
EVOLUTION MANAGEMENT FRAMEWORK FOR
MULTI-DIMENSIONAL INFORMATION SYSTEMS

Nesrine Yahiaoui, Bruno Traverson
EDF R&D, 1 avenue du Général de Gaulle, F-92140 Clamart, France

Nicole Levy
UVSQ PRiSM,45 avenue des Etats-Unis, F-78035 Versailles, France

Keywords: Dynamic adaptation, Information Systems, RM-ODP, MDA.

Abstract: Information Systems (IS) have become key elements in enterprise activities and are now fully embedded
into business units. Productivity gained by this proximity is to be balanced with more strategic requirements
against the Information System. In particular, due to the proximity to business layers, adaptability property
of IS is more than ever required. The framework we have developed aims to keep synchronized multiple
descriptions of the same system in case of evolution. Its foundations are based on RM-ODP viewpoints and
meta-modelling technology. A prototype tool to support the framework has been developed as an
EMF/Eclipse plug-in.

1 INTRODUCTION

Information Systems (IS) have become key elements
in enterprise activities and are now fully embedded
into business units. Productivity gained by this
proximity is to be balanced with more strategic
requirements against the Information System. In
particular, due to the proximity to business layers,
adaptability property of IS is more than ever
required.

Now-a-days, many software architects tend to
agree that the design of sophisticated and distributed
applications has to be performed according to
different viewpoints (IEEE, 2000). This leads to
multi-dimensional systems where each dimension
describes a particular concern.

Evolution of multi-dimensional systems may
appear tricky if no links are maintained between the
various dimensions of the system. The purpose of
our framework is to manage these links and to use
them during evolution.

Part 2 gives the motivations of our work. Then,
part 3 and part 4 respectively focuses on
specification and implementation of the framework.
Part 5 looks at some related work and part 6
concludes the paper.

2 CONTEXT AND OBJECTIVES

As mentioned in the introduction, adaptation to
evolutions is critical for software-intensive systems.
This is the major motivation for our framework.
Also, our work has been based on two major
standards: RM-ODP (Reference Model of Open
Distributed Processing) standard (ISO/IEC, 1995)
and MDA (Model Driven Architecture) approach
(OMG, 2001).

This motivation section is broken up into three
parts: overview of RM-ODP standard, overview of
MDA approach and organization of our work.

2.1 RM-ODP Viewpoints

First of all, our framework is based on RM-ODP.
This standard recommends the separation of
stakeholders concerns using five viewpoints:
Enterprise, Information, Computation, Engineering
and Technology.

Identifying those viewpoints allows the system
specification to express at the same time but
distinctly the business the IS supports (Enterprise
Viewpoint), the way it is modelled in the computer
system regarding information and functions

331
Yahiaoui N., Traverson B. and Levy N. (2006).
EVOLUTION MANAGEMENT FRAMEWORK FOR MULTI-DIMENSIONAL INFORMATION SYSTEMS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 331-336
DOI: 10.5220/0002489803310336
Copyright c© SciTePress

(Information Viewpoint, Computational Viewpoint,
Engineering Viewpoint) and the technical choices of
the computer system mapping user requirements
(Engineering Viewpoint, Technology Viewpoint).

The key points of RM-ODP are the completeness
of its concepts and structuring rules and the
relevance of its abstraction levels.

2.2 MDA

MDA is an approach recently promoted by OMG
(Object Management Group) which emphasizes the
use of models and meta-models. This approach
defines, on one hand, PIMs (Platform Independent
Models) to specify business aspects independently
from the development platform and, on the other
hand, PSMs (Platform Specific Models) which
describe the implementation of the IS on a specific
platform.

If the PSM is based on a programming language,
the transformation from PIM to PSM is called code
generation.

The transformation from a PIM to a PSM may be
based on a third kind of model called PDM
(Platform Description Model) which contains the
description of the platform the implementation
should be based on.

The transformation is, in this case, a model
transformation taking a PIM and a PDM as inputs
and producing a PSM as output.

The key points of the MDA approach are code
generation and model transformation, drastically
reducing the development costs.

2.3 Adaptation to Evolutions

RM-ODP standard provides the concepts to specify
the system. More recently, RM4ODP specification
(ISO/IEC, 2005) is proposing UML profiles to
express them. Besides, the separation into
viewpoints allows the designers to manage the
complexity of the development process, but there is
a need to maintain correctness and consistency of
the models during evolutions.

First of all, local consistency should be checked
when a model describing one viewpoint of the
system has changed: Are the constraints enforced by
this viewpoint still verified? Have we the ability to
go back and forth in the versions generated by the
various evolutions?

Then, impact on the global system should be
managed. Have the links between models been

updated? Has a change in a model to be reflected
into another model?
All these questions can only be answered by
knowing the exact history of every model and the
potentially complex relationships between models.

Our framework intends to help designers and
architects by offering support tools. As evolution
may be seen as model transformation, MDA
technology constitutes its core.

3 SPECIFICATION

The specification of our framework will be
presented in two parts. The first part will focus on
local consistency problem. The key point here is to
maintain the trace of all changes made on one
model. The second part will describe the linking
mechanisms that have been defined to handle global
consistency. Links are especially used for impact
management.

3.1 Modelling Evolution

Evolutions done on a model describing one
viewpoint of a system may be gathered in an
evolution scenario. This latter concept is defined as a
sequence of actions and gives a textual
representation of changes performed between two
versions of the model.

Of course, evolutions may be performed using a
graphical tool. But, this is always possible to
translate significant graphical events into a textual
representation. Moreover, the scenario permits to
keep track of successive evolutions and also to
analyse impacts of these evolutions.

Evolution scenarios are described using an action
language and stored in a repository. This facility
permits, for the designer, to explicitly manage them.
Also, it is associated to impact management process
that generates impact analyses that are written using
the same action language. An action may be either a
creation (Create), a modification (Modify), a
suppression (Delete) or a replacement (Replace).

3.2 Linking Viewpoints

This section will not provide meta-models for
viewpoints because they are given in UML4ODP
specification (ISO/IEC 2005). We will concentrate
on description of correspondence rules that are given
in part 3 of RM-ODP standard (ISO/IEC 1995) and
correspondence links that materialize the

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

332

relationships between models based on different
viewpoints. Then, we will present the complete
meta-model.

3.2.1 Correspondence Rules

When an ODP system is fully described, models
representing each viewpoint should be available.
Also, designers should verify that they are
consistent. As we have already said earlier, two
consistency levels have to be considered.

Local consistency ensures that models are
described according to their respective meta-models
or viewpoints. Global consistency takes care of
dependencies between views. This later level is
based on correspondence rules. These rules describe
constraints on concepts from two distinct viewpoints
and concerned by a correspondence.

RM-ODP standard does not insist on mechanisms
to handle consistency between models based on two
different viewpoints. It only gives informally a set of
rules linking viewpoint concepts. These are some
rule examples also given in (Putman, 2001):
• Example of enterprise and computational
viewpoint correspondence: an enterprise object and
the role it assumes correspond to a computational
object or a configuration of computational objects.
• Example of enterprise and engineering viewpoint
correspondence: the enterprise policy corresponds to
and determines the engineering transparency
mechanisms and supporting engineering objects.

These rules describe correspondence between
concepts from two distinct viewpoints together with
their multiplicity. They should be formalized into an
executable language in order to enable verification.
This is under current work in our research team. But
we can give a flavour of it, for instance, on the
example of enterprise and computational viewpoint
correspondence given just before:

Correspondence rule:
Enterprise:EnterpriseObject[1]
Computational:ComputationalObject[1] OR
(Computational:ComputationalObjet[1..*]
AND
(Computational:PrimitiveBinding[1..*]
OR Computational:BindingObject[1..*]))

3.2.2 Correspondence Links

As shown in the previous section, correspondence
rules express consistency constraints between two
viewpoints. However, these rules are for general-
purpose and do not designate specific instances. In
other words, they do not give to the designer the

ability to navigate through models to learn real
relationships between model elements.

We propose correspondence links that introduce
traceability information between model elements by
linking elements belonging to distinct models.
Traceability is an important property for impact
management. Thus, the correspondence link permits
to know what model elements are to be checked
when there is an evolution.

3.2.3 Link Meta-Model

A correspondence link is established between model
elements belonging to models related to two distinct
viewpoints. It materializes a certain relationship
between these model elements. The correspondence
link should enforce correspondence rules expressed
between viewpoints concerned.

This link is bi-directional. It is possible to
navigate through it from any endpoint. Bi-
directionality enables to relax any constraint on
navigation through models of different viewpoints.
Any model may be modified. Then, it is possible to
retrieve correspondence of a model element in any
other models.

Moreover, links established between two models
may be of multiplicity of 1-*. Then, this should be
possible to link a model element related to one
viewpoint to one or more model elements related to
another viewpoint. Multiplicity restriction may
apply in a correspondence rule. We call this first
kind of correspondence rule a structural rule
(StucturalRule).

To manage impact of a model evolution on
another model, we introduce also the active rules
(ActiveRule). An active rule is directly associated to
a link. It permits to drive evolution of model
elements that are impacted due to correspondence
with another model. An active rule is composed of
three parameters: event, condition and action - also
called ECA (Event/Condition/Action) rule.
The global semantic of an active rule is « When an
event occurs, If the condition is satisfied Then action
is performed.
Event may be triggered by a modification made on a
model element. Condition is a predicate on the state
of the model element or on linked elements. Action
describes modifications to be applied on linked
elements. These modifications are expressed using
the action language already mentioned in section
3.1.

Thus, the Link Meta-Model is illustrated by
figure 1 where Endpoint designates each extremity

EVOLUTION MANAGEMENT FRAMEWORK FOR MULTI-DIMENSIONAL INFORMATION SYSTEMS

333

of the correspondence link and LinkModel
aggregates all the correspondence links.

4 IMPLEMENTATION

Our architectural framework guides the designer in
his or her various activities that may be gathered into
three categories: description of models related to
viewpoints, establishment of correspondence links
and evolution of models. It is based on the link
meta-model and the meta-models representing ODP
viewpoints. Presently, we are working on the
enterprise and the computational viewpoints.
First of all, we describe the three categories of
activity, then the architecture and, finally, the
Eclipse plug-in.

4.1 Activities Supported

• Description of models related to ODP
viewpoints.
The designer is not constrained to follow a particular
approach to construct his or her multi-dimensional
system. The system may even be described by
several designers; each one can build a model in
accordance with their respective meta-model. The
models and their meta-models are persistent; they
are saved in repositories.
• Establishment of correspondence links.
Once all the models are completed, they are still
independent. To establish correspondences, the
designers have to link the models by using the link
meta-model. The correspondence links are thus
established between the models related to two
different viewpoints. These links memorise and keep
traces of the correspondence which can exist
between the models and may be used to guide the
evolution. The result of this activity is a link model
that is saved with its meta-model in the repositories.

• Evolution of models.
The designer can modify any model of his or her
multi-dimensional system. This evolution is either
described in an evolution scenario or directly
performed in a graphical way in the modelling tool.
Our modelling framework includes impact
management.

4.2 Architecture

This management is possible because our modelling
framework is based on the following architecture,
illustrated in figure 2.

The architecture consists of several modules
which collaborate. The designer writes the evolution
scenario thanks to the scenario descriptor module.
This module communicates with the Analyser
which verifies the syntax and semantic of the
scenario. The Local consistency controller verifies
that the model evolution respects the constraint
established by the respective meta-model. Once
local consistency is enforced, the scenario is applied
to the model by the Integrator. The Compiler, the
Local consistency controller and the Integrator
modules are included in the Evolution manager
product.

If model evolution has impact on other models,
the impact manager is triggered. This later builds the
impact scenario (similar to an evolution scenario). It
is mainly influenced by the applied evolution

Evolution
manager

Scenario
descriptor

Analyzer

Local
consistency
controller

Impact
manager

Integrator

Model
repository

Meta-model
repository

Link
model
repository

Impact
scenario
builder

Δx

Δx

manual

semi-
t ti

automatic
Δy

Δy

Figure 2: Framework architecture.

Figure 1: Link Meta-Model.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

334

scenario and by the link model, especially on the
active rules which drive the construction of the
impact scenario. According to the adopted strategy,
the impact scenario builder may interact with three
different modules. These strategies are:
• Manual. The Impact scenario builder does not
build the relevant impact scenario. It gives to the
designer the list of model elements that must be
modified in the models according to the other
viewpoints. The designer will act on the other
models according to his or her knowledge of the
global system.
• Semi-automatic. The Impact scenario builder
communicates with the scenario descriptor to edit
the built scenario. This scenario is built from the
active rules. The designer can validate it and/or
improve it by adding or by modifying some actions.
• Automatic. The impact scenario builder
communicates with the Local consistency controller
to validate the constructed scenario. Then, the
impact scenario will be applied by the Integrator.

4.3 Eclipse Plug-in

Our modelling and impact management tool is
implemented as a plug-in in Eclipse EMF (Budinsky
et al, 2004, Eclipse, 2006)
Eclipse is an open and extensible framework based
on plug-in technology. It is dedicated for building
integrated development environments (IDEs) that
can be used to create applications as various as web
sites, embedded Java programs, C++ programs.
EMF (Eclipse Modelling Framework) is a modelling
framework for Eclipse, it offers a reflective API to
manipulate the models and the meta-models which
are built using the Ecore meta-meta-model. EMF
can generate for each meta-model defined by Ecore
a tree editor, that allows the instantiation of elements
defined in a given meta-model.
To implement this tool, we supply two meta-models
corresponding to enterprise and computational
viewpoints.
Our plug-in uses other plug-ins, it uses EMF plug-in
but also the generated plug-ins from the enterprise,
computational, link and evolution scenario meta-
models. Our plug-in thus enables to create new
models: enterprise, computational and link. But also
offers a graphical menu called Evolution which
contains the following options:
• Textual editor. It opens a textual editor to write
the evolution scenario. This editor permits to save
and load a scenario.
• Graphic Editor. It opens a tree editor on a
specific model.

• Validate Local Consistency. It verifies that the
active model respects its meta-model.
• Validate Global Consistency. It verifies that the
active model was adapted; otherwise it activates an
order to the designer.

5 RELATED WORK

RM-ODP standard defines five viewpoints without
giving a precise notation to describe the
corresponding models. Furthermore, consistency
among models is not handled in detail. It only
describes some correspondence rules between
viewpoint concepts.
Several works have been done around the
formalization of viewpoints and the construction of
consistent ODP systems.

The ODAC project (Open Distributed
Applications Construction) (Gervais, 2003) carried
out by the LIP6 laboratory and the DASIBAO
project (Method based on ODP for the Architecture
of Information Systems) (Picault et al, 2004) carried
out by EDF R&D define, each one of both projects,
an approach for building consistent ODP systems.
The system is built in following steps and by
applying transformation rules to the models.
However, this consistency is lost if one of the
models is modified. On the other hand, they impose
a "top-down" approach which is not adapted when
we consider that the systems can evolve according to
any viewpoint.

Romeo's work (Romero et al, 2005) performed to
the university of Malaga in Spain is mainly around
the computational viewpoint. It describes a
computational meta-model and proposes a UML 2.0
profile which bridges the gap between ODP and
UML2.0 concepts. There are also works performed
in Japan (Hashimoto et al, 2005) which propose
UML 2.0 profiles for the of engineering and
technology viewpoints. These works are named
UML for ODP because it allows the designer to
model according to ODP semantic ODP by using
UML tools. However, they are not interested in the
consistency of the systems nor in their evolutions.

Dijkman’s work (Dijkman et al, 2004) performed
at the university of Twente in Netherlands is
interested to define and to verify consistency
relationships between the enterprise and
computational viewpoints. He uses a generic
framework to connect viewpoints and specifies
reusable consistency rules. This framework also uses
a basic viewpoint in which the two other viewpoints
can be transformed. That is, the enterprise view

EVOLUTION MANAGEMENT FRAMEWORK FOR MULTI-DIMENSIONAL INFORMATION SYSTEMS

335

(respectively. Computational) that respects the
enterprise viewpoint (respectively. Computational)
is transformed into a basic ‘enterprise’ view
(respectively. Computational) that respects the basic
viewpoint. The enterprise and computational views
are consistent, if there is a abstraction relationship
between the computational basic view and the
enterprise basic view. However, this approach does
not exploit the correspondence rules quoted in the
standard which allows to put in relationships not
only the models but also the model elements.
Furthermore, this framework does not save the links
and the relationships which can exist between the
various model elements.

6 CONCLUSION

Models have long time been considered as a
“documentation and discussion” tool. Recently,
MDA initiative from the OMG consortium has
pushed models as a more active part in Information
Systems.

The framework, described in this paper,
constitutes a proposal to support MDA approach in
the specific case of multi-dimensional Information
Systems based on RM-ODP standard.

The main contributions in this work are the
specification of a Link Meta-Model and its
implementation as an Eclipse plug-in. The Link
Meta-Model goes beyond simple traceability
because it contains active rules that permit impact
management.

Short-term perspectives are to fully define the
language used to express structural rules, to cover all
the five viewpoints and to complete the
implementation in order to release it as an open
source.

Generalization of the framework to other kind of
multi-dimensional systems sounds possible and
could led us to compare our approach to other
general-purpose model transformation tools.
Another perspective is to use model weaving,
transposition of AOP (Aspect-Oriented
Programming) techniques on models to handle
evolution and impact management.

REFERENCES

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and
Grose, T., 2004. Eclipse Modeling Framework.
Published by Addison Wesley Professionnal.

Dijkman, R. M., Quartel, D. A. C, Ferreira Pires L. and
van Sinderen M. J., 2004. A Rigorous Approach to
Relate Enterprise and Computational Viewpoints. In
Proceding of the 8th IEEE International Enterprise
Distributed Object Computing Conference (EDOC
2004), Monterey, California.

Eclipse project, 2006. http://www.eclipse.org/
Gervais, M. P., 2003. ODAC: An Agent-Oriented

Methodology Based on ODP. Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer Academic
Publishers.

 Hashimoto, D., Miyazaki, H. and Tanaka, A., 2005. UML
2.0 Models for ODP Engineering/Technology
Viewpoints. Workshop on ODP for Enterprise
Computing (WODPEC 2005), in conjunction with the
9th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2005). Enschede, The
Netherlands.

IEEE, 2000. IEEE Recommended practice for
architectural description of software-intensive system.
IEEE Std 1471–2000.

ISO/IEC, 2005. Information Technology Open Distributed
Processing. Use of UML for ODP system
specifications. Committee Draft.

ISO/IEC, 1995. Open Distributed Processing Reference
Model Part 1-4, ITU-T Spec. ITU-T 901..4 and
ISO/IEC Spec. ISO/IEC 10746-1..4.

OMG, 2001. Model Driven Architecture – Architecture
board ORMSC – document number ormsc/2001-07-01
– OMG-2001.

Picault, A., Bedu, P., Le Delliou, J., Perrin, J. and
Traverson, B., 2004. Specifying Information System
Architectures with DASIBAO - A standard based
method. 6th International Conference on Enterprise
Information Systems. Porto, Portugal.

Putman, J. R., 2001. Architecting with RM-ODP,
Prentice-Hall.

Romero, J. R. and Vallecillo, A.., 2005. Modelling the
ODP Computational Viewpoint with UML 2.0. In
Proceeding of the 9th IEEE International Enterprise
Distributed Object Computing Conference (EDOC
2005). Enschede, The Netherlands.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

336

