
FORMAL VERIFICATION OF AN ACCESS CONCURRENCY
CONTROL ALGORITHM FOR TRANSACTION TIME

RELATIONS

Achraf Makni, Rafik Bouaziz, Faïez Gargouri
Faculty of Economic Sciences and Management of Sfax BP 1088, 3018 Sfax, Tunisia

Keywords: Optimistic concurrency control, Strong consistency, Transaction time relation, Formal verification,
PROMELA/SPIN.

Abstract: We propose in this paper to formally check the access concurrency control algorithm proposed in (Bouaziz,
2005). This algorithm is based on the optimistic approach and guarantees strong consistency for the
transaction time relations. The specification of our model under PROMELA language allowed us to ensure
the feasibility of the validation. We then could, using the SPIN model checkers, avoid errors of blocking
type and check safety properties specified by temporal logic formulas.

1 INTRODUCTION

The access concurrency control (CC) to a database
(DB) is an essential component in a database
management system (DBMS). It must guarantee that
the simultaneous execution of transactions produces
the same results as a sequential execution (Gardarin,
1988). In some environments, this mission must be
reinforced to ensure the strong consistency of the
databases. To do so, the CC must guarantee that the
simultaneous execution of transactions produces the
same results as the sequential execution of these
transactions in their strict order of arrival (Rahgozar,
1987).
The CC takes new dimensions when applied to the
temporal DB (TDB). TDB have as objective the
management of the data history, such as it is the case
for the transaction time relations (TTR). The
objective of these relations consists in providing for
the applications, not only the current data, but also
all the previous DB states which succeed in time. To
be able to maintain these states, the update
operations should not be destructive. The TTR store
the passed versions by stamping them using the two
following physical times:
- beginning transaction time (BTT): the execution

time of the transaction which inserts the
corresponding tuple. This time is a priori known.

- end transaction time (ETT): the execution time of
the transaction which updates or removes the
considered tuple. It can not be a priori known.

We propose in this paper to check formally the
optimistic concurrency control algorithm
OCCA_SC/TTR (Bouaziz, 2005), which ensures the
strong consistency (SC) for TTR. To do so, we
chose to use the SPIN tool (Holzmann, 1997), which
is one of the powerful model checkers. It is an
appropriate tool for analysing the logical consistency
of concurrent systems, especially for the data
communication protocols. SPIN is largely used, not
only in the research areas, by the fact that it is
freeware, but also in the industrial area (Gnesi,
2000), (Havelund, 2001), (Brinksma, 2002),
(Berstel, 2005).

This paper is organized as follows. Section 2
describes the structure of OCCASC/TTR algorithm.
Section 3 presents some results of the verification
step using SPIN model checker.

2 DESCRIPTION OF
OCCA_SC/TTR ALGORITHM

The CC methods are classified according to the two
main categories; pessimistic methods and optimistic
ones. In the pessimistic methods the checking
consistency is carried out at the time of each

269
Makni A., Bouaziz R. and Gargouri F. (2006).
FORMAL VERIFICATION OF AN ACCESS CONCURRENCY CONTROL ALGORITHM FOR TRANSACTION TIME RELATIONS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 269-272
DOI: 10.5220/0002487602690272
Copyright c© SciTePress

transaction operation. In the optimistic methods,
checking consistency is carried out only at the end of
transaction. For the TTR, we can find, in the
literature, some CC algorithms based on the
pessimistic approach (Finger, 1997) (Elloumi, 1998)
(Castro, 1998). But, to our knowledge, only the
OCCA_SC/TTR algorithm (Bouaziz, 2005) was
proposed to study the CC for these relations
according to the optimistic approach in order to
ensure the strong consistency of the database.

The OCCA_SC/TTR algorithm allows to
maintain the strong consistency of the DB in a TTR
environment, to minimize the abortion degree of
transactions, to avoid the starvation problem and to
detect conflicts as soon as possible.

For each transaction Ti, the concurrency
controller maintains two sets: RSi (Read Set), the set
of objects read by Ti, and WSi (Write Set), the set of
objects written by Ti.

During the transaction execution, when the
concurrency controller receives:
- a Read (Ti, g) operation, it adds the g granule to

RSi;
- a Read (Ti, g, pt) operation, it adds the g granule to

RSi only if pt indicates the current version of g;
but, this read operation cannot, in any case,
produce conflicts;

- a Write (Ti, g) operation, it adds the g granule to
WSi;

- a Rollback operation, it eliminates the read and
written objects from RSi and WSi;

- a Commit operation, it checks if there is or not a
conflict between the transaction to be validated and
the transactions which are not yet validated.

In our work, we started from the validation
strategy of BOM algorithms (broadcast optimistic
method) with critical section (CS). This strategy
stipulates that at each execution of a COMMIT order
concerning a transaction Ti, at one moment t,
concurrent transactions, which are still in their
reading phases, must do a validation test with Ti
(WSi ∩ RSj). If there is a conflict, the transaction to
be aborted is the one having the least priority.

To be able to ensure strong consistency, we
propose to proceed to the stamping of the
transactions by the moments of their arrival and
to attribute to the last coming one the least priority.
We propose also to add a certification phase which
precedes the validation one of each transaction.
During this phase, the concurrency controller checks
that Ti has the most priority. In this case, the
concurrency controller passes it to the validation
phase. In the opposite case, Ti is put in a waiting list
to be certified later on.

Once arrived at its validation phase, Ti will be
automatically validated. The new versions of
granules manipulated by this transaction will be
stored in the database and will take as stamp the
transaction time of Ti (equal to ti, the arrival Ti
moment).

A research of the conflicts, which can exist
between Ti and any transaction Tj in reading or in
certification phase, is then carried out. Tj is
necessary younger than Ti and thus having the less
priority. Consequently, if there is a conflict, Tj must
be aborted to be taken again with the same stamp.

After validating the transaction Ti, CC must
always check if there is a transaction Tk, waiting for
certification, which becomes the most priority.
Indeed, the setting on waiting for certification of a
transaction is due to the existence of others having
more priority and not yet validated. Then propose to
add an awaking function.
The CS, during which all the manipulated granules
in writing by Ti must be locked, extends during the
two writing and validation phases of the transaction
Ti. But we successfully reduced this period using the
"EOT marker" technique for a correct definition of
the conflicts. The period of enf of transaction
marking is much shorter than the whole validation
phase, also including the conflict checking.

3 OCCA_SC/TTR VALIDATION

The systems analyzed by SPIN are described with
the PROMELA language (PROcess MEta
LAnguage). PROMELA is a specification language
for finite state systems. A system specified by
PROMELA is represented by a set of parallel
processes and communicating via global variables
or/and communication channels. PROMELA also
allows checking properties specified in linear
temporal logic (LTL).

We use, in the following, an example of three
transactions (T1, T2 and T3) and two granules (x and
y). The transaction T1 manipulates in reading and in
writing both granules, whereas the transactions T2
and T3 manipulate in reading and writing
respectively the x granule and the y one. Thus, the
conflict risk between the transactions is limited
between T1/T2 and T1/T3. These transactions are
maintained in the liste_tr array.
transaction liste_tr[nb_tr];

We defined also a new "transaction" type which
gathers the transaction characteristics.
 typedef transaction
 {

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

270

 byte nom;
 byte ordre; /* represents
 the transaction stamp
 (arrival moment) */
 byte ordre_validation;

/* Indicates a transaction
validation order */

 .
 .
 .
 };

The SPIN model checking can proceed in two

steps. In the first one, "deadlock" or "unreachable
code" errors are detected. In the second step, the
validity of the quality properties of the system is
checked through the application of an adequate LTL
formula. In the case of error, SPIN gives the shortest
way which leads to this error.

3.1 First Checking Step

With the first version of our system, SPIN detects
the possibility of a blocking situation. The shortest
way which leads to this error is described below.

The priority orders allotted to our three
transactions is: T1 > T2 > T3.

The transactions T3 and T2 aren’t certified
regards to the reading transactions. T1 continues its
execution, it is certified and it starts the validation
phase. Since there is a conflict with T2 and T3, theses
latter are aborted. If the transaction T3 takes again its
execution and demands its validation from the CC
before T2, it will be blocked again in the certification
test regards to the transactions in reading phase,
since T2 has now the most priority. So, when T2
starts again its execution, it passes the two
certification tests successfully and starts the
validation phase. Since there is no conflict between
T2 and T3, the latter is awaked by the CC after the T2
validation. T3 will passes only the certification test
regards to the transactions in reading phase, but the
result is negative, because T2 is still considered in
reading phase. When the T2 state takes the value
"finish", the transaction T3 will be blocked, although
it has the priority in the system. Besides, it will
persist in this state, since the CC cannot any more
awake it.

We note, by what precedes, that the attribution of
the "finish" value to the element "state", defined in
the "transaction" type, should not be carried out after
the awake of a concurrent transaction which has now
priority. This will lead again to blocking this
transaction.

In order to resolve the problem we propose that a
transaction must take the finish state before calling
the awaking procedure.

No error was reported by SPIN for this new
version. The checking of the model was effected by
using the exhaustive research mode and the partial
order reduction algorithm.

3.2 Definition and Application of
LTL Formulas

Let’s remind that we already defined the two
elements "order" and "ordre_validation" in the
"transaction" type. The "order" element is defined in
accordance with the transaction arrival order.
Whereas the element "ordre_validation" represents
the transaction validation order. Each transaction
stamp value is assigned to element "order" before
starting the parallel execution of all transactions.

To make sure that our system guarantees SC, we
must have at the end of the execution, for any
transaction arranged with the element of i index in
the liste_tr array, the element "order" equal to the
element "ordre_validation". So, we defined the
property p as follows:
 #define p
(liste_tr[0].ordre ==
liste_tr[0].ordre_validation)

The LTL Formula which we applied is as
follows: "<>[]p".

"<>[]p" means that there is at least a state from
which we will have the property p true forever.

In our system, the priority and validation orders
are initially different. This is true since the
assignment of priority order is carried out at the
beginning of the execution. Whereas, the assignment
of validation order is carried out when a transaction
is validated. This justifies the use of the operator
eventually.

No error is detected in this checking phase when
applying the formula <>[]p.

After having checked that SC is ensured, we will
check, hereafter, that in the case of a conflict, the
transaction with the least priority will be aborted.
Our second formula is then based on the values
which x and y granules can take.

To do so, we defined two global variables xval
and yval. These last represent the values which can
take each x and y granule. We suppose that each
transaction, when modifying a variable, gives it a
specific value: when T1 modifies x, the value of the
granule will take the value tr1. At the execution end,
the granule’s final value must be equal to the value
assigned by the least priority transaction. If it is not

FORMAL VERIFICATION OF AN ACCESS CONCURRENCY CONTROL ALGORITHM FOR TRANSACTION
TIME RELATIONS

271

the case, it means that there is a not solved conflict
between two transactions (the least priority
transaction was not aborted).

Let us remind that the two transactions T1 and T2,
which correspond respectively to the index 0 and 1
in the liste_tr array elements, manipulate the x
granule in reading and writing. If these two
transactions are executed simultaneously, a conflict
can occur. The LTL formula, described below,
allows to check if this conflict is solved or not (if it
appears).

The LTL formula is as follows:
[]((<>(a&&b)-><>c)&&(<>(!a&&d)-><>e))

The properties a, b, c, d and e are defined as follows:
 #define a
(liste_tr[0].ordre <liste_tr[1].ordre)
 #define b (liste_tr[0].state==finish)
 #define c (xval==tr2)
 #define d (liste_tr[1].state==finish)
 #define e (xval==tr1)

This LTL formula treats the two possible cases
between T1 and T2 according to their priority orders.
Case 1:
if T1 > T2 ("a" = true) and if T1 is finished ("b"=true)

 we must be sure to have :
“c” = true in a future state (xval="tr2").

Case 2:
if T1 < T2 ("a" != true) and if T2 is finished

("d"=true) we must be sure to have :
“e” = true in a future state (xval="tr1").

The application of this formula gives a valid result.

4 CONCLUSION

In this paper, we checked that OCCA_SC/TTR
operates correctly. We showed formally, using SPIN
tool, that the general working of our system is
correct. Nevertheless, this formal verification
permits us to find some insufficiencies and to
resolve an error problem relating to the moment
when a transaction must have the finished state. We
showed that the state of a transaction Ti must have
the value "finish" before making awake another
transaction Tj.

In addition, the definition and the application of
the two LTL formulas, using SPIN, enabled us to
check that the strong consistency of the database is
maintained, on the one hand, and that in the case of a
conflict between two transactions, this conflict is
solved by aborting transaction having the least
priority, on the other hand.

Our future work aims at the validation of this
algorithm, using a complete study case, and to show
that it ensures better performances compared to

those of pessimistic algorithms presented in the
literature.

REFERENCES

Bernstein, P, A., Hadzilacos, V., Goodman, N., 1987.
Concurrency control and recovery in DBS.
ADDISON-WESLEY Edition.

Berstel, J., Reghizzi, S, C., Roussel, G., Pietro, P, S.,
2005. A Scalable Formal Method for Design and
Automatic Checking of User Interfaces. ACM
Transactions on Software Engineering and
Methodology.

Brinksma, E., Mader, A., Fehnker, A., 2002. Verification
and Optimization of a PLC Control Schedule. Journal
on Software Tools for Technology Transfer.

Bouaziz, R., Makni, A., 2005. ACCO_CF/RTT: Un
algorithme de contrôle de concurrence optimiste pour
les relations temporelles de transaction. Information
Sciences for Decision Makin, Janvier 2005.

Castro, C., 1998. On concurrency management in
temporal relational databases. In SEBD’98.

Elloumi, S, D., Bouaziz, R., Moalla, M., 1998. Contrôle de
concurrence multiversion dans les bases de données
temporelles. In BDA’98. International Conference on
advanced databases.

Finger, M., McBrien, P., 1997. Concurrency Control for
Perceivedly Instantaneous Transactions in Valid-Time
Databases. In TIME’97.

Gardarin, G., 1988. Base de données : Les systèmes et
leurs langages. EYROLLES Edition.

Gnesi, S., Lenzini, G., Latella, D., Abbaneo, C.,
Amendola, A., Marmo, P., 2000. An Automatic SPIN
Validation of a Safety Critical Railway Control
System. In DSN’00. International Conference on
Dependable Systems and Networks. Published by
IEEE Computer Society Press.

Havelund, K., Lowry, M., Penix, J., 2001. Formal
Analysis of a Space Craft Controller using SPIN.
IEEE Transaction on Software Engineering.

Holzmann, G, J., 1997. The model cheker spin. IEEE
Transaction on Software Engineering.

Rahgozar, M., 1987. Contrôle de concurrence par gestion
des événements. PhD thesis.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

272

