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Abstract: A new method to handle problems of Information Retrieval (IR) and related applications is proposed. The 
method is based on Fuzzy Interval Numbers (FINs) introduced in fuzzy system applications. Definition, 
interpretation and a computation algorithm of FINs are presented. The frame of use FINs in IR is given. An 
experiment showing the anticipated importance of these techniques in Cross Language Information 
Retrieval (CLIR) is presented. 

1 INTRODUCTION 

Oard (Oard, 1997) classifies free (full) text Cross 
Language Information Retrieval (CLIR) approaches 
to corpus-based and knowledge-based approaches. 
Knowledge-based approaches encompass dictionary-
based and ontology (thesaurus)-based approaches 
while corpus-based approaches encompass parallel, 
comparable and monolingual corpora. Dictionary-
based systems translate query terms one by one 
using all the possible senses of the term. The main 
drawbacks of this procedure are: 
a) the lack of fully updated Machine Readable 
Dictionaries (MRDs), 
b) the ambiguity of the translations of terms results 
in a 50% loss of precision (Davis, 1996). 
Since the machine translation of the query is less 
accurate than that of a full text, experiments have 
been conducted with collections having machine 
translations of all the collection texts to all 
languages of interest. Such systems are really multi-
monolingual systems. Parallel and comparable 
corpora systems are different: the parallel (or 
comparable) corpora are used to “train” the system 
and after that no translations are used for retrieval. 
One such system, perhaps the most successful, is 
based on Latent Semantic Indexing (LSI) (Dumais, 
1996), (Berry, 1995). The main problem with this 

approach is that it is not easy to find training parallel 
corpora related to any collection. 
Fuzzy (set) techniques were proposed for 
Information Retrieval (IR) applications many years 
ago (Radecki, 1979), (Kraft, 1993), mainly for 
modeling. 
Fuzzy Interval Numbers (FINs) were introduced by 
Kaburlasos (Kaburlazos, 2004), (Petridis, 2003) in 
fuzzy system applications.  
A FIN may be interpreted as a conventional fuzzy 
set; additional interpretations for a FIN are possible 
including a statistical interpretation. 
The special interest in these objects and associated 
techniques for IR stems from their anticipated 
capability to serve CLIR without the use of 
dictionaries and translations. 
The basic features of the method presented here are: 
1) Documents are represented as FINs; a FIN 
resembles a probability distribution. 
2) The FIN representation of documents is based on 
the use of the collection term frequency as the term 
identifier. 
3) The use of FIN distance instead of a similarity 
measure. 
There are indications, part of which is presented in 
section 4 below, that a parallel corpora system can 
be build using FIN techniques. 
The structure of the remainder of this paper is as 
follows: In section 2 a brief introduction to FINs and 
other relevant concepts is given. In section 3 the 
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“conceptual” transition from document vectors to 
document FINs is presented. Section 4 presents the 
special interest of FINs in handling CLIR problems. 
Conclusions and current work on the subject are 
presented in section 5. 

2 THEORETICAL 
BACKGROUND 

A. Generalized Intervals 
A generalized interval of height h (∈ (0,1]) is a 
mapping μ given by: 
 
If x1 < x2 (positive generalized interval) then 

elseif x1 > x2 (negative generalized interval) then 
 

 
elseif x1 = x2 (trivial generalized interval) then 

 
 In this paper we use the more compact notation  
[x1, x2]h instead of the μ notation. 
The interpretation of a generalized interval depends 
on an application; for instance if a feature is present 
it could be indicated by a positive generalized 
interval.  

The set of all positive generalized intervals of 
height h is denoted by h

+M , the set of all negative 

generalized intervals by h
−M , the set of all trivial 

generalized intervals by h
0M  and the set of all 

generalized intervals by Mh = h
−M ∪ h

0M ∪ h
+M . 

Two functions, that are going to be used in the 
sequel, are defined:  
Function support maps a generalized interval to the 
corresponding conventional interval; support   
([x1, x2]h) = [x1, x2] for positive, support([x1, x2]h) = 
[x2, x1] for negative and support([x1, x1]h) = {x1} for 
trivial generalized intervals.  
Function sign: Mh → { –1, 0, +1 } maps a positive 
generalized interval to +1, a negative generalized 
interval to –1 and a trivial generalized interval to 0. 

Now, we try to define a metric distance and an 

inclusion measure function in the set (lattice) Mh.  
A relation ≤ in a set S is called partial ordering 
relation if and only if it is: 
1) x ≤ x (reflexive) 
2) x  ≤ y and y  ≤ x imply  x= y (antisymmetric) 
3) x  ≤ y and y  ≤ z imply  x ≤ z (transitive) 
 
Therefore a partial order relation ≤ can be defined in 
the set Mh , h∈ (0,1]: 

1)   [a, b]h  ≤  [c, d]h ⇔ support([a, b]h) ⊆  

     support ([c, d]h), for [a, b]h , [c, d]h ∈ h
+M  

2) [a, b]h  ≤  [c, d]h ⇔ support([c, d]h) ⊆ 
support([a, b]h), for [a, b]h , [c, d]h ∈ h

−M  

3) [a, b]h  ≤  [c, d]h ⇔ support([c, d]h) ∩ 
support([a, b]h) ≠ 0, for [a, b]h∈ h

−M  ,            

[c, d]h ∈ h
+M  

A partial ordering relation does not hold for all pairs 
of generalized interval. 
A lattice (L, ≤) is a partially ordered set and any two 
elements have a unique greatest lower bound or 
lattice meet (x ∧L y) and a unique least upper bound 
or lattice join (x ∨L y).  
A valuation v in a lattice L, defined as the area 
“under” a generalized interval, is a real function  
    v:L → R which satisfies  
v(x)+v(y)= v(x ∨L y) + v(x ∧L y), x,y ∈ L. 
A valuation is called monotone if and only if x ≤ y 
implies v(x) ≤ v(y) and positive if and only if x < y 
implies v(x) < v(y) for x,y ∈ L. 
 A metric distance in a set S is a real function 
d:S×S→ R which satisfies: 
 
1)  d(x,y) ≥ 0, x, y ∈ S 
2)  d(x,y) = 0 ⇔ x = y, x∈ S 
3)  d(x,y) = d(y,x) , x, y ∈ S (symmetry) 
4)  d(x,y) ≤ d(x,z) + d(z,y), x, y, z ∈ S  
                 (triangle inequility) 
Therefore a metric distance d:L×L→ R can be 
defined in the lattice Mh , h∈ (0,1] given by  
      d(x, y) = v(x ∨L y) - v(x ∧L y), x,y ∈ L. 
 
A lattice is called complete when each of its subsets 
has a least upper bound and a greatest lower bound. 
In a complete lattice the positive valuation function 
v can be used to define an inclusion measure 
function k: L×L→ [0, 1] given by  
                            v(u) 
     k(x, u) =  
                          v(x ∨L u) 
The lattice Mh is not complete.  

⎩
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Therefore we must define in a different way an 
inclusion measure to quantify the degree of inclusion 
of a lattice element into another one. 
Definition 
An inclusion measure σ in a non-complete lattice L 
is a map σ: L×L→ [0, 1] such that for u, w, x ∈ L: 
1) σ(x, x) = 1 
2) u < w ⇒ σ(w, u) < 1 
3) u ≤  w ⇒ σ(x, u) ≤ σ(x, w) (consistency property) 
We have interchangeable used the notations σ(x, u), 
σ(x ≤ u) because both the notations indicate a degree 
of inclusion of x in u. 
    Kaburlazos has proved the following proposition: 
    Let the underlying positive valuation function  
f: R→ R be  a strictly increasing real function in R. 
Then the real function v: Mh → R is given by 
v([a, b]h ) = sign ([a, b]h ) c(h) a∫b [f(x) – f(a)] dx 
where v is a positive valuation function in Mh,  
c: (0,1] → R+ is a positive real function for 
normalization. A metric distance in Mh is given by: 
dh (x, y) = v(x ∨ y) – v(x ∧ y) 
As an example consider f(x)=x, c(h)=h.  
Then the distance is given by:  
dh([a, b]h , [c, d]h)= h (|a-c|+|b-d|). As another 
example, for f(x)= x3, h=1 and c(1)=0.5 we compute 
the distance (between the intervals [-1, 1]1, [2, 4]1) 
dh([-1, 1]1  , [2, 4]1)= f(([-1, 1]1  ∨  [2, 4]1)  
- f(([-1, 1]1  ∧ [2, 4]1) = 32.5 + 3.5 = 36. 
The essential role of a positive valuation function v: 
L→ R is known to be a mapping from a lattice L of 
semantics to the mathematical field R of real 
numbers for carrying out computations.  
 
B. Fuzzy Interval Numbers: Definition and 
Interpretation 

 A positive Fuzzy Interval Number (FIN) is a 
continuous function F: (0,1] → h

+M  such that  

h1 ≤ h2 ⇒ support(F (h1)) ⊇ support(F( h2)),  
where 0 < h1 ≤  h2 <1. 
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Figure 1: An 86 value FIN. In the support(F(0.25)) = 
[62,318] there are about 75% of the values. 

The set of all positive FINs is denoted by F+. 
Similarly, trivial and negative FINs are defined. 

Given a population (a vector) x = [x1,x2,…,xN] of 
real numbers (measurements), sorted in ascending 
order, a FIN can be computed by applying the 
CALFIN algorithm given in the Appendix. In Fig.1 
a FIN, calculated from a population of 86 values, is 
shown. Given a FIN, any “cut” at a given height h 
(∈ (0,1]) defines a generalized interval, denoted by 
F(h). In Fig.1, F(0.25) is the generalized interval 
[a,b]0.25 represented by acdb. 

A consequence of the CALFIN algorithm is the 
following: Let F(1) = {m1}; approximately N/2 of 
the values of x are smaller than m1 and N/2 are 
greater than m1. Let F(0.5) = [p1/2,q1/2]0.5; 
approximately N/4 of the values of x lie in [p1/2,m1]  
and N/4 in [m1,q1/2]. In more general terms: for any 
h ∈ (0,1] approximately 100(1 - h)% of the N values 
of x are within support(F(h)). 
 
C. FIN Metrics 

Let mh: R → R+ be a positive real function – a 
mass function – for h ∈ (0,1] (could be independent 

of h) and fh(x) = ∫
x

h dttm
0

)( .  

Obviously, fh is strictly increasing. The real function 
vh: 

h
+M  → R, given by vh([a,b]h) = fh(b) – fh(a)  

is a positive valuation function in the set of positive 
generalized intervals of height h. 
     dh([a,b]h,[c,d]h) =  
[fh(a∨c) – fh(a∧c)] +  [fh(b∨d) – fh(b∧d)], 
where  a∧c= min{a,c} and a∨c= max{a,c}, is a 
metric distance between the two generalized 
intervals [a,b]h and [c,d]h. In Fig.2 an interpretation 
of a, b, c, d in the case of two FINs is shown. 
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Figure 2: Two FINs F1 and F2 (representing two 
documents of the CACM test collection). The points a, b, 
c, d used to define dh(F1(h),F2(h)) = dh([a,b]h,[c,d]h). 
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Given two positive FINs F1 and F2, 

d(F1,F2)= ∫
1

0 21 ))(),(( hdhFhFdc h  

where c is an user-defined positive constant, is a 
metric distance (for a proof see (Kaburlazos, 2004)) 

3 USING FINS TO REPRESENT 
DOCUMENTS 

In the Vector Space Model (Salton, 1983) for 
Information Retrieval, a text document is 
represented by a vector in a space of many 
dimensions, one for each different term in the 
collection. In the simplest case, the components of 
each vector are the frequencies of the corresponding 
terms in the document: 
         Dock = ( fk1, fk2, … fkn ) 
fkj stands for the frequency of occurrence of term tj 
in document Dock. In Fig.3 one such vector is shown 
as a histogram. 
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Figure 3: A document vector as a histogram. Each value 
on the term axis represents a term (stem), e.g. “51” stands 
for “industri” and “104” for “research”. 
 

Let ctfj be the total frequency of occurrence of 
term tj in the whole collection. Then ctfj is equal to 

∑
k

kjtf
 

The collection term frequencies are going to be used 
as term identifiers. In order to ensure the uniqueness 
of the identifiers a multiple of a small ε is added to 
the ctfs when needed. In Fig.4 the new form of the 
document vector histogram is shown. 

Figure 4: The document vector histogram in (modified) ctf 
abscissae. Each value on the ctf (mod) axis represents a 
term (stem), e.g. “1.24775” stands for “industri” and 
“2.09009” for “research”. 
 
The next step is to break the “high bars” to multiple 
pieces of height 1, placed side by side, separated by 
some ε′ < ε; this is shown in Fig.5. Now, the original 
histogram has been transformed to a “density 
graph”. 
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Figure 5: The “density graph” representation of the 
document of Fig. 1. 
 
The abscissae vector is exactly the “number 
population” from which the document FIN (Fig.6) is 
computed from by the CALFIN algorithm described 
in the Appendix. 
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Figure 6: The document FIN along with the median bars. 
The numbers of terms on the left and right sides of the bar 
with height 1 are equal. 
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The FIN distance is used instead of the similarity 
measure between documents: the smaller the 
distance the more similar the documents. This 

a) means that for each query a FIN must be 
calculated and 

b) imposes a serious requirement on the 
queries: they must have many terms. As 
can be seen in the CALFIN algorithm 
(appendix), at least two terms are needed to 
calculate a FIN. Moreover, experience 
shows that many term documents (queries) 
give “better” fins. 

4 FINS FOR CLIR  

A. The Hypothesis 

Consider a document set {doc(l)1, doc(l)2, …, 
doc(l)n}, all in language l. Suppose that for each 
document doc(l)k there exist translations doc(j)k to 
the languages j = 1, …, m. So we have a 
multilingual document collection: 

{ 1≤ j ≤ m, 1≤ k ≤ n , doc(j)k } 

Assume that: 
1. The stopword lists of all languages are 

translations of each other (partially unrealistic). 
2. All the translations are done “1 word to 1 

word”, i.e. we have no phrasal translations of 
words (highly unrealistic (Ballesteros, 1997)). 

3. There is no different polysemy between any two 
languages (highly unrealistic (Ballesteros, 
1998)). 

Under these assumptions: Consider a term in 
language l, t(l)j. Let tf(l)jk be the term frequency in 
doc(l)k and ctf(l)j the total frequency of the term in 
the collection. The following equalities hold: 
      tf(1)jk = tf(2)jk = … = tf(m)jk 
      ctf(1)j = ctf(2)j = … = ctf(m)j 

If docF(l)k is the FIN representing doc(l)k then the 
distances of the translated document FINs will be 
approximately 0: 
      A1: d(docF(l1)k,docF(l2)k) ≈ 0 
The distances can be nullified exactly with the use of 
a dictionary. 

Moreover, let qryF(l) be the FIN of a query 
submitted to a FIN-based IR System that manages 
the collection. Then: 
       A2: d(qryF(l),docF(l)k ) ≈ d(qryF(l),docF(j)k),  
                 j ∈ 1..m 
This means that Cross Language Information 
Retrieval is achievable without the use of 
dictionaries. 

B. The Experiment 

The experiment aims to test the aforementioned 
statements A1 and A2 in the “real world”. 

A small document collection comprising 3 short 
documents in english and their greek translations 
(the documents originate from EU databases) was 
used. The documents were slightly modified in order 
to improve their compliance with the hypotheses of 
part A. The term content of the documents is shown 
in Table 1. Apparently it was not easy to avoid 
phrasal translations and terms with different 
polysemy. 

Table 1: The term content of the documents. 

Total Number of Terms 
Number of Distinct 

Terms 
 english greek English greek 
doc1 69 69 67 58 
doc2 83 83 50 51 
doc3 79 86 65 71 
Total Nten =231 Ntgr =238 151 154 

 
The FINs of the documents were calculated taking 

all terms without exceptions. The FINs of the 
english documents are shown in Fig.7. The steep 
ascent of the left side of the curves is due to the 
inclusion of all the terms appearing only once in the 
collection. 

In Fig.8 the FINs of the greek and english 
versions of  document 3 are shown. They are almost 
identical except for the right “tail” of the greek FIN. 
This is a result of different polysemy. 

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7

ctf (mod)

h doc1
doc2
doc3

 
Figure 7: The FINs of the english documents. 
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Figure 8: The FINs of the english and greek versions of 
document 3. 

 
For the distance calculations a bell-shaped mass 

function is selected: 

mh(t) = 2
2

2
)max(
⎟
⎠
⎞

⎜
⎝
⎛ −+

+

ctftA

hβα
 

The positive real numbers A, α, β, are parameters; 
max(ctf) is the maximum value of all the collection 
term frequencies. 

That kind of mass function degrades the 
contribution of to the FIN distance of the terms with 
ctf = 1. The same degradation applies to the high ctf 
terms. So, the contribution to the distance of the 
“tail” to the right of the greek FIN in Fig.8 is 
degraded but the same applies in general to all high 
frequency terms even those that do not have high 
document frequency. 

 
The verification of A1 and A2 is translated as 

follows: 
A1: d(docF(e)1,docF(g)1), d(docF(e)2,docF(g)2) and 
d(docF(e)3,docF(g)3) are significantly smaller that 
other distances between FINs. 
A2: Instead of query documents the FINs of the 
documents of the collection are used. So instead of 
d( qryF(l),docF(l)k ) ≈ d(qryF(l),docF(j)k), j ∈ 1..m 
the following is examined: 

d(docF(l)m,docF(l)n) ≈ d(docF(l1)m,docF(l2)n), m,  
n = 1, 2, 3, m ≠ n, l, l1, l2 = e, g 

In Table 2 the FIN distances of all pairs of 
documents in the collection are shown. As expected 
the smallest are the distances between the greek and 
english versions of the same documents. 

If d1e1g = d( doc(e)1F, doc(g)1F ) = 0.03515 then 
          d( doc(e)2F, doc(g)2F ) ≈ 1.2 d1e1g   and 
          d( doc(e)2F, doc(g)2F ) ≈ 2.06 d1e1g 

Apart from these, the smallest distance is 
d( doc(e)1F, doc(e)3F ) = 0.27195 ≈ 7.7 d1e1g. That 
is: the largest distance between two versions of the 
same document is about 3.8 times smaller than the 
smallest distance between versions of different 
documents. Moreover: 
d(docF(l1)m,docF(l2)n) ≤ 1.15 d(docF(l3)m,docF(l4)n), 
 m, n = 1, 2, 3, m ≠ n, l1, l2, l3, l4 = e, g 
That is: the distance between any two versions of the 
same document is at most 1.15 times larger than the 
distance of any two other versions of the same 
document. 

In conclusion: 
1) The distances of different versions (languages) 

of the same document are considerably smaller 
than others. 

2) The distances of two different documents are 
almost the same irrespective of the language of 
the documents. 

In the second phase of the experiment one more 
english language document (doc(e)4) is inserted in 
the collection but not its greek version. The number 
of english terms is increased by ΔNten = 58. Now the 
distances are changed: 
d(docF(l1)m,docF(l2)n) ≤ 1.32 d(docF(l3)m,docF(l4)n), 
 m, n = 1, 2, 3, m ≠ n, l1, l2, l3, l4 = e, g 
To rebalance the collection characteristics we 
renormalize the greek FIN absissae multiplying χj 
by: 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+

en

enj
r NT

NT
ctf

x
k

)max(
1

Table 1 FIN distances of the documents of the
collection

Doc(e)1 doc(e)2 doc(e)3 doc(g)1 doc(g)2 doc(g)3
doc(e)1 0.00000 0.34044 0.27195 0.03515 0.32658 0.29084
doc(e)2 0.34044 0.00000 0.60588 0.31314 0.07230 0.61259
doc(e)3 0.27195 0.60588 0.00000 0.29938 0.59363 0.04258
doc(g)1 0.03515 0.31314 0.29938 0.00000 0.30065 0.31147
doc(g)2 0.32658 0.07230 0.59363 0.30065 0.00000 0.60035
doc(g)3 0.29084 0.61259 0.04258 0.31147 0.60035 0.00000

Table 2: FIN distances of the documents of the collection.
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After that: 
d(docF(l1)m,docF(l2)n) ≤ d(docF(l3)m,docF(l4)n), 

 m, n = 1, 2, 3, m ≠ n, l1, l2, l3, l4 = e, g 

5 CONCLUSIONS AND FUTURE 
WORK 

FIN techniques seem promising for IR and related 
applications; the prospect of CLIR without 
dictionaries is very intriguing. Nevertheless there are 
quite enough topics to be considered carefully. 
These techniques, for monolingual and cross 
language IR, work with long documents and queries 
that can give “good” FINs. Unfortunately, this is not 
the case with the queries submitted to Internet search 
engines; these queries very often have just a couple 
of terms (Kobayashi, 2000). The FIN techniques can 
be more successful in problems of document 
classification where documents with many terms –
and “better” FINs– must be handled. 

The quality of a FIN does not depend on number 
of terms only; it must be considered with the mass 
function for the distance calculation. In the previous 
paragraph a “soft” degradation of the contribution to 
the distance of terms with ctf = 1, has been 
attempted through the mass function. A better idea 
would be probably to ignore completely these terms 
in the FIN computation. In FIN construction, term 
document frequency (df) must be taken into account 
as well. 

The bell-shaped mass function seems to be a 
reasonable one but other ideas should be considered 
in conjunction with FIN computation. 

Last but not least the renormalization scheme: in 
any multilingual collection the numbers of terms in 
different languages are random and a solid and 
flexible re-balancing scheme is needed, which is not 
independent of the FIN construction method and the 
distance calculation (mass function). 

The optimal determination of the parameters A, α, 
β and kr is part of the system training process using 
parallel corpora. 

At present, experiments are been conducted along 
these lines mainly with two of the standard 
monolingual collections, namely CACM and WSJ. 
These collections are of interest because they have 
relatively longer queries. 

On the other hand, a trilingual – greek / english / 
french – test collection is been built for CLIR 
experimentation. The parallel corpora are created by 
translation by hand (although there is some 
mechanical help). Experiments are conducted and 

records of performance are kept during various 
stages of the parallel corpora creation. 
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APPENDIX – FIN COMPUTATION 

Consider a vector of real numbers x = [x1,x2,…,xN] 
such that x1 ≤ x2 ≤ … ≤ xN. A FIN can be 
constructed according to the following algorithm 
CALFIN where dim(x) denotes the dimension of 
vector x, e.g. dim([2,-1])= 2, dim([-3,4,0,-1,7])= 5, 
etc. 
The median(x) of a vector x = [x1,x2,…,xN] is 
defined to be a number such that half of the N 
numbers x1,x2,…,xN are smaller than median(x) and 
the other half are larger than median(x); for instance, 
the median([x1,x2,x3]) with x1 < x2 < x3 equals x2, 
whereas the median([x1,x2,x3,x4]) with x1 < x2 < x3 < 
x4 was computed here as median([x1,x2,x3,x4])=  
(x2 + x3)/2. 

Algorithm CALFIN 

1. Let x be a vector of real numbers. 
2. Order incrementally the numbers in vector 

x. 
3. Initially vector pts is empty. 
4. function calfin(x) { 
5. while (dim(x) ≠ 1) 
6. medi:= median(x) 
7. insert medi in vector pts 
8. x_left:= elements in vector x less-than 

number median(x) 
9. x_right:= elements in vector x larger-than 

number median(x) 
10. calfin(x_left) 
11. calfin(x_right) 
12. endwhile 
13. } //function calfin(x) 
14. Sort vector pts incrementally. 
15. Store in vector val, dim(pts)/2 numbers 

from 0 up to 1 in steps of 2/dim(pts) 
followed by another dim(pts)/2 numbers 
from 1 down to 0 in steps of 2/dim(pts). 

The above procedure is repeated recursively log2N 
times, until “half vectors” are computed including a 

single number; the latter numbers are, by definition, 
median numbers. The computed median values are 
stored (sorted) in vector pts whose entries constitute 
the abscissae of a positive FIN’s membership 
function; the corresponding ordinate values are 
computed in vector val. Note that algorithm 
CALFIN produces a positive FIN with a 
membership function μ(x) such that μ(x)=1 for 
exactly one number x. 
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