Reporting

Metadata
Repository

Monitoring & Admnistration

Tools

Serve

distributed, heterogeneous, dynamic collections of
information sources to be accessed and handled. The
use DW and Data Integration has been proposed
previously in many fields. In (Haller et al. 2000) the
Integrating Heterogeneous Tourism Information data
sources is addressed using three-tier architecture. In
(Moura et al. 2004) a Real-Time Decision Support
System for space missions control is put forward
using Data Warehousing technology. And in (Oliva
& Saltor, 2001) a multilevel security policies
integration methodology to endow tightly coupled
federated database systems with a multilevel
security system is presented.

It would therefore be extremely useful to have
algorithms which determine whether it would be
possible to integrate data from two data sources
(with their respective data extraction methods
associated). In order to make this decision, we use
the temporal characteristics of the data sources and
their extraction methods.

It should be pointed out that we are not
interested in how semantically equivalent data from
different data sources will be integrated. Our interest
lies in knowing whether the data from different
sources (specified by the DW Administrator) can be
integrated on the basis of the temporal
characteristics of the sources (not in how this
integration is carried out).

In other words, the means by which two or more
data from different sources (for example, changing
the formats of the data to adapt them to the DW data
model) may be integrated is beyond the scope of this
paper. We are at a previous stage where it is decided
whether it is possible to integrate data from different
sources with different temporal properties. For
example, if we can obtain a data element with a 24-
hour granularity (once a day) and another data
element (which is to be integrated with the previous
one at a subsequent stage) with a 1-hour granularity
from another source, the result of the temporal
integration is: the two data elements can be
temporally integrated every 24 hours when both are
available.

This work presents algorithms for processing
information integration requirements using temporal
properties of data sources. Section 2 reviews the
concepts of the DW and Online Analysis Processing
(OLAP). Section 3 introduces temporal conceps
used in this work. Section 4 presents whether data
from two data sources with their data extraction
methods can be integrated. Section 5 describes the
algorithms proposed. And we finish with the
conclusions.

2 BASIC CONCEPTS

2.1 Data Warehouse

Inmon (Inmon, 2002) defined a Data Warehouse
(DW) as “a subject-oriented, integrated, time-
variant, non-volatile collection of data in support of
management’s decision-making process.” A DW is a
database that stores a copy of operational data with
an optimized structure for query and analysis. The
scope is one of the issues which defines the DW: it
is the entire enterprise. In terms of a more limited
scope, a new concept is defined: a data mart is a
highly focused DW covering a single department or
subject area. The DW and data marts are usually
implemented using relational databases (Hammer et
al. 1995), (Harinarayan et al. 1996) which define
multidimensional structures.

Figure 1: A generic DW architecture.

The generic architecture of a DW is illustrated in
Figure 1 (Chaudhuri & Dayal, 1997), which shows
that data sources include existing operational
databases and flat files (i.e. spreadsheets or text
files) combined with external databases. Data is
extracted from the sources and then loaded into the
DW using various data loaders (Araque, 2002),
(Araque, 2003a). The warehouse is then used to
populate the various subject/process-oriented data
marts and OLAP servers. Data marts are subsets of a
DW which has been categorized according to
functional areas depending on the domain
(addressing the problem area) and OLAP servers are
software tools that help a user to prepare data for
analysis, query processing, reporting and data
mining. The entire DW then forms an integrated
system that can support various reporting and
analysis requirements of the decision-making
function (Chaudhuri & Dayal, 1997).

After the initial loading, warehouse data must be
regularly refreshed, and modifications of operational
data since the last DW refreshment must be
propagated into the warehouse so that the warehouse
data reflects the state of the underlying operational
systems (Araque & Samos, 2003), (Araque, 2003b).

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

194

2.2 Data Sources

Data sources can be operational databases, historical
data (usually archived on tapes), external data (for
example, from market research companies or from
the Internet), or information from the already
existing data warehouse environment. They can also
be relational databases from the line of business
applications. In addition, they can reside on many
different platforms and can contain structured
information (such as tables or spreadsheets) or
unstructured information (such as plain text files or
pictures and other multimedia information).

Extraction, transformation and loading (ETL) are
data warehousing processes which involve
extracting data from external sources, adapting it to
business needs, and ultimately loading it into the
data warehouse. ETL is important as this is the way
data actually gets loaded into the warehouse.

2.3 Data Capture

DWs describe the evolving history of an
organization, and timestamps allow temporal data to
be maintained. When considering temporal data for
DWs, we need to understand how time is reflected in
a data source, how this relates to the structure of the
data, and how a state change affects existing data.

Capture is a component of data replication that

interacts with source data in order to obtain a copy
of some or all of the data contained therein or a
record of any changes (Devlin, 1997). In general, not
all the data contained in the source is required.
Although all the data could be captured and
unwanted data then discarded, it is more efficient to
capture only the required subset. The capture of such
a subset, with no reference to any time dependency
of the source, is called static capture. In addition,
where data sources change with time, we may need
to capture the history of these changes. In some
cases, performing a static capture on a repeated basis
is sufficient. However, in many cases we must
capture the actual changes that have occurred in the
source. Both performance considerations and the
need to transform transient or semi-periodic data
into periodic data are the driving force behind this
requirement. This type is called incremental capture.
Static capture essentially takes a snapshot of the
source data at a point in time.

There are several data capture techniques, and
static capture is the simplest of these. Incremental
capture, however, is not a single topic. It can be
divided into five different techniques (shown
below), each of which has its own strengths and
weaknesses. The first three types are immediate
capture, whereby changes in the source data are

captured immediately after the event causing the
change to occur. Immediate capture guarantees the
capture of all changes made to the operational
system irrespective of whether the operational data
is transient, semi-periodic, or periodic. The first
three types are:
– Application-assisted capture, which depends on

the application changing the operational data so
that the changed data may be stored in a more
permanent way

– Triggered capture, which depends on the
database manager to store the changed data in a
more permanent way

– Log/journal capture, which depends on the
database manager's log/journal to store the
changed data

Because of their ability to capture a complete

record of the changes in the source data, these three
techniques are usually used with incremental data
capture. In some environments, however, technical
limitations prevent their use, and in such cases,
either of the following two delayed capture
strategies can be used if business requirements
allow:
– Timestamp-based capture, which selects changed

data based on timestamps provided by the
application that maintains the data.

– File comparison, which compares versions of the
data in order to detect changes.

3 TEMPORAL CONCEPTS

In order to represent the data discussed above, we
use a time model consisting of an infinite set of
instants Ti (time points on an underlying time axis).
This is a completely ordered set of time points with
the ordering relation ‘≤’ (Bruckner & Tjoa, 2002).
We can represent the temporal characteristics of the
data source with the temporal concepts presented in
(Araque, 2002), (Araque, 2003a). It is therefore
possible to determine when the data source can offer
the data and how this data changes over time
(temporal characteristics). This can be represented in
the temporal component schema and used by the
DW administrator to decide how to schedule the
refreshment activity. It depends on the temporal
properties of the data source.

3.1 Temporal Properties of Data

The DW must be updated periodically in order to
reflect source data updates. The operational source
systems collect data from real-world events captured
by computer systems (Bruckner & Tjoa, 2002). The
observation of these real-world events is

ALGORITHMS FOR INTEGRATING TEMPORAL PROPERTIES OF DATA IN DATA WAREHOUSING

195

characterized by a delay. This so-called propagation
delay is the time interval it takes for a monitoring
(operational) system to realize an occurred state
change. The update patterns (daily, weekly, etc.) for
DWs and the data integration process (ETL) result in
increased propagation delays.
– Having the necessary information available on

time means that we can tolerate some delay (be it
seconds, minutes, or even hours) between the
time of the origin transaction (or event) and the
time when the changes are reflected in the
warehouse environment. This delay (or latency)
is the overall time between the initial creation of
the data and its population into the DW

It is necessary to indicate that we take the

following conditions as a starting point:
– We consider that we are at the E of the ETL

component (Extraction, Transformation and
Loading). This means we are treating times in
the data source and in the data extraction
component. This is necessary before the data is
transformed in order to determine whether it is
possible (in terms of temporal questions) to
integrate data from one or more data sources.

– Transforming the data (with formatting changes,
etc.) and loading them into the DW will entail
other times which are not considered in the
previous “temporal characteristic integration” of
the different data sources.

– We suppose that we are going to integrate data
which has previously passed through the
semantic integration phase.

Figure 2: Temporal properties of data.

We consider the following temporal parameters
to be of interest on the basis of the characteristics of
the data extraction methods and the data sources
(figure 2):
– VTstart: time instant when the data element

changes in the real world (event). At this
moment, its Valid Time begins. The end of the
VT can be approximated in different ways which
will depend on the source type and the data
extraction method. The time interval from
VTstart to VTend is the lifespan.

– TT: time instant when the data element is
recorded in the data source computer system.
This would be the transaction time.

– W: time instant when the data is available to be
consulted. We suppose that a time interval can
elapse between the instant when the data element
is really stored in the data source computer
system and the instant when the data element is
available to be queried. There are two
possibilities:
 that W <VDstart (in this case, the data

element would only be available on the local
source level or for certain users)

 that VDstart <= W <VDend (in this case, the
data element would be available for
monitoring by the extraction programs
responsible for data source queries)

– VD: Availability Window(Time interval). Period
of time in which the data source can be accessed
by the monitoring programs responsible for data
source extraction. There may be more than one
daily availability window. Then:
 VDstart, time instant when the availability

window is initiated
 VDend, time instant when the availability

window ends
– TE: Extraction Time(Time interval). Period of

time taken by the monitoring program to extract
significant data from the source. Then:
 TEstart, time instant when the data

extraction is initiated.
 TEend, time instant when the data extraction

ends.
 We suppose that the TE is within the VD in

case it were necessary to consult the source
to extract some data. In other words,
VDstart< TEstart < TEend < VDend.

– M: time instant when the data source monitoring
process is initiated. Depending on the extraction
methods, M may coincide with TEstart.

– TA: maximum time interval storing the delta
file, log file, or a source image. We suppose that
during the VD, these files are available. This
means that the TA interval can have any
beginning and any end, but we suppose that it at
least coincides with the source availability
window. Therefore, TAstart <= VDstart and
VDend <= TAend.

– Y: time instant from when the data is recorded in
the DW.

– Z: time instant from when certain data from the
DW are summarized, passed from one type of
storage to another because they are considered
unnecessary.

From VTstart to Z represents the real life of a

data element from when it changes in the real world
until this data element moves into secondary storage.
Y and Z parameters it is not considered to be of
immediate usefulness in this research.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

196

By considering the previous temporal parameters
and two data sources with their specific extraction
methods (this can be the same method for both), we
can determine whether it will be possible to integrate
data from two sources (according to DWA
requirements).

4 TEMPORAL PROPERTIES
INTEGRATION

In the following paragraphs, we shall explain how
verification would be performed in order to
determine whether data from data sources can be
integrated. It is necessary to indicate that if we rely
on 5 different extraction methods, and the
combination of these two at a time, we would have
15 possible combinations. In this article, we shall
focus on only two cases: firstly, the combination of
two sources, one with the File Comparison method
(FC) and the other with the Log method (LOG);
secondly, the combination of two sources both with
the same log method (LOG).

We suppose that the data recorded in the delta
and log files have a timestamp which indicates the
moment when the change in the source occurred
(source TT). The following paragraphs describe the
crosses between extraction methods on an abstract
level, without going into low level details which
shall be examined in subsequent sections.

LOG – FC. In this case, the LOG method

extracts the data from the data source and provides
us with all the changes of interest produced in the
source, since these are recorded in the LOG file. The
FC method, on the other hand, only provides us with
some of the changes produced in the source
(depending on how the source is monitored). We
will therefore be able to temporally integrate only
some of the changes produced in both sources.
Integration of the TT parameter would not be
possible as the FC method does not have this
parameter. On an abstract level, we can say that
temporal integration may be carried out during all of
the previously mentioned temporal parameters or
characteristics (see 3.1) except TT.

LOG – LOG. In this case, we carry out the

temporal integration of data (from the same or
different sources) extracted with the same method.
From the source where the data are extracted with
the LOG method, all the produced changes are
available. We will therefore be able to temporally
integrate all the changes produced in both sources.
On an abstract level, we can say that temporal
integration may be carried out during all of the
previously mentioned temporal properties (see 3.1).

5 ALGORITHMS

Prior to integration, it is necessary to determine
under what parameters it is possible and suitable to
access the sources in search of changes, according to
their availability and granularity(Gr) This process is
carried out by the pre-integration algorithm. It is
only possible to determine these parameters
previously if there is some pattern related to the
source availability (fig. 3). The parameters obtained
as a result shall be used in the specific integration
algorithms whenever the data sources are refreshed
(M). If it is possible to temporally integrate the data
from both sources (on the basis of their temporal
properties), semantic integration is undertaken and
the result is stored in the DW. The pre-integration
algorithm is out the scope of this paper (Castellanos,
1993).

Figure 3: Integration Procress.

Data Sources. By way of example to show the
usefulness of these algorithms, an application is used
which has been developed to maximize the flight
experience of soaring pilots (Araque et al, 2006).
These pilots depend to a large extent on
meteorological conditions to carry out their activity
and an important part of the system is responsible
for handling this information. Two data sources are
used to obtain this type of information:
– The US National Weather Service Website. We

can access weather measurements. It is a FC data
source.

– In order to obtain a more detailed analysis and to
select the best zone to fly, pilots use another
tool: the SkewT diagram. It is a LOG data
source.

The information provided by both data sources is

semantically equivalent in certain cases. Given an
airport where soundings are carried out, the lower
layer meteorological information obtained in the

ALGORITHMS FOR INTEGRATING TEMPORAL PROPERTIES OF DATA IN DATA WAREHOUSING

197

sounding and that obtained from a normal
meteorological station must be identical if relating to
the same instant. In order to integrate these data, it is
necessary to use the algorithms described in the
following section.

5.1 Algorithm for FC – LOG

Every time the data source with the FC method is
accessed, the value of the parameter to be integrated
is extracted and this is compared with its last known
value. If there has been a change, it is necessary to
search for the associated change in the LOG source
in order for integration to be performed. Since the
LOG source might have collected more than one
change in the period which has elapsed since the last
refreshment, only the last change occurring in this
period is taken into account. This is verified by
consulting the TT value of the change in question.

Figure 4: LOG – FC.

If integration was possible, the value of the
variable which stores the previous value of the FC-
type source is updated. If integration was not
possible, the value of this variable is not updated, so
that if the change is detected in the LOG source in
subsequent refreshments, integration can be carried
out even if there has been no further change in the
value of the parameter in the FC source.

Figure 4 represents the evolution of the
meteorological data sources from the example which
we are following (one source with a LOG extraction
method and another with an FC method). If the
designer wants to obtain this information with a
daily level of detail, the integration process of the
change “A” detected in the temperature would be
carried out in the following way: every twenty-four
hours, both sources are consulted; if the temperature
value on the airport website has changed in relation
to our last stored one, the two changes of the same
parameter which have occurred in the source
corresponding to the soundings in the last twenty-
four hours are recovered (as they are carried out
every twelve hours and all the changes are
recorded). The value from the website is then
semantically integrated with the latest one of these.
The algorithm for FC – LOG is as follows:

available = true
If any source is not periodical
available = CheckAvailabilityW(Log)
available = CheckAvailabilityW & available

If availabile = true
newValueFc = readValue(FC)
If newValueFc <> oldValueFc
newValueLog = last log value
If TT(newValueLog) < Mi-1
;Imposible to integrate the change
;because it still has not been
;detected in the Log source.

If-not
result=Integrate(newValueFc,newValueLog)
oldValueFc = newValueFc

5.2 Algorithm for LOG – LOG

This algorithm maintains a record of the changes
which still remain to be detected in both sources.
Every so often, the algorithm is executed and the
two data sources from this temporal record are
consulted and the pairs of changes are integrated.
The first change is obtained in the source 1 of the
parameter to be integrated. This change must take
place after the record which indicated the first
change which could not be integrated.

If either of these two changes has occurred since
the last refreshment, this means that this is the first
time that a change in some source has been recorded
and so integration may be carried out. Since this is a
log, all the changes repeated in both sources must
appear and must also be ordered temporally.

Figure 5: LOG – LOG.

Figure 5 shows an integration example of two log-
type data sources. The third time that the data
sources are consulted (instant M3), it is not possible
to integrate change “A” because it is still unavailable
in one of the sources. The instant corresponding to
the change detected is saved and no action is taken
until the following refreshment. The fourth time that
the sources are consulted, the temporal record is read
first. In this case, change "A" is recorded in the
second data source, and we therefore know that this
change has not been integrated previously. It is then
integrated semantically and the main loop of the
algorithm is reiterated. When change “B” is detected
in both sources, integration may be carried out
directly. The algorithm is as follows:

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

198

available = true
allChanges = true
If any source is not periodical
available = CheckAvailabilityW(Log)
available = CheckAvailabilityW & available

If Now – LastTimeRefreshed < ST
allChanges = false

If availabile = true & allChanges = true
Repeat
v1 = firstChangeAfter(updatedTo, Log1)
v2 = firstChangeAfter(updatedTo, Log2)
If TT(v1) > Mi-1 || TT(v2) > Mi-1
result = integrate(v1, v2)
updatedTo = min(TT(v1), TT(v2))

while v1 <> null && v2 <> null

6 CONCLUSIONS

In this paper we have presented our work related to
algorithms for processing information integration
requirements using temporal properties of data
sources. Data from different data sources are
integrated according to the requirements of the DW
Administrator. It is very useful to have algorithms
which stated whether it is possible to integrate data
from two data sources (with their respective data
extraction methods associated), being based on the
temporal properties of the data in the data sources
and their extraction methods. How two or more data
from different sources (for example, changing the
formats of the data to adapt them to the DW data
model) may be integrated is a later stage. What it is
decided whether it is possible to integrate data from
different sources with different temporal properties.
The next step in our research will be to apply it not
only to the data temporal properties, but also to
include spatial properties. In sum, to integrate
spatio-temporal properties of data in DW.

This work has been supported by the Spanish
Research Program PRONTIN under project
TIN2005-09098-C05-03.

REFERENCES

Araque, F. & Samos, J. (2003). Data warehouse
refreshment maintaining temporal consistency. 5th
Intern. Conference on Enterprise Information Systems,
ICEIS´03.Angers. France.

Araque, F. (2002). Data Warehousing with regard to
temporal characteristics of the data source. IADIS
WWW/Internet Conference. Lisbon, Portugal.

Araque, F. (2003a). Real-time Data Warehousing with
Temporal Requirements. Decision Systems
Engineering, DSE'03 (in conjunction with the
CAISE'03 conference). Klagenfurt/Velden, Austria.

Araque, F. (2003b). Integrating heterogeneous data
sources with temporal constraints using wrappers. The

15th Conference On Advanced Information Systems
Engineering. Caise Forum. Klagenfurt, Austria.

Araque, F., Salguero, A., and Abad, M.M. 2006.
Application of data warehouse and Decision Support
System in Soaring site recommendation. Proc.
Information and Communication Technologies in
Tourism, ENTER 2006. Springer Verlag, 18-20
January. Lausanne, Switzerland.

Bruckner, Robert M. and Tjoa, A M. Capturing Delays
and Valid Times in Data Warehouses - Towards
Timely Consistent Analyses. Journal of Intelligent
Information Systems (JIIS), Vol. 19(2), pp. 169-190,
Kluwer Academic Publishers, September 2002.

Castellanos, M. Semiautomatic Semantic Enrichment for
the Integrated Access in Interoperable Databases. PhD
thesis, Dept. Lenguajes y Sistemas Informáticos,
Universidad Politécnica de Cataluña, Barcelona
(SPAIN), June 1993.

Chaudhuri, S., & Dayal, U. (1997). OLAP technology and
data warehousing, ACM SIGMOD Records, Hewlett-
Packard .

Devlin, Barry. (1997). Data warehouse: from architecture
to implementation. Addison Wesley , c1997.

Haller, M., Pröll, B. , Retschitzegger, W., Tjoa, A. M., &
Wagner, R. R. (2000). Integrating Heterogeneous
Tourism Information in TIScover - The MIRO-Web
Approach. Proceedings Information and
Communication Technologies in Tourism, Springer
Verlag, ENTER 2000. Barcelona.

Hammer, J., García-Molina, H., Widom, J., Labio, W., &
Zhuge, Y. (1995). The Stanford Data Warehousing
Project. IEEE Data Engineering Bulletin.

Harinarayan, V., Rajaraman, A., & Ullman, J. (1996).
Implementing Data Cubes Efficiently. Proc. of ACM
SIGMOD Conference. Montreal.

Haas L., Kossman D., Wimmers E., Yang J.: "Optimizing
Queries across Diverse Data Sources", 23rd Very
Large Data Bases, August 1998, Athens, Greece.

Inmon W.H. (2002). Building the Data Warehouse. John
Wiley.

Oliva, M., and Saltor, F. Integrating Multilevel Security
Policies in Multilevel Federated Database Systems. In
B. Thuraisingham, R. van de Riet, K.R. Dittrich, and
Z. Tari, editors, Data and Applications Security:
Developments and Directions, pages 135–147. Kluwer
Academic Publishers, Boston, 2001.

Moura Pires, J., Pantoquilho, M., & Viana, N. (2004).
Real-Time Decision Support System for Space
Missions Control. Int. Conference on Information and
Knowledge Engineering, Las Vegas, USA.

ALGORITHMS FOR INTEGRATING TEMPORAL PROPERTIES OF DATA IN DATA WAREHOUSING

199

