
SUPPORTING COMPLEX COLLABORATIVE LEARNING
ACTIVITIES – THE LIBRESOURCE APPROACH

Olivera Marjanovic1, Hala Skaf-Molli2, Pascal Molli2 , Fethi Rabhi1 and Claude Godart2
1University of New South Wales,

Sydney, NSW 2052, Australia

2LORIA-INRIA
615, Rue du Jardin Botanique

Villers-lès-Nancy, 54600, FRANCE

Keywords: Collaborative work, eLearning, Learning Designs, Collaborative software design.

Abstract: The main objective of this paper is to describe collaborative technology called LibreSource and how it is
used to implement an innovative learning/teaching activity designed for software engineering students.
From the educational perspective, this educational activity is based on the principles of problem-based
learning and the latest Learning Design theory. The main objective of this activity to offer students a real-
life experience in collaborative software development. Compared to the popular Learning Management
Systems that only offer collaborative tools and support individual collaborative tasks, this technology
enables design and implementation of complex collaborative processes.

1 INTRODUCTION

In order to respond to various powerful internal and
external challenges, more and more universities
embark on the same journey called by different
names such as “e-learning”, “web-based learning”,
“flexible learning”, “on-line delivery” just to
mention several popular terms. Many universities do
it out of necessity to stay competitive, provide more
flexibility, potentially reduce costs, provide
alternative for mass lectures or out of interest or
commitment to enhance student learning.
Consequently, there is a great confusion in the
educational literature and practice as to what this
form of learning actually involves. Practical
applications range from simply “putting lecture
notes on the web” to very sophisticated web-based
tools.

As a starting point for further discussion, this
paper assumes that e-learning denotes learning
experience in online environment where student’s
learning is enabled and supported by educational
technology. This mode of learning provides any
time/any place learning and as such, does not
include face-to-face or on-campus learning
activities. On the other hand, the blended (also
called mixed or combined) mode of learning

combines face-to-face teaching learning experience
with online activities (e-learning). The concept of
blended learning is very powerful as it enables the
teachers to provide innovative learning activities to
supplement what they are already doing in the
classroom. Therefore, they can meaningfully extend
the learning activities between face-to-face lectures
and tutorials to re-enforce important points, give
supplementary activities but also encourage learning
community among students.

When carefully designed, blended learning can
offer to students the best of both worlds, face-to-face
and e-learning. However, this is not an easy task.
Very often, eager to move from traditional “teacher-
centered” learning, educators put too much emphasis
on technology and as a result create technology-
centered learning.

Consequently, technology is often used for
delivery of the content (i.e. as delivery machines)
rather than the tool that has a potential to enable new
forms of learning never before possible. The main
point is that technology itself does not result in
learning or as (Ehramann, 1997) correctly observed
the medium is not the message. Success or benefits
of a certain technology can be largely attributed to
the teaching methods used. At the same time,
technology is not irrelevant. Any particular

59
Marjanovic O., Skaf-Molli H., Molli P., Rabhi F. and Godart C. (2006).
SUPPORTING COMPLEX COLLABORATIVE LEARNING ACTIVITIES – THE LIBRESOURCE APPROACH.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - SAIC, pages 59-65
DOI: 10.5220/0002489500590065
Copyright c© SciTePress

technology can be well or poorly suited to support
the intended teaching and learning method. “There
may indeed be a choice of technologies for carrying
out a particular teaching task, but it isn’t necessarily
a large choice. There are several tools that can be
used to turn a screw, but most tools can’t do it, and
some that can are better for the job than the
others.”(Ehramann, 1997).

When designing activities for e-learning or
blended learning, another equally important problem
is learning methodology. There is the tendency to
transfer traditional teaching and learning methods
into new environments rather than invent the new
ones. A large number of on-line learning
environments are characterised by a narrowly
defined educational model that emphasises delivery
of materials and instructions rather than flexibility,
intellectual engagement, participation or progress of
individual learners.

The main objective of this paper is to describe an
innovative teaching/learning activity designed for
software engineering students and the actual
collaborative technology used for its
implementation. Although the main focus of this
paper is on collaborative technology, to design it, we
adopted the top-down approach and started from the
appropriate learning methodology. Thus, from the
educational perspective this activity is based on the
principles of problem-based learning and is designed
to offer students a real-life experience in
collaborative software development. To enable and
support this learning activity, we use the
collaborative environment called LibreSource (see
online reference). Compared to the currently
available learning management systems (such as
WebCT(see online reference)) that only offer
collaborative tools (e.g. forums and chat), this
technology enables and supports collaborative
processes.

The paper is structured as follows. The next
section will introduce a motivating example of the
intended teaching/learning activity and will place it
within the appropriate framework of the related
educational theories. Section 3 will give a brief
overview of LibreSource and the remainder of the
paper will focus on technical implementation of this
educational activity in LibreSource.

2 MOTIVATING EXAMPLE

It has been widely recognised that one of the most
important skills that students should acquire during
their higher education today, is the ability to learn
how to learn. To help students build these skills, it is
necessary to engage them in carefully planned

process-oriented learning activities rather than
isolated learning tasks (Race, 1999). These activities
should include a number of inter-related learning
tasks that promote active learning through
collaboration, critical thinking, problem solving and
authentic interactions with the real-world problems.
 Furthermore, by making students aware of the
processes they are participating in, we are actually
helping them to become more independent and self-
regulated learners.

It is also important to recognise that the majority
of students coming to universities these days are
already computer literate. The so-called “Nintendo”
generation is now in our classrooms. Obviously,
they have different expectations about their
learning/teaching experience and educational
technologies used to support it. This is especially
evident in the area of Information Systems/
Information technologies/ Computer Sciences
education where students want to see their teachers
practice “what they preach” both in the classroom
and in on-line environment.

To design this particular learning activity we
follow the approach proposed by the very recent
theory of learning designs (Koper and Tattarsell,
2005). Design of this theory has been an
international collaborative effort with the main
objective to enable conceptual representation of
learning/teaching scenarios, guided by pedagogy, so
they could be supported by educational technology,
but also shared among teachers. Therefore, design of
a particular learning design (i.e. teaching/learning
activity) starts from learning objectives and
identification of all activities that different
participants (students and their teacher(s)) need to do
in order to achieve these objectives. Then for each
activity, it is necessary to identify a set of learning
resources as well as possible educational technology
tools that could be used to support it. Adoption of
the principles of learning design theory ensures that
pedagogy guides all educational activities, rather
than the available educational resources or
technology.

Our example comes from the software
engineering teaching discipline. From the
educational perspective, the main objective of this
learning design is to enable students to experience
the process of collaborative software development.
At the same time, it is also very interesting to
observe that the underlying educational technology
serves dual purpose: to support the intended learning
activity but also to demonstrate an example of a
complex technology and its use to software
engineering students. So it could be used as an
object of study for future learning activities.

Suppose that a software engineering teacher is
interested in involving students in a software

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

60

development project. This is a common learning
activity, used in software engineering discipline, to
give students hands-on experience and exposure to
the real-life software development projects. It could
be used as a part of formative or summative
assessment. This teacher would also like to simulate
a real-life software development experience in a
team, so students are required to engage in
collaborative software development activities.

This particular learning design involves the
following activities. First of all, students are given a
real-life software engineering problem and to solve
it students are required to design and implement a
software solution (system). Students are divided into
teams and each team is required to collaborate and
come up with its own solution for the given
problem. To facilitate their collaboration, within
each team students assign different roles to different
members.

Obviously, the main challenge of this project is
design and development of a particular solution. In
order to complete it, students need to engage in
collaborative software development. Furthermore,
after all teams have completed their projects, the
teacher is interested in implementing the reflection
phase. This requires each team to reflect upon their
learning, rather than software development
experience. Note that reflection-in-action is a very
powerful learning activity, especially in the field of
design. This particular activity is very useful for
students to help them to become the so-called
“reflective practitioners” (Schon, 1983; Schon,
1987) as required by their future profession.

This paper will focus on educational technology
used to support the process of collaborative software
development that is at the core of the previously
described learning design. This process cannot be
effectively supported by the existing educational
technologies as they provide very simple tools (such
as forums, chat tools, electronic whiteboards) to
support individual tasks. Rather than simple tools, to
support the intended learning activity, we need to
provide a complex collaborative structure as
described in the next section.

3 SUPPORTING COMPLEX
COLLABORATIVE
STRUCTURES

We see collaboration as a group activity of a large
number of participants (i.e. a community), designed
to achieve a particular purpose or goal. A
collaboration structure refers to an IT-enabled
solution that supports collaboration. Furthermore,

we define a complex collaboration structure as
consisting of a combination of several tools for
collaboration and communication being used
simultaneously.

The existing collaborative tools have reached
their limits when dealing with large-scale
collaboration structures, especially where several
media are used at the same time by a community (or
communities) of people. CSCW (Computer
Supported Cooperative Work) and groupware
platforms are supposed to support these types of
collaboration but they suffer from complexity, high
costs and rigidity (i.e. they do not adapt easily to
different types of environments).

Some companies propose commercial products
that group several tools together to support such
complex structures. Examples include BSCW
SourceForge, Lotus Notes (see corresponding online
references). However, they do not cover all facets of
collaboration. In addition, they are proprietary
systems, not so easy to deploy, and require solid
programming skills. Recently, there have been some
efforts at providing flexible and open collaboration
platforms (e.g. ZOPE (see online reference).

This paper introduces LibreSource that has been
specifically designed to support large-scale
collaboration structures that are customizable to a
wide range of needs and easy to use by non-
specialist users. In this context, we use LibreSource
as a platform designed to support collaborative
software development process as required by the
intended learning activity. Compared to the existing
tools in the same category (such as G-Forge and
Savannah (see online references), LibreSource offers
a high level of integration.

To facilitate understanding, a LibreSource server
behaves similarly to an ordinary file system. Thus, a
LibreSource server is a tree of instantiated
components. A component can be a forum, a project
or a bug tracker. As in the file system, each
component of the LibreSource Tree declares its own
security policy. However, unlike file systems, each
component can generate events that could be used
for the awareness and triggering purposes.

Data can be propagated from one server to
another by using the synchronization component
called So6. More precisely, So6 is a generic file
synchronizer (Molli et. al, 2003). It can be classified
as a configuration management tool that allows
synchronization with more than one repository. This
is a very important feature that allows
implementation of synchronization networks. In
turn, these networks allow representation of
dataflow processes.
So6 component can be easily applied to enable
implementation of the classical software process that

SUPPORTING COMPLEX COLLABORATIVE LEARNING ACTIVITIES – THE LIBRESOURCE APPROACH

61

consists of development, test and release activities
(as illustrated by Figure 1).

Figure 1: Software development process in LibreSource.

The graphical notation uses two different
LibreSource components: Queues (depicted by
oblongs) and Workspaces (depicted as circles).
Each Queue contains n operations i.e. queue Q3
contains 200 operations. Workspaces generate
changes (called operations) and commit them to
queues. They also update changes from the
associated queues. A number of commit/update
operations between a workspace and a particular
queue is depicted as the label of the corresponding
double arrow.
Note that a workspace can be connected to several
queues. For example, workspace 8 is connected to
queues Q3, Q4 and Q5. It has been updated by the
first 159 changes coming from Q3 and is up-to-date

with Q4 and Q5. Workspaces 5, 6 and 7 are also
connected to Queue Q3. At the same time
workspaces 5 and 7 are updated with the changes
coming from the Q1 and Q2.

A workspace can commit operations to a queue
only if it is up-to-date with this queue. This solution
prevents the problem of lost updates. On the other
hand, when a workspace is updated with changes
from the associated queue, all incoming operations
and local operations are merged using the
operational transformation algorithm (Molli et.al.,
2003). Furthermore, So6 ensures data convergence
i.e. when all workspaces are up-to-date with all
changes they will contain the same data.

Therefore, when using So6, users of the
workspaces commit the stream of changes that will
be propagated to different queues. For example, in
Figure 1, suppose that the user of workspace 8 is
responsible for data propagation between
development, test and release. Therefore, workspace
8 will be updated with the changes issued by the
development queue and submit them to the test
queue. If testers agree with the proposed solutions,
they will commit operations to the Release queue.
 On the other hand, if testers report bugs, changes
representing code fragments will be committed back
to the developer queue.

Each queue can be hosted on a different
LibreSource server. So, developers can have their
own LibreSource server, testers another one, while
the release queue can be hosted on a special server
that can support the heavy load. Thus, each
community can have its own LibreSource server and

Q3
development:200

Q4
Test:100

Q5
Release:10

5

8

9 11
12 13

10

Q1
Lib1:23

Q2
Lib2:12

6 7

1

2
3 4

4
23 12 12

200 159

1023

59

159
100

10

100 100 100 10 10

Figure 2: Developers’ Workspaces in LibreSource.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

62

configure it for their own needs. Combined with
forums, wiki and bugtrackers, LibreSource
components can support complex collaboration
structures.

4 IMPLEMENTATION OF
COLLABORATIVE SOFTWARE
DEVELOPMENT ACTIVITY

This section illustrates the implementation of a
complex collaboration structure using LibreSource,
based on the motivating example introduced in
Section 2 . We assume that each team of software
engineering students is developing a software
system called XYZ. Just like in a professional
software development scenario, this system goes
through several stages of development, beta testing
and release activities. The following process is
adopted by all participants to coordinate their efforts
in the project:

Suppose that there are 3 developers each working
on his/her own workspace developing the assigned
components of XYZ software system (as depicted by
Figure 2).

• A queue Developer is used to propagate
changes from one developer’s version to
another (Figure 3).

• When ready, the new version of XYZ is
propagated for Beta testing (through
operation Commit). We assume that this
operation is restricted to few users only (e.g.
members of the same student team).

Figure 3: Propagation of changes from Developer queue.

• Then, each user at a beta testing site can have

access to the new XYZ’s version using another
queue resource Beta (through operation Update).

• As in the real-life software development scenario,
there could be many iterations through which
different beta versions are produced. Before the

queue Resource is used, only updates are
propagated to the beta users.

• At some stage, the latest version of XYZ is
released to users (all members of the software
development team). They can obtain it by
invoking operation Update on another queue
resource called Release.

• Developers communicate with each other using a
bug tracker resource. Changes and bugs are
reported from users back to developers via the
forum resource.

Figure 4 illustrates the synchronization dataflow
between Developer, Beta and Release queues used by So6.
The figure is generated from the real implementation of
this example with LibreSource.

Figure 4: Synchronisation dataflow between Developer,
Beta and Release queues.

This software development process can be made even
more complex by involving more participants in the
project, setting different security policies, adding
archiving mechanisms etc.

For example, each developer can manage more than
one workspace if he/she is using a home computer, a work
computer and a laptop for developments of XYZ. In this
case, another queue resource and several workspaces are
added in place of their original workspace. It is important
to point out that participants are allowed to modify their
resource tree to suit their needs (providing that they have
the right permissions to do so). This is one of the features
that make LibreSource suitable for large-scale
collaboration projects.

Finally, from the educational perspective, this software
development learning/teaching activity can be made more
complex by using different collaborative scenarios. For
example, it is possible to get students from one group to
test solutions of another group and report back the

SUPPORTING COMPLEX COLLABORATIVE LEARNING ACTIVITIES – THE LIBRESOURCE APPROACH

63

problems. Furthermore, the same solution can be used in
other teaching/learning scenarios to support for example
collaborative writing of an assignment. However, code
development and the associated design methods make
collaborative software development much more complex
than writing simple text. This is why this particular
solution is tailor-made for software engineering students
engaged in collaborative development of any type of
software system.

5 A QUICK TOUR OF
LIBRESOURCE SERVER

A LibreSource implementation server can be accessed
through a Web browser such as Internet Explorer or
Mozilla. During navigation, LibreSource may prompt the
user to download some Java programs. In this case, the
user should choose the option “Open File” instead of
“Save File”.

Figure 5 shows the home page of the server
LibreSource.loria.fr. In this figure, we can see some
generic information associated with every resource
e.g.:

• The resource tree path is shown on the top
left side of the window. Each resource is
uniquely named and can be included as a
reference in other resources (e.g. a Wiki page can
be made to point to a workspace or another Wiki
page).

• Login information on the top right, showing who
is logged in or a login menu (if no one has logged
in yet).

• The top line shows some generic operations that

can be performed on the resource tree. At this
stage, we can only list the children of a particular
resource in the tree.

• The left and middle windows contain user-defined
text, menus, links, that provide easy access to
resources such as projects, information etc.
located on this server.

After logging, users can navigate through any of the
links provided. As most pages are Wiki-enabled, so users
can also modify the content of these pages (providing they
have the right permissions). The LibreSource evaluation
package is available online.

6 CONCLUSION

The main objectives of this paper were twofold: (i)
to illustrate an innovative teaching/learning activity
designed for software engineering students and (ii)
to describe how this activity can be supported by
collaborative technology called LibreSource.
Although the main focus of this paper is on
collaborative technology, we argue that when
technology is used in the education domain, it is
necessary to adopt the top-down approach. Thus, it
is necessary to start from the intended learning
objectives and learning designs and then look for
possible technical solutions. Design of this activity
is based on the latest theory of learning designs and
principles of problem-based learning.
The same educational activity could be further
extended to support more complex scenarios. For
example, it could support peer review process where
one group of students test solutions developed by

Resource tree path
Resource children nodes

Login information

Links to
other
resources

Figure 5: LibreSource home page.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

64

other groups. Furthermore, the same collaborative
technology can be used in other, non-technical,
disciplines to support, for example, collaborative
writing of an assignment. Our current and future
work include further development of LibreSource
technology and its application to collaborative
activities in the domain of eLearning, business and
software engineering.

REFERENCES

Smith, J., 1998. The book, The publishing company.
London, 2nd edition.

BSCW [online] available from
http://bscw.fit.fraunhofer.de/

Ehrmann, S.C. (1997), Asking the right questions: What
does research tell us about technology and higher
learning?, Annenberg/ CPB Learner Organisation,
available from
www.learner.org/edtech/rscheval/rightquestion.html.

G- Forge [online] available from http://gforge.org/
Koper, R. and Tattersall (eds.) (2005), Learning Design: A

Handbook on Modeling and Delivering Networked
Education and Training, Springer, Berlin.

LibreSource [online] available from www.librasource.com
Lotus [online] available from http://www-

306.ibm.com/software/lotus/
Molli, P., Oster, G., Skaf-Molli, H. and Imine, A. (2003),

“Using the Tnasformational Approach to Build a Safe
and Generic Data Synchronizer”, Proceedings of the
International ACM SIGGROUP Conference on
Supporting Group Work, GROUP2003, Sanibel
Island, Florida, USA.

Race P. (1999) Practical Pointers to Flexible Learning
available from
(http://www.lgu.ac.uk/delibrations/flex_learning/race_
content.html

Savannah [online] available from http://savannah.gnu.org/
Schon, D.A. (1983), The Reflective Practitioner: How

Professionals Think in Action, Basic Books Inc., USA.
Schon, D.A. (1987), Educating The Reflective

Practitioner: Toward a New Design for Teaching and
Learning in the Professions, Jossey-Bass Inc., USA.

SourceForge [online] available from
http://sourceforge.net/

WebCT [online] available from www.webct.com
ZOPE [online] available from http://www.zope.org/

SUPPORTING COMPLEX COLLABORATIVE LEARNING ACTIVITIES – THE LIBRESOURCE APPROACH

65

