
A NEW FRAMEWORK FOR THE SUPPORT OF
SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES

Arnaud Lewandowski, Grégory Bourguin
Laboratoire d’Informatique du Littoral, 50 rue Ferdinand Buisson, 62228 Calais Cedex, France

Keywords: Software development support, CSCW, tailorability, inter-activities, Eclipse.

Abstract: Software development is a cooperative activity, since it implies many actors. We focus on CSCW integrated
global environments. Many studies have already shown, for a long time, that a ‘good’ cooperative environ-
ment should be able to take into account the users’ emergent needs, and should be adaptable. Of course,
such properties should also be found in environments supporting software development. However, our study
of some existing platforms points out their lacks in terms of tailorability and cooperative support. Eclipse is
one of these broadly used platforms. But even if it presents some shortcomings, its underlying framework
offers some features particularly interesting for our purpose. Upon results previously obtained in the CSCW
field, we propose to extend the Eclipse platform, in order to offer a new support for software development
by creating a cooperative context for the activities supported in Eclipse by each integrated plug-in.

1 INTRODUCTION

Following the continuous growth of information
technologies, users are looking for systems able to
support their intrinsically cooperative activities. And
today, these activities tend towards being realized
through complex systems supporting this coopera-
tion of actors, distributed through space and time.

The software development (SD) domain, which
provides such tools as well as uses them, does not
derogate from this rule. Systems are more and more
complex, their development requires the cooperation
of many actors, with different roles and cultures.
Many studies of common practices in SD show how
this cooperative dimension holds a strong place in
this field (Lethbridge & Singer, 2002)(Pavlicek,
2000). Actually, the necessity to take into account
this dimension in SD environments has been under-
lined for a long time (Kraut, 1995). However, the
current systems do not bring to the fore, or accord-
ing to recent work on CSCW, poorly support the
cooperative dimension of these activities.

We have been working for several years on the
problems tied to the creation of global and integrated
CSCW environments. Our work is inspired by re-
sults coming from the Social and Human Sciences
(SHS), especially the Activity Theory (AT), and
aims at proposing tailorable models and systems
according to the expansive properties of every hu-
man activity. These thoughts led us to define the
Coevolution principle (Bourguin et al, 2001).

This paper presents a proposition to better take
into account the cooperative dimension in SD tools.
Our approach proposes an extension of the Eclipse
platform to integrate a cooperative dimension in
accordance with the Coevolution principle. The first
part of this paper presents the implications tied to the
support of SD cooperative activities, by integrating
the results of our work in the CSCW domain. Then
we present the solution we propose, through a coop-
erative extension to the Eclipse platform.

2 COOPERATIVE SOFTWARE
DEVELOPMENT

Software development environments generally pro-
vide a poor support to the cooperative dimension of
this activity. From our point of view, adding a coop-
erative dimension does not simply consist in adding
specific communication tools that will bring a new
coloration in the environment; rather, it seems more
valuable to integrate in a more fine-grained way
such tools in the environment, but it raises also
many questions. We have been working since years
in the CSCW field, and we have to integrate as many
results we obtained in this field as possible, if we
want our cooperative SD environment to be a ‘good’
CSCW environment too. We present now the under-
lying elements of our work in this domain.

36
Lewandowski A. and Bourguin G. (2006).
A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 36-43
DOI: 10.5220/0002493100360043
Copyright c© SciTePress

2.1 CSCW, Tailorability,
Coevolution

For years, CSCW research has identified the need
for tailorability in the systems. This necessity has
been brought to the fore by many empirical and
theoretical results, based on theories coming from
the Social and Human Sciences, like Situated Action
(Suchman, 1987), Ethnomethodology (Dourish &
Button, 1998), or Activity Theory (AT) (Bedny &
Meister, 1997). Besides, our research is founded on
AT, which has been broadly used in the domain over
the last ten years (Kuutti, 1993)(Nardi, 1996).

The AT gives information that can help systems
designers to better understand the human activities
they try to support. We cannot explain here all the
results we obtained by founding our research on this
theory, neither detail the reasons of our choices.
More information can be found in (Bourguin, 2003).
However, in order to facilitate the understanding of
the paper, we briefly remind some basic elements of
the AT on which we based our reasoning.

We use the basic structure of an activity pro-
posed by (Engeström, 1987). This structure presents
the human activity as an interdependent system in-
volving a subject that realizes the object of the activ-
ity, and the community of subjects who are con-
cerned with this realization. Relations between the
subject, the object and the community are mediated.
In particular, the subject uses tools to realize the
object of his activity. Rules determine what means
belonging to the community, and a division of labor
describes how the work is shared up by the members
of the community. Furthermore, this structure as a
whole is dynamic and continually evolves during the
realization of the activity. For example, subjects may
transform the mediating elements, such as tools, as
new needs emerge. Subjects themselves evolve dur-
ing the activity, acquiring skills and developing
some experience of its realization. Thus, when sub-
jects transform the elements participating in their
activity, the experience they acquired crystallizes in
these elements. This experience, ‘written’ in the
transformed artifacts, becomes available for others,
which can benefit from it in other activities.

From our point of view, a system that supports a
specific activity is a mediator of it. The system does
not contain the activity, but rather takes part in it. A
particular system supports a particular activity and
this is why we call it an Activity Support (AS). In-
spired by the AT, we have defined a set of concepts
representing the elements participating in an AS.
These concepts are represented in Figure 1. In an
AS, a set of subjects are part of a community and
realize a task. As defined by Leont’ev and taken up
by (Bedny & Meister, 1997), a task is “a situation
requiring the realization of a goal in specific condi-

tions”. The realization of the task corresponds to the
activity supported by the system. Then, in our ap-
proach, the task specifies the object and a set of tools
and roles involved in the activity. The role repre-
sents a part of the division of labor and some rules
existing in the activity supported by the system. It
defines how a subject may use the tools allowing it
to act in the system. As it has been underlined by
(Christiansen 1996), the tool enables and limits the
actions that may be performed by a subject. This fact
is even more true with computer tools that may im-
plement a part of the rules guiding the activity. A
task may specify another task. For example, a task
may need the realization of another task by other
subjects to be completed. This link is useful to rep-
resent networks of activities as it has been proposed
by (Kuutti, 1993). Finally, when a task specifies
another one, a role in the task may imply another
role for a subject in the other task.

Figure 1: The elements participating in an Activity sup-
port.

These elements help us to define an AS. Inspired
by the AT, we know (as we underlined before) that
all these elements should evolve during the realiza-
tion of the activity. Therefore, the AS has to be tai-
lorable: it must provide the means to adapt it during
the activity it is involved in. This is why we define
the AS as a reflective system. In our approach, the
task that is supported by the system is made avail-
able from the AS. This is realized by introducing
particular tools we call meta-tools. The meta-tools
allow the subjects to access to the activity definition,
i.e. the task specification. In our approach, an AS is
considered as the instance of a task. The task can
then be inspected and/or transformed from the AS.
We define a causal relationship between the task and
the AS: transformations of the task have direct re-
percussions on the system. For example, modifying
a role defined in the task directly affects the way the
subjects playing this role will perform their activity
in the corresponding AS.

This model underlines that, according to the
mechanisms described in the AT, a part of the hu-
man activity is a meta-activity whose object is to

A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES

37

reflect on the activity itself for solving contradic-
tions that may appear in its constituting elements. In
our AS model, using the meta-tools correspond to a
meta-activity. As the meta-tools are managed in the
AS as any other tool, the role of the subjects will
affect the way they participate in the meta-activity
too and then, the meta-activity is a real cooperative
activity that is also supported by the system. This is
a simple definition of our approach of tailorability
that we have called the Co-evolution (Bourguin et
al, 2001): the system supports a particular coopera-
tive activity like the development of a particular
software, but it also supports its own cooperative
(meta-)activity of (re)design.

Finally, this tailorability can be associated with
some mechanisms of experience crystallization and
reuse. These mechanisms are synthesized in figure 2.

Figure 2: Experience crystallization through the system
and in the system task.

The community realizes an activity in the real
world. This activity is supported by the system. The
system task is the part of the real task that has been
specified inside the system to create an AS. The
community acquires some experience while per-
forming its activity. This experience can be made
explicit through the system by making its task
evolve. For example, an evolution in the division of
labor in the real activity may result in a new set of
roles specified in the system task and that will affect
the corresponding AS. This new evolved task corre-
sponds to a new AS model that can also be instanti-
ated for another community that needs a computer
tool support for realizing a similar task. The crystal-
lized experience developed while the realization of a
task can then be transmitted through the tailorable
system thus supporting an important mechanisms
underlined in AT.

2.2 Shortcomings of Existing SDEs

Today, many platforms support SD cooperative ac-
tivities. Actually, many studies have already been
conducted on the evaluation of SD tools and envi-
ronments. For example, (Barthelmess & Anderson,
2002) focus on process-centered SD environments
(PCSDE) found in the literature, analyzing and

evaluating them from an AT viewpoint. What
emerges from that study is that even if presenting
positive aspects, “PCSDEs suffer from the produc-
tion-oriented philosophy of software engineering”,
assuming that the routine steps in a process model
are sufficient for the execution of an activity. Con-
sequently, they observe a lack of tailorability in such
systems. This observation is relevant not only for
PCSDEs, as we will see by examining other envi-
ronments. In this part, we have chosen to particu-
larly focus on web portals and Integrated Develop-
ment Environments (IDE) that are widely used by
communities of developers during the SD process, in
order to point out some of their general drawbacks.

Web portals, like SourceForge (http://source
forge.net) and Freshmeat (http://freshmeat.net), pro-
vide a global environment that integrates many
tools, such as planning tools, concurrent versions
systems, forums, bug reporting tools, etc. These in-
tegrated tools aim at supporting some cooperative
activities tied to the SD process. A positive aspect is
that these portals mostly take into account the major
elements constituting an AS, as we defined them
before. Especially, we find in such solutions some
mechanisms that define, for example, the role of
each community member (by granting them rights
on the integrated tools). However, those web envi-
ronments present some drawbacks, especially with
regards to tailorability. Indeed, the latter is in most
cases greatly reduced, since the available tools are
defined a priori in the system. The dynamic integra-
tion of new tools is generally not possible. And
when it is, this integration remains at a graphical
interface level, which actually does not differ very
much from using such tools outside the environ-
ment. In their study of such Collaborative Develop-
ment Environments (CDE), or virtual spaces on the
web, (Booch and Brown, 2003) recognize that “there
are a number of substantial barriers to successful
adoption of a CDE”, especially because “no CDE
supports all the features” that should be found in an
ideal environment. As we underlined before, we
think that it is not possible to conceive such an
‘ideal’ AS a priori. Instead, a better solution – even
if not easy – is to provide a tailorable environment
able to be adapted to the needs emerging during the
activity. The last important point we emphasized is
that the artifacts constituting the AS should crystal-
lize the experience of the subjects. It is especially
true for the tools used in SD activities. For instance,
developing a web site in php and developing a j2ee
application – even if both are SD activities – may
imply different development methods, tools, and
even roles. The experience acquired during each
activity may differ from one to another (methods,
tools, etc.). An environment supporting the SD
global activities should be able to crystallize these
kinds of experience that could be useful in other

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

38

similar projects. However, this feature seems to be
missing in the web-based solutions examined, where
it is not possible to reuse the experience developed
during a project in another one.

Integrated Development Environments (IDEs),
such as NetBeans or Eclipse, also integrate sets of
tools dedicated to support producing code activities.
Unfortunately, most IDEs only focus on these pro-
ducing code activities, and avoid or forsake their
cooperative dimension. As underlined by (Sarma,
2005), “coding has traditionally been considered the
most important activity of a developer in software
engineering. As a result, tool builders have focus on
creating better programming languages and envi-
ronments that facilitate coding, while ignoring other
activities”. Therefore, the many elements identified
that constitute an AS are mostly missing from such
environments. Actually, IDEs provide gates towards
a common repository – such as CVS (Concurrent
Versions System) – that supports and manages
documents sharing, but not the communication be-
tween developers. Some collaborative extensions to
Eclipse try then to palliate this lack (Chen et al,
2003). But from our point of view, even if needed,
this kind of extensions – that provides some collabo-
rative functionalities – still remains superficial, and
does not tend to take into account the cooperation at
a global level. Eclipse has not been designed in that
orientation, and it does not manage any notion of
role, or something like this that takes into account
the status of a user in the global cooperative activity
he participates in. As a result, the user has to inte-
grate the tools (plug-ins) he needs himself, and to
configure them according to his role in the real sup-
ported activity. Despite this drawback, some of these
environments provide functionalities that foster tai-
lorability: for example, Eclipse provides a powerful
extension mechanism that allows the platform to be
adapted (by integrating new plug-ins) to support new
needs. In most environments, like in NetBeans and
Eclipse, experience crystallization is reduced to pat-
terns (supporting the creation of different projects)
that will configure the environment in a way that
seems suitable for such a project. Eclipse gives to
the user other means to customize their environ-
ments: it manages ‘perspectives’ that are specific
views, or visual arrangements of the tools in the en-
vironment. People can create their own perspectives
that can be reused later, in similar projects. This fea-
ture could be improved by taking into account the
cooperative dimension that constitutes an AS.

As we see, lacks remain in the existing global
environments supporting some SD practices. Even if
the many kinds of environment present interesting
features and mechanisms, we note that none of them
seems to meet the main ‘requirements’ of an AS we
have identified. In practice (Webster, 2003), due to
these lacks in commonly used platforms, the actors

of SD use in a complementary way many tools or
environments (IDE, PCSDE, web portals, synchro-
nous discussion tool, etc.), each one supporting one
or more (sub-) activities. Faced with such state-
ments, we aim at proposing an AS that palliates
these needs: a tailorable platform supporting SD
cooperative activities, inspired by our previous work
on the Coevolution principle.

3 COOLDEV: COOPERATION
UNDER ECLIPSE

The CooLDev project (Cooperative Layer for soft-
ware Development) is directly inspired by results
obtained during the DARE project that evolved until
becoming CooLDA (Cooperative Layer supporting
Distributed Activities) (Bourguin, 2003), the generic
underlying platform on which CooLDev lays.

3.1 The Inter-activities Approach

A major choice in our reasoning to design a CSCW
environment is to consider that many tools already
exist, which are useful in supporting some activities
we are interested in. Thus, our main goal is not to
create such tools, like a new code editor. Rather, we
want to create an environment that integrates these
many tools. From our point of view, detailed in
(Bourguin & Lewandowski, 2005), each tool sup-
ports one kind of activity. When several tools are
used in parallel by a group of actors, they generally
serve a more global activity than the original activity
they were designed for. For example, a group may
use in parallel an IRC, a CVS, and a code editor.
Each of these tools supports a particular activity
(discussion for the IRC, etc.) but they do not know
each other. However, they are used in a complemen-
tary way by the group since they are used in the con-
text of a global cooperative activity: software devel-
opment. In such a case, the coherence of the envi-
ronment is mainly mentally managed by the users.
Then, our purpose is to provide an environment that
can create a context for the use of the different tools
involved in a global cooperative activity (e.g. a SD
activity), managing the links between its different
(sub-)activities. Assuming that each tool supports a
specific activity, our environment is intended to
manage what we call the inter-activities.

To achieve this, we have created an activity
model (Figure 3)(Bourguin & Lewandowski, 2005)
– inspired by the elements presented before – that
conceptualizes the elements constituting an AS and
that allows the specification of the links of the inter-
activities. Each activity is linked to a resource that
proposes operations. A resource corresponds to a

A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES

39

software tool (an IRC client for example). A user is
an actor in the activity, as he plays a role in it, role
that allows him to do actions. An activity can be
linked to other ones, when the role of one of its ac-
tors implies that this user plays another role in an-
other activity. The fact that a user plays a particular
role in an activity also has an impact on the configu-
ration of his tools. Finally, an activity is an instance
of a task, which constitutes an activity model, or
pattern. As we said before – and as we will illustrate
later – the task is intended to crystallize the experi-
ence developed by the actors.

Figure 3: The activity model of CooLDA.

3.2 Choosing Eclipse

Our work in the SD field led us to look closer at the
Eclipse platform, which has been adopted by many
developers. The success of Eclipse has been a driv-
ing force for the development of many tools that can
be integrated into the platform as plug-ins. As we
have underlined before, we do not aim at developing
new tools, but at giving the means to articulate them
in a global cooperative activity. From this viewpoint,
Eclipse is very interesting since many integrable
plug-ins exist.

Basically, the platform is constructed around a
core of services called run-time that supports the
dynamic discovery, installation and activation of
plug-ins. A plug-in is a component that provides a
certain kind of service and respects Eclipse’s plug-in
specification. It may extend existing features (pro-
vided by other plug-ins), implements its own fea-
tures, and provide extension points (in order to be
eventually extended by other plug-ins). This frame-
work allows plug-ins to integrate finely with the
environment and other plug-ins. Thus, from our
viewpoint, what makes the success of Eclipse is that
it has been principally conceived in terms of tailora-
bility. The end-user can adapt the environment ac-
cording to his emergent needs. He can discover and
dynamically integrate tools that can help him to real-
ize his activity.

Another element in Eclipse, which is in tune
with our work inspired by the AT, is the perspec-
tives mechanism. A perspective corresponds to a
particular visual point of view on the working envi-
ronment (and the activated plug-ins) during the re-
alization of a kind of activity. This perspective man-
ages the plug-ins activation and arrangement at the
user interface level. Eclipse lets the user create and
modify his own perspectives, thus saving his prefer-
ences for a kind of activity. From our viewpoint, the
perspectives mechanisms provide a powerful mean
to crystallize the user’s experience. However, one
can notice that Eclipse’s perspectives can only acti-
vate plug-ins that are available on the user’s station.
In other words, if a plug-in is referenced by a per-
spective but is not installed, it will be skipped. An-
other point to notice is that these perspectives are not
intended to be shared by users. Even if some people
may work with the same perspective because it has
been packaged within a specific plug-in, no mecha-
nism has been set up in the environment to give
these users the means to share their perspective.

Finally, thanks to its introspection mechanisms,
and as we will present it thereafter, Eclipse frame-
work provides very useful means to specify and to
support the inter-activities. These mechanisms let us
dynamically create the links, until now not sup-
ported, that exist between the (sub-)activities sup-
ported by the plug-ins in a global cooperative activ-
ity. Finally, one must keep in mind that at the time
we are writing, as mentioned before, Eclipse does
not provide the cooperative dimension we need.

3.3 Managing Inter-activities

Our contribution lies within several levels: first, it
consists in extending the Eclipse framework by inte-
grating the elements of our model of activity. Ac-
cording to this model, each plug-in supports one
activity. The architecture of the solution we propose
is presented in Figure 4. We propose to manage the
inter-activities thanks to a meta plug-in named
CooLDev, whose role is to articulate the other plug-
ins in the context of global cooperative activities.
This meta plug-in is connected to a CooLDA server,
that manages the persistence of the instances of our
model. However, each other plug-in – if distributed
– is free to use its own communication protocol,
server(s), etc. independently.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

40

Figure 4: CooLDev’s architecture.

The Figure 5 presents an example of such a coop-
erative global environment for SD that integrates the
mechanisms we will describe now.

Figure 5: CooLDev from a particular actor viewpoint.

Because of our meta plug-in, the user has first to
identify himself to launch Eclipse, in the same way
as classical CSCW tools. Thanks to this, we can re-
trieve information from our CooLDA server con-
cerning the role of the user in the appropriate global
activity. This role is an instance of a type of role that
can be shared by several actors. It allows then the
meta plug-in to configure the user’s working envi-
ronment. To do this, we have extended Eclipse per-
spectives, in the context of a cooperative activities
management: users that play the same role in a par-
ticular activity retrieve an instance of the same
CooLDev’s perspectives. In other words, users play-
ing the same role can get the same environment con-
figuration thanks to CooLDev’s perspectives. How-
ever, once they have retrieved their perspective, us-
ers can adapt it during the activity. As we will see
later, these extended perspectives can also reflect the
user’s preferences in his role. Moreover, as we un-
derlined in previous part, when an Eclipse perspec-
tive was trying to activate an unavailable plug-in,
this latter was skipped. In case of a standard use of
Eclipse, this is acceptable, since things go otherwise:
installed plug-ins are packaged with some perspec-
tives, suitable for their use. In our context, it is the
role of the user, and consequently his perspective,
which determines which plug-ins will be used in a

particular activity. Thus, we have extended the basic
perspective mechanism so that it can automatically
download plug-ins that are specified in the perspec-
tive but not installed on the user’s station.

Even if the tools that support the user’s activities
are instantiated by these extended perspectives, it is
not enough to support the inter-activities as we de-
fine it. We use our model to specify the actions that
have to be processed by a role when its user joins the
activity. These actions configure the plug-ins for this
user. For example, when a user joins a code review-
ing activity, in a development project, CooLDev
plug-in uses the user’s role to instantiate a CVS
plug-in, an IRC plug-in, a code editor and an annota-
tion tool. For the user to avoid identifying another
time in the IRC (he has already identified himself
while connecting to our environment), we have to
indicate to this plug-in what is its configuration
(pseudo, server, etc.). From our model’s point of
view, the user’s role realizes actions that trigger op-
erations on the linked plug-in. Technically speaking,
the operations are mapped on methods provided by
the plug-in and discovered by CooLDA, using intro-
spection mechanisms. We will move later in this
paper on the way these links can be set up by users.

3.4 Managing Tailorability and
Experience Crystallization

As CooLDev focuses on the inter-activities man-
agement, the tailorability it provides sits at this level.
First, we take benefit from the tailorability in
Eclipse, and we extend it in a cooperative context.
Thanks to the plug-ins and perspectives mecha-
nisms, each user can customize the AS by adding,
removing and arranging tools that serve his activity.
However, in the global cooperative activity, a par-
ticular perspective reflects not only the user’s pref-
erences, but also his role. Thus, it crystallizes the
experience developed in his function. We have set
up a mechanism that allows the user to generalize
this perspective at the task level, i.e. in his role
model. A particular view (Figure 6) we have devel-
oped shows the many actors implied in the activity,
their role in it, and whether they are online or not.
Behind that, this view proposes the mechanism we
have described above: the crystallization of the cur-
rent user’s perspective in his role model. Technically
speaking, the CooLDev perspective is sent to the
CooLDA server that modifies the appropriate activ-
ity model also called task by associating this per-
spective to the user’s role instance. Of course, in the
framework of the Coevolution principle (that is a
cooperative management of the system adaptation),
this action can be proposed only to users with a spe-
cific role. One can also imagine that the decision to
generalize a particular extended perspective in a role

CVS

Editor

Annota-
tion

Shared
Perspectives

IRC

CoolDev

A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES

41

has to be negotiated between actors. Thus, when a
new user joins an activity with a particular role, he
retrieves the experience of users that have already
played the same role, experience that has been
gradually constructed and crystallized by these us-
ers. Finally, if the scenario of the activity allows it,
the user can again modify his own perspective.

Figure 6: Zoom on the “Actors view” and on its mecha-
nism that generalizes a perspective at the role level.

In order to complete the mechanism that general-
izes a perspective in the role model, we have devel-
oped a tool (Figure 7) allowing actors to share their
perspectives. This view shows the perspectives
shared with others, and allows the users to ‘try’ the
perspectives they receive and to send their perspec-
tives to others. Thus, actors can share extended per-
spectives without having to crystallize them in their
role model, which would be constraining for actors
who just want to test perspectives, or to share a
viewpoint before deciding to crystallize it. Indeed,
the experience crystallization in the roles is an im-
portant mechanism, since it may have an impact on
all the other actors playing roles that are based on
the same model.

Figure 7: Zoom on the shared perspectives view.

We have also introduced tools that provide tai-
lorability at finer levels of the inter-activities man-
agement and help creating links between the tools in
our activity model. Thanks to the introspection
mechanism, it is possible to (re)define the task dur-
ing the activity, i.e. the elements that participate in it
(for example the actions for each role). The lowest
abstraction level is the one of operations that define
the links between the actions (of a role) and the
methods (provided by a plug-in). CooLDA is able to
dynamically retrieve these methods, allowing to
(re)define the operations used in the specification of
the roles’ actions. We are aware that the abstraction
level of this kind of tailorability is still hardly within
the reach of every end user. However, implementing

these mechanisms helps us, at first, to verify the
technical feasibility of such an approach. We are
now working on user interfaces of higher abstraction
level, to give end users the means to access this
really fine-grained inter-activities management.

More generally speaking, the evolution of an ac-
tivity – its tools (integrated plug-ins, operations) and
roles (extended perspectives, actions) – is synthe-
sized in the model of activity presented that consti-
tutes the task. A task forms thus a model that has
crystallized the experience developed cooperatively
by users during their global activity, and that can be
re-instantiated in order to support other similar ac-
tivities. These latter, evolving in turn, will be able to
modify their task, or to create new ones. This reflex-
ive approach – even if promising – raises also many
problems. We cannot develop them here, but one
can refer to (Bourguin, 2003) to discover the many
stakes in it that we have already identified.

The mechanisms described here present the tai-
lorability and crystallization currently provided in
our AS. These mechanisms are not at the same ab-
straction level. As underlined by (Morch, 1997), the
tailorability level increases proportionately with the
difficulty for end-users to access it. The basic inte-
gration of tools and the mechanisms tied to the ex-
tended perspectives are more directly aimed at end
users. The evolution of roles and actions are aimed
at CooLDev specialists (understanding the AS
model), and the definition of operations by intro-
spection on methods at developers (understanding
object-oriented concept). At first, we will package
CooLDev with a set of predefined tasks. Users will
then be able to adapt these tasks according to their
needs and to their abstraction level, providing thus
new activity patterns. The many abstraction levels,
and the cooperative dimension of the supported ac-
tivities let us hope that the end users, interested in
the tailorability levels they will be able to reach, will
increase their experience towards the system, and
will become more and more expert of it, being able
to access more advanced levels of tailorability. They
will be able then to share this experience through the
system, meeting the Coevolution principle.

Of course, this work still needs improvements.
Especially, we work on a proposition to extend the
plug-ins model, in order to add a semantic level that
should facilitate a finer integration by end users.
And in order to validate our approach, we plan to
experiment the platform in real projects that will
help us to verify the stability of the system with re-
gards to its reflexive properties, from a technical and
especially a human viewpoint. Indeed, for the sys-
tem to be ‘correctly’ adapted, the activity must pass
by stable stages, allowing users to increase their ex-
perience. So we want to verify that the human di-
mension brought to the fore in CooLDev (the system
is adaptable, but not self-adaptive) permits, not a

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

42

continuous evolution of the environment, but rather
the crystallization of a true experience for end users.

4 CONCLUSION

As software development (SD) is today strongly
cooperative, we focused in this paper on the means
that can support it. We have been working for years
in the CSCW research domain, trying to take benefit
from SHS theories, especially the Activity Theory
(AT). This work has led us to identify the crucial
need for tailorability in cooperative environments,
and to define the Coevolution principle. By studying
several platforms broadly used by developers, we
have identified their shortcomings, in line with the
stakes defined in the CSCW field. Therefore, we
have proposed a solution that consists in an exten-
sion of the Eclipse platform which is already broadly
used for SD, but which does not integrate the coop-
erative dimension of such activities at a global level.

Basing on results coming from the AT and on
Eclipse properties, we propose a model of activity
and a meta plug-in that contextualizes the activities
supported by plug-ins. We aim at creating a tailor-
able support for managing the inter-activities and
setting up the Coevolution: the system must support
SD cooperative activities and its own cooperative
(re)design (meta)activity, while fostering crystalliza-
tion and sharing of the experience developed by its
users. Our proposition brings several levels of tai-
lorability intended both to end-users and to users
with more advanced skills concerning our platform.

Although it already provides a tailorable support
for the inter-activities management, our proposition
needs to be developed further and to be tested and
validated by experiments in real situations. We have
to work on raising its abstraction level. In order to
achieve this, we plan to pursue our efforts and to
look closer at the problem of the semantic associated
to components available on the Internet. Indeed,
even if solutions trying to palliate this problem exist,
one must agree that most of the existing component
models are intended to software developers, whereas
the results of studies in many fields show that the
means for discovering, and dynamically and finely
integrating tools would be useful for end users, as it
would take into account in situ their emergent needs.

REFERENCES

Barthelmess P, Anderson KM, 2002. A view of software
development environments based on activity theory. In
Journal of CSCW, 11(1-2), pp. 13–37.

Bedny G, Meister D, 1997. The Russian theory of activity,
Current Applications to Design and Learning. Law-
rence Erlbaum Associates, Publishers.

Booch G, Brown A, 2003. Collaborative development
environments. In Advances in Computers, 59.

Bourguin G, 2001. Les leçons d'une expérience dans la
réalisation d'un collecticiel réflexif. In Actes de la
15ème conférence francophone IHM 2003, pp. 40-47.

Bourguin G, Derycke A, Tarby JC, 2001. Beyond the In-
terface: Co-evolution Inside Interactive Systems – A
proposal Founded on Activity Theory, People and
Computer vol. 15 – Interaction without Frontiers,
Springer Verlag, Proc. of HCI 2001, pp. 297-310.

Bourguin G, Lewandowski A, 2005. Inter-activities man-
agement for supporting cooperative software devel-
opment, Proc. of the 14th Int. Conf. on Information
Systems Development (ISD'2005), Karlstad, Sweden.

Cheng L, Hupfer S, Ross S, Patterson J, 2003. Jazzing up
Eclipse with collaborative tools. In Proceedings of the
2003 OOPSLA workshop on eclipse technology eX-
change, Anaheim, California, pp. 45-49.

Christiansen E., 1996. Tamed by a Rose: Computers as
tools in human activity, in (Nardi, 1996), pp. 174-198.

Dourish P, Button G, 1998. On “Technomethodology”:
foundational relationships between ethnomethodology
and system design. In Human-Computer Interaction,
vol. 13, Lawrence Erlbaum Associates, pp. 395- 432.

Engeström Y, 1987. Learning by expanding. Orienta-
konsultit, Helsinki.

Kraut RE, Streeter LA, 1995. Coordination in software
development. In Communications of the ACM, 1995,
38(3), pp. 69-81.

Kuutti K, 1993. Notes on systems supporting “Organisa-
tional context” – An activity theory viewpoint,
COMIC European project, D1.1, pp 101- 117.

Lethbridge T, Singer J, 2002. Studies of the Work Prac-
tices of Software Engineers. In Advances in Software
Engineering: Comprehension, Evaluation, and Evolu-
tion, Springer-Verlag, pp. 53-76.

Morch A, 1997. Method and Tools for Tailoring of Ob-
ject-oriented Applications: An Evolving Artifacts Ap-
proach, part 1, Dr. Scient. Thesis Research Report
241, University of OSLO, Department of Informatics.

Nardi B, 1996. Context and consciousness: activity theory
and human-computer interaction. Cambridge: MIT
Press.

Pavlicek RG, 2000. Embracing insanity: open source
software development. Indianapolis, Sams Publishing.

Sarma A, 2005. A survey of collaborative tools in soft-
ware development, Institute for Software Research
Technical Report, #UCI-ISR-05-3.

Suchman L, 1987. Plans and Situated Actions. Cambridge
University Press, Cambridge, UK.

Webster M, 2003. An end-user view of the collaborative
software development market. Market Research Re-
port, IDC #30608, Vol. 1, http://www.collab.net

A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES

43

