
COMMONALITY VERSUS VARIABILITY  
The Contradictory Nature of Enterprise Systems 

Stig Nordheim 
Agder University College, P.O Box 422, N-4604 Kristiansand, Norway  

Keywords: Commonality, Variability, Enterprise Systems, Dialectics. 

Abstract: This position paper argues that there is a major contradiction inherent in Enterprise Systems. The evidence 
for this contradiction is seen in the meta level concepts of commonality and variability that characterize 
Enterprise Systems. The inherent contradiction between commonality and variability is discussed in the 
light of Enterprise Systems’ literature, and the contradiction is elaborated. Then an Enterprise Systems’ 
vendor perspective on commonality and variability is presented, based on interviews. A challenge of this 
inherent contradiction is its synthesis, finding the right balance between commonality and variability.  

1 INTRODUCTION 

Enterprise Systems (ES) are commercial software 
packages that enable the integration of transaction-
oriented data and business processes throughout an 
organization (Markus and Tanis, 2000). Examples of 
ES include: Enterprise Resource Planning, 
Enterprise Content Management, Supply-Chain 
Management, Customer Relations Management and 
Data Warehousing. 

This paper argues that there is a major 
contradiction inherent in ES. A contradiction is a 
relationship between two opposite aspects of a 
phenomenon. The evidence for asserting that there is 
an inherent contradiction in ES is presented by 
means of the meta level concepts of commonality 
and variability that characterize ES. In the following, 
the meta level concepts of commonality and 
variability are discussed in the light of the ES 
literature, and then the concept of contradiction is 
presented. A system level contradiction that is 
asserted to be inherent in ES is then presented, and 
the contradiction is illustrated by interview data 
from an ES vendor.  

2 COMMONALITY AND 
VARIABILITY 

Enterprise systems (ES) are configurable systems, 
based on the concepts of “commonality” and 
“variability” as discussed by Leishman (1999). 

These concepts are related to fit and alterability. The 
concepts are based on understanding the 
commonality and variability (c/v) across industries, 
geographies, customers, and systems.  

The general meaning of commonality is 
“possession of common (i.e. widespread or general) 
features or attributes” (Merriam-Webster, 1996). In 
software engineering a commonality is seen as “an 
assumption held uniformly across a given set of 
objects (S)” (Coplien et al., 1998), and commonality 
is represented by the software code. Variability is 
generally understood as “subject to variation or 
changes” (Merriam-Webster, 1996). Variability in 
the context of software engineering is seen as “an 
assumption true of only some elements of S” 
(Coplien et al., 1998.), and is implemented in 
different ways. In this context, variabilities are 
“bound” by placing specific limits on each of the 
variabilities. One example of bounded variability 
may be a range of legal values for a parameter 
(Coplien et al., 1998).  

By providing variability in the ES package the 
vendor anticipates that the customer has a certain 
need for flexibility. The scope of the variability is 
typically predefined and with a set of options. 
Parameter configuration is one example of 
predefined variability, and black-box customization 
of frameworks is another. This concept of a 
predefined variability fits with the software 
engineering perspective on variability (Coplien et 
al., 1998), that variability is bounded.  

Based on a review of different types of systems, 
Leishman (1999) identifies a number of generic 
mechanisms available for implementing variability. 

572
Nordheim S. (2006).
COMMONALITY VERSUS VARIABILITY - The Contradictory Nature of Enterprise Systems.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 572-575
DOI: 10.5220/0002469505720575
Copyright c© SciTePress



 

Variability here applies both to extensions of the 
system and integration with other applications. This 
variability may be implemented by mechanisms 
such as configuration, subclassing and inheritance, 
specialization of patterns, multiple versions of 
components, instantiation of abstract classes, 
parameters, templates, DDLs, customer exits, 
import/export mechanisms, adapters and connectors, 
install scripts, registry, property sheets and 
customizers (Leishman, 1999). 

Another set of variability mechanisms is 
presented by Brehm et al. (2001), who present a 
typology of Enterprise Resource Planning (ERP) 
adaptation in practice. These ERP variability 
mechanisms include configuration, bolt-ons for 
implementation of third-party packages, screen 
masks, workflow programming, user exits for 
programming additional software code in an open 
interface, ERP programming using the programming 
language provided by the vendor, interface 
development, and in rare instances some package 
code modification. 

A special case of variability is found with Open 
Source software, where the commonality itself, the 
source code, also becomes subject to variability. But 
even in this case some vendors have a kernel of 
commonality, e.g. the enterprise content 
management vendor eZ Systems (http://ez.no/). 

3 CONTRADICTIONS 

To explain the contradictory nature of commonality 
and variability, we need to clarify the concepts 
related to contradictions. A contradiction can be 
seen as a relation between two opposite aspects of a 
phenomenon. One aspect in a contradiction (also 
called a contradistinction) cannot be fully 
understood without considering the other aspect. The 
two aspects of a contradiction are called thesis and 
antithesis, where antithesis is the negation of the 
thesis. So the two aspects (or contradistinctions) are 
intrinsically related, yet opposite and distinct from 
one another (Mathiassen and Nielsen, 1989; 1990). 
The combination of thesis and antithesis may lead to 
a synthesis, which may be different from both thesis 
and antithesis.  

A thesis (A) may be challenged by an antithesis 
(Not-A), and the resolution of the conflict becomes a 
synthesis (which is Not Not-A). By its very nature, 
the synthesis is a novel construction that departs 
from both the thesis and the antithesis. Over time, 
this synthesis may become a new thesis as the 
dialectical process continues (Van de Ven and 
Poole, 1995). 

Analysing contradictions is also referred to as 
dialectics, where the dialectical tension is the 
opposition between two interacting forces or 
elements. The main point in dialectical reflection is 
to find the principal contradiction of a process in 
order to understand a situation (Bjerknes, 1992). 

According to Dahlbom and Mathiassen (1993), 
contradictions can in some cases be seen as trade-
offs: “When working with computers … we are 
typically faced with what is traditionally called 
trade-offs. From a dialectical perspective, these 
trade-offs are manifestations of contradictions 
inherently related to the use and development of 
computer systems” (p63). According to Israel (1979) 
dialectics contributes to the production of 
knowledge, by an increased understanding of a 
phenomenon. For the purpose of this paper, we note 
one dialectic to be of particular interest here, namely 
the age-old contradiction between stability and 
change (Lewis, 2000).  

4 THE INHERENT 
CONTRADICTION OF 
ENTERPRISE SYSTEMS 

The mechanisms for commonality and variability 
built into Enterprise Systems (ES), may also be seen 
as representing a contradiction (cf. Figure 1). 
Viewed as a thesis, commonality assumes that the 
system properties involved should not and cannot be 
changed. A rationale for this is that the system is 
based on best practices, and therefore it should not 
be changed. This argument is used for ERP systems. 
An ES following this thesis to the extreme, would 
simply be installed with no configuration 
whatsoever, as it would only consist of 
commonality. A pure thesis is not a feasible 
solution. Viewed as an antithesis, variability 
assumes that the system properties involved can and 
probably should be changed. A rationale for this is 
that the organizational contexts where the system is 
installed, may be different, and therefore the system 
needs to have its properties set or changed. An ES 
following this antithesis to the extreme, would only 
consist of variability and have no commonality at 
all. So a pure thesis is not a feasible solution either. 

 

COMMONALITY VERSUS VARIABILITY  - The Contradictory Nature of Enterprise Systems

573



 

 
The thesis of
Commonality:
“None of the 
system properties 
can be changed”

The antithesis of
Variability:
”All of the system 
properties can be 
changed”

The contradiction:
Commonality
vs variability

Synthesis:
“Some of the system
properties can be
changed”

The thesis of
Commonality:
“None of the 
system properties 
can be changed”

The antithesis of
Variability:
”All of the system 
properties can be 
changed”

The contradiction:
Commonality
vs variability

Synthesis:
“Some of the system
properties can be
changed”

 
Figure 1: The inherent contradiction of Enterprise 
Systems. 

The contradiction itself is about the fixed versus 
the variable, or stability versus change (Lewis, 
2000). Commonality versus variability may 
therefore be seen as an inherent dialectic within ES, 
expressing the contradictory nature of ES. These 
design trade-offs are indeed manifestations of 
contradictions inherently related to the development 
of the systems (cf. Dahlbom and Mathiassen, 1993). 
Because of its inherent commonality/variability 
architecture, an ES may therefore be seen as the 
embodiment of a contradiction that is fundamental to 
the nature of ES. This contradiction is viewed at a 
system level and from a vendor perspective. 

The synthesis for most ES vendors implies 
finding an optimal balance between commonality 
and variability, i.e. between stability and change. 
This balance means that a subset of the properties of 
the system may be changed. Different vendors will 
reach very different decisions about the right balance 
between commonality and variability (Davenport, 
1998).  

A puzzling phenomenon is that some ES vendors 
provide powerful customization tools, while 
emphasizing the importance of limited 
configuration. So the vendor’s attitude to stability 
and change may even be contradictory. 

5 A VENDOR PERSPECTIVE ON 
THE CONTRADICTION OF 
ENTERPRISE SYSTEMS  

To illustrate the inherent contradiction presented 
above, the results of interviews with two 
representatives from an ES vendor are presented in 
the following. 

The case studied is eZ Systems (http://ez.no/), an 
Open Source enterprise content management (ECM) 
vendor with 30-40 thousand downloads per month.  
One of the informants interviewed has a split role 
between management of customer projects and 

programming, and the other informant is responsible 
for all customer projects in the company.  

The idea behind eZ Systems is flexible solutions 
rather than “off-the-shelf” software. So they 
emphasize the antithesis of Fig 1. Their customers 
are extremely heterogeneous. As this is an Open 
Source software, most customers download and 
implement it without any contact with the vendor.  

An interesting point is that even with this Open 
Source enterprise system, there is commonality. The 
commonality is in this case a kernel that is 
developed and controlled exclusively by eZ 
Systems.  

There are two types of variability provided by eZ 
Systems, configuration and programming. 
Configuration is referred to as a supported 
variability, and programming is referred to as an 
unsupported variability. In addition to configuration, 
supported variability also consists of modifying 
templates, e.g. HTML templates. Unsupported 
variability consists of interface programming, 
usually based on existing libraries. So a considerable 
variability is achieved by plug-ins into the kernel, 
and as the system evolves, plug-ins are extended 
without affecting the kernel. Consultancy on 
variability ranges from adapting templates for small 
businesses, to complex integration with legacy 
systems in large enterprises.  

The line of demarcation between commonality 
and variability is by eZ Systems perceived as an 
interesting design trade-off. So from this vendor’s 
perspective, the contradictory nature of the ES is 
recognized, and an optimal synthesis is seen as a 
design challenge. As pointed out by one of the 
informants, if there is too much commonality 
compared to variability, the customer is being 
locked up due to lack of configuration options. But 
if there is too much variability compared to 
commonality, the customer will be confused due to 
the lack of standard functionality. According to the 
informants at eZ Systems, an implementation based 
on as much commonality as possible means better 
maintainability, higher quality and a cheaper 
solution.    

The vendor’s goal is in this case to have as much 
configuration as possible, and as little programming 
as possible. The ideal is to empower non-
programmers to establish complex solutions by 
simple configuration. A goal is to cover 95% of a 
customer’s needs by configuration. This can 
therefore be seen as eZ Systems’ view of an ideal 
synthesis (c.f. Fig 1). The vendor also tries to 
influence the customer’s requirements on to what is 
configurable. Configuration constitutes the typical 
effort, together with modifying HTML templates. 
Functional adaptation and user interfaces are usually 
adapted through configuration. In a typical project, 

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

574



 

programming may constitute 10% of the work, 
whereas 90% of the effort is configuration and 
template adaptation. When programming occurs, 
typical programming tasks include: integration with 
back-end systems, including the integration of user 
administration and access rights. Special processes 
for document approval within the implementing 
organization may also require some programming. 
There is very little programming in a typical project, 
but the extent of programming varies enormously. 
Larger projects are characterized by some 
programming, typically modifying scripts to handle 
import/export. In some larger projects there may 
also be some programming to create new 
functionality, based on existing libraries. 

6 CONCLUSIONS 

Most of the practice literature referred in this paper 
is from an ERP context, since ERP systems is a 
prime example of Enterprise Systems.  ERP systems 
constituted only one of the six example systems that 
the vendor literature (Leishman, 1999) was based 
on. By examining another type of ES in the case of 
eZ Systems, it was found that the categorizations of 
commonality and variability were similar to those of 
ERP. The ECM vendor eZ Systems followed 
categorizations similar to ERP systems, and both are 
ES. 

We argue that Enterprise systems by nature are 
contradictory. They embody an inherent 
contradiction at the system level. This is evident 
from the concepts of commonality and variability. 
The vendor challenge as seen in the case presented, 
consists of finding an optimal synthesis. The 
synthesis is a good balance between commonality 
and variability. As part of this, an apparent vendor 
goal is to provide sufficient variability by means of 
configuration.  

For ES customers the inherent contradiction of 
these systems also may give rise to another question: 
What are the possible implications of this 
contradiction for organizations that are 
implementing ES? 

REFERENCES 

Brehm, L., Heinzl, A., Markus, M.L., Tailoring ERP 
Systems: A Spectrum of Choices and their 
Implications. Proceedings of the 34th Hawaii 
International Conference on Systems Sciences, 
Hawaii, 2001. 

Coplien, J., Hoffman, D., and Weiss, D., Commonality 
and Variability in Software Engineering. IEEE 
Software, 1998. 15(6): p. 37-45. 

Dahlbom, B. and L. Mathiassen (1993). Computers in 
Context : The philosophy and practice of systems 
design. Cambridge, Mass., NCC Blackwell. 

Davenport, T. H. (1998). "Putting the Enterprise into the 
Enterprise System." Harvard Business Review 76(4): 
122-131. 

http://ez.no/ 
Israel, J. (1979). The Language of Dialectics and the 

Dialectics of Language. Copenhagen, Munksgaard. 
Lewis, M. W. (2000). "Exploring Paradox: Toward A 

More Comprehensive Guide." Academy of 
Management Review 25(4): 760-776. 

Leishman, D.A., Solution Customization. IBM Systems 
Journal, 38,1 (1999) 76-97. 

Markus, M. L. and C. Tanis (2000). The Enterprise 
System Experience - From Adoption to Success. In 
Framing the domains of IT management : projecting 
the future through the past. R. W. Zmud (ed.) 
Cincinnati, Ohio, Pinnaflex Education Resources: 173-
207. 

Mathiassen, L. and P. A. Nielsen (1989). "Soft Systems 
and Hard Contradictions - Approaching the Reality of 
Informations Systems in Organizations." Journal of 
Applied Systems Analysis 16: 75-88. 

Mathiassen, L. and P. A. Nielsen (1990). Surfacing 
Organizational Competence. Soft Systems and Hard 
Contradictions. In Organizational Competence in 
System Development: a Scandinavian Contribution. G. 
Bjerknes (ed.) Lund, Studentlitteratur. 

Merriam-Webster's collegiate dictionary. 10th ed. 1996: 
Merriam-Webster, Springfield. 

Van de Ven, A. H. and M. S. Poole (1995). "Explaining 
development and change in organizations." Academy 
of Management Review 20(3): 510-540. 

COMMONALITY VERSUS VARIABILITY  - The Contradictory Nature of Enterprise Systems

575


