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Abstract: Presenting feedback to learner is one of the essential elements needed for effective learning. Feedback can 
be given to learners during learning but also to authors during course development. But producing valuable 
feedback is often time consuming and makes delays. So with this reason and the others like incomplete and 
inaccurate feedback generating by human, we think that it’s important to generate feedback automatically 
for both learner and author in an intelligent tutoring system (ITS). In this research we used ontology to 
create a rich supply of feedback. We designed all components of the ITS like course materials and learner 
model based on ontology to share common understanding of the structure  of information among other 
software agents and make it easier to analyze the domain knowledge. With ontologies in fact, we specify the 
knowledge to be learned and how the knowledge should be learned. In this paper we also show a 
mechanism to make reason from the resources and learner model that it made feedbacks based on learner. 

1 INTRODUCTION 

No Learning would occur unless some type of 
feedback mechanism was at work. Feedback can 
increases motivation for learning and lets learners to 
know the accuracy of their response to an 
instructional question. It can compare the response 
to some performance standard or provide further 
guidance. Feedback provides information on 
correctness, precision, comparisons, motivational 
aspects, visual presentation, and guidance on 
sequence of lessons. During the specification and 
development of course material, many mistakes and 
errors can be made. With these features, feedback 
could also be helpful for author who presents the 
lessons and correct his bugs in designing and 
structuring the courses.  

Emerging technologies have created new 
possibilities for designing instructional feedback. 
However, effective feedback depends on 
pedagogical and psychological considerations. 

Students need appropriate feedback on 
performance to benefit from courses. When getting 
started, students need help in assessing existing 
knowledge and competence and need frequent 
opportunities to perform and receive suggestions for 

improvement. They also need chances to reflect on 
what they have learned, what they still need to 
know, and how to assess themselves. 

In a classroom learners and teachers can easily 
interact, i.e. students can freely ask questions and 
teachers usually know whether their students 
understand (basic) concepts or problem solving 
techniques. Feedback is an important component of 
this interaction. But there is a frequent lack of 
feedback in electronic learning environment (or 
eLearning) courses in higher education (Murray, 
1999).  

In our research, we want to develop generic, 
domain and task independent feedback mechanisms 
that produce semantically rich feedback to learners 
and authors during learning and authoring. We will 
develop generic feedback mechanisms where 
ontologies are arguments of the feedback engine. 
This is important, because the development of 
feedback mechanisms is time consuming and 
specialist work, and can be reused for different 
ontologies. Besides generic feedback mechanisms 
we will also develop mechanisms by means of 
which authors can define domain and/or task 
specific feedback.  

This article is structured as follows: In Section 2, 
we will compare our approach with related work. In 
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Section 3, explains the designed student model and 
the features that we considered in it for better 
feedback generation. Section 4,5, presents the idea 
for feedback generation to learner and author. 
Section 6, introduces schema analysis and the 
reasoning rules. 

2 RELATED WORK 

Although many authors underline the necessity of 
feedback in authoring systems (Aroyo and Dicheva, 
2004a; Aroyo and Mizoguchi, 2004c; Murray, 
1999), we have found little literature about feedback 
and feedback generation in authoring systems. Jin et 
al. (Jin and Chen, 1999) describe an authoring 
system that uses a domain as well as task ontology 
to produce feedback to an author. The ontologies are 
enriched with axioms, and on the basis of the axioms 
the models developed can be verified and messages 
of various kinds can be generated when authors 
violate certain specified constraints. The details of 
the techniques used are not given, and it is not clear 
to us how general the techniques are. Our 
contribution is the introduction of schema analysis 
as a general technique to produce messages about 
errors of structural aspects of course material.  

Aroyo et al. (Aroyo and Dicheva (2004a, 2004b); 
Aroyo and Mizoguchi, 2004c) describe a common 
ontology (web) based authoring framework. The 
framework contains a domain as well as task 
ontology and supports an authoring process in terms 
of goals, and primitive and composite tasks. Based 
on ontologies, the framework monitors and assesses 
the authoring process, and prevents and solves 
inconsistencies and conflicting situations. Their 
requirements for authoring support are: (1) help in 
consistently building courseware, (2) discovery of 
inconsistencies and conflicting situations, (3) 
modularization of authoring systems (reusability), 
(4) production of feedback, hints and 
recommendations, and (5) allow accepting or 
rejecting the proposed solutions. We think that our 
framework satisfies all these requirements. Schema 
analysis as a technique could be positioned in (1), 
(2) and (4).  

Stojanovic et al. (Stojanovic and Staab and 
Studer, 2001) present an approach for implementing 
eLearning scenarios using the semantic web 
technologies XML and RDF, and make use of 
ontology based descriptions of content, context and 
structure. A high risk is observed that two authors 
express the same topic in different ways 

(homonyms). This problem is solved by integrating 
a domain lexicon in the ontology and defining 
mappings, expressed by the author itself, from terms 
of the domain vocabulary to their meaning defined 
by the ontology. In our approach these mappings are 
analyzed automatically.  

In the Authoring Adaptive Hypermedia 
community the importance of feedback mechanisms 
in authoring systems has been recognized (Cristea, 
2004). Although we have found an impressive 
amount of authoring tools for adaptive hypermedia 
(Brusilovsky, 2003), we have not found descriptions 
of technologies used for providing feedback to 
authors. We expect our results will be useful for 
authoring adaptive hypermedia as well. 

3 STUDENT MODEL AND ITS 
FEATURES 

Student Model is an ITS component which keeps 
track of specific information related to each 
individual student, such as his mastery or 
competence of the material being taught, and his 
misconceptions. In effect, it stores the computer 
tutor’s beliefs about the student. This information is 
used by the pedagogical module to tailor its teaching 
to the individual needs of the student.  

Based on the subject of the domain, the 
information stored in student models could be 
divided into two major groups: domain specific 
information and domain independent information. 
The model of domain-specific information which is 
named Student Knowledge Model (SKM) 
(Brusilovsky, 1994), represents a reflection of the 
student's state and his skills. Some of this 
information could be:  

• Student’s prior knowledge about the domain 
• Records of learning behavior (number of 

lectures taken, number of helps asked, frequency of 
mistakes made while solving problems, 
reaction/answering time while solving problems) 

• Records of evaluation /assessment (qualitative 
and quantitative scores). 

A student model also needs to cover a certain 
amount of domain-independent information in 
addition to the student’s current knowledge level. 
The domain-independent information about a 
student may include learning goals, cognitive 
aptitudes, measures for motivation state, preference 
about the presentation method, factual and historic 
data, etc. 
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Figure 1: Part of Ontology based Student Model. 
 
Our stress for better feedback generation is on 

both cognitive aptitudes and learning styles 
information and we think that these two information 
type could help us respect to the others.  

Shute (Shute, 1995) identified a number of 
specific cognitive aptitudes besides student's general 
attributes: 

• General knowledge (GK) 
• Inductive reasoning skill (IR) 
• Working memory capacity (WM) 
• Procedural learning skill (PL) 
• Information processing speed (IPS) 
• Associative learning skill (AL) 
• Reflectivity 
• Risk-taking. 
The most important part of student preferences is 

the learning style that is correlated with multiple 
intelligence. Howard Gardner’s most current 
research (Lane, 1998) defines eight distinct 
intelligence forms stated as follows: 

 Verbal/linguistic intelligence 
 Logical/mathematical intelligence 
 Visual/spatial intelligence  
 Musical/rhythmic intelligence  
 Bodily/kin aesthetic intelligence  
 Intra-personal intelligence  
 Interpersonal intelligence  
 Naturalist intelligence 

Gardner suggested that everyone possesses all 
above form of intelligence but in varying capacity, 
consequently one can show low ability in a domain 
area but high ability in another domain. According 
to the multiple intelligence theory, intelligent 
educational system should be individualized so that 
every student can be guided to achieve his or her 
maximum potential (Lane, 2000). 

With these two factors and the features that we 
mention above, we introduce a student model based 
on ontology (Figure 1) which included all of these 
features. 

In this designed ITS we have both student model 
in individual and group form. The group student 
model in many cases corrects the individual model 
and also helps the author for presenting courses and 
the contents based on each student and verifies them 
better. This group student model is needed for both 
student and author feedback generation and we 
could produce feedbacks more accurately. Some 
features from the student model that we consider as 
aspects of the feedback generation, listed here: 

• Student's Study Goal 
• Cognitive Aptitudes 
• Student Non-Domain Related Experiences 
• Student Preferences 
• Student Learning Style 
• Student Study Time for Content Sections 
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Figure 2: An ITS structure supported feedback generation module. 

 
4 FEEDBACK GENERATION TO 

LEARNER 

To produce semantically rich feedback the system 
should contain several types of knowledge and in 
order to represent this knowledge we make use of 
ontologies. At this moment, we distinguish 
knowledge about: 

• Domain – presents the contents of the ITS. 
(Domain Knowledge Module) 

• Student Model – presents the diagnosis of 
system from student. (Learner Model Module) 

• Education – For example: concept learning, 
problem solving, examples and definitions. 
(Teaching Strategy module) 

• Feedback – presents the different types of 
feedback and patterns/phases during dialogs. 

Figure 2 gives the architecture of an ITS that 
supports a generic feedback mechanism. 

The Intelligent Tutoring environment consists of 
three main components: a training system for the 
learner, an authoring tool, a feedback engine, and 
takes a set of ontologies as argument. The Training 
System consists of a design and learning 
environment in which a learner can learn concepts 
and solve problems. 

The authoring tool consists of an authoring 
environment where the author develops and 
maintains courses and course related materials like 
ontologies, examples and feedback patterns. The 
feedback engine automatically produces feedback to 
learners as well as to authors. The learner receives 
different types of feedback, for example 

corrective/preventive feedback, critics and guiding 
customized to the learning style of the learner. 

The feedback engine produces generic feedback 
and specific feedback. Generic feedback is 
independent of the ontologies used. Specific 
feedback is defined by the author and can be course, 
domain or student knowledge specific. To construct 
feedback, the feedback engine uses the four 
argument ontologies. Since the ontologies are 
arguments, the feedback engine doesn’t have to be 
changed if the ontology is changed for another. 

The feedback engine can produce the three above 
mentioned types of feedback. To produce student 
and author feedback, student and author activities 
are observed and matched against the ontologies 
mentioned. To produce group feedback information 
of a number of students working on a particular 
course is given to the author of the course. Using 
this information, an author may be able to optimize 
his/her course. 

5 FEEDBACK GENERATION TO 
AUTHOR  

In order to help the author prepare teaching material 
efficiently, Authoring Tool provides task ontology 
for workflow. When the goal of training is for 
example to teach the operator how to recover from 
an accident, the training procedure is a sequence of 
recognition, judgment and actions. This sequence is 
called a workflow. 
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Corresponding to each specific mistake, the 
author has a teaching strategy in his mind. With 
training task ontology, he models his strategy into a 
sequence of teaching behaviors. The modeling 
process is made up of two levels: the first is to 
model the knowledge in his mind into a sequence of 
abstract steps (sub-tasks). The second is to model the 
subtasks to a sequence of concrete teaching actions 
on teaching materials. 

With the goal of making the student recognize an 
error, the procedure usually includes the following 
six steps: 

1) teaching the student to recognize the 
existence of an error 

2) teaching the student the cause of the error 
3) giving further explanation about the error 
4) teaching underlying knowledge for deep 

understanding 
5) giving explanations on the contradiction in 

the student’s answer 
6) pointing out the error directly 
At a relatively higher level, teaching strategies 

are modeled into frameworks with goals and sub-
goals. Along with the sub-goals in the author’s 
mental agenda are teaching behaviors with materials 
such as concrete examples, hints, demonstrations 
and simulations to be used to attain the sub-goals. 
As the sub-goals become concrete, they finally can 
correspond to a sequence of teaching behaviors. But 
how to help the author to represent the behaviors is 
still a difficult problem. We need a facility to model 
these behaviors, and that is the training task 
ontology we are developing. In the training task 
ontology, we define vocabulary, which can be used 
by the author to represent his/her behaviors 
explicitly. With the help of the training task 
ontology, the author can model his/her teaching 
behaviors into a series of verb-object phrases. 

Furthermore, the author arranges the teaching 
materials according to such behaviors, in order to get 
a sequence of well-arranged material which will be 
shown to the students. 

To determine the quality of a course, we want to 
detect whether or not the following properties hold 
for a course. If such a property holds, this may 
signal (the absence of) a potential mistake:  

• Completeness: Are all concepts that are used 
in the course defined somewhere?  

• Timely: Are all concepts used in a course 
defined on time?  

• Recursive concepts: Are there concepts 
defined in terms of it self?  

• Correctness: Does the definition of a concept 
used in the course correspond to the definition of the 
concept in the ontology?  

• Synonyms: Are there concepts with different 
names but exactly the same definition?  

• Homonyms: Are there concepts with multiple, 
different definitions?  

Since a course and course related material are 
represented by means of schema languages such as 
RDF, we can use schema analysis techniques to 
answer the above questions, and to produce 
feedback about possible mistakes for authors. We 
have implemented the mentioned analyses as six 
distinct schema-analyses, which we show at work in 
simple course structure and domain ontology.  

6 SCHEMA ANALYSIS AND THE 
REASONING RULES TO 
DETERMINE FEEDBACKS 

As we mentioned, the domain ontology represents 
by RDF and the course structure is modified by 
XML. So use of these tools facilitates the reasoning 
process and sharing information between different 
types of components. We used from Description 
Logic as method for ontology reasoning and we 
generate feedbacks by this means.  

Description Logic (DL) allows specifying a 
terminological hierarchy using a restricted set of first 
order formula. The equivalence of OWL (Ontology 
Web Language, like RDF) and DL allows OWL to 
exploit the considerable existing body of DL 
reasoning fulfill important logical requirements. 
These requirements include concept satisfiability, 
class subsumption, class consistency, and instance 
checking. Table 1 shows a subset of reasoning rules 
that support OWL entailed semantics.  

Table 1: Parts of OWL reasoning rules. 

TransitiveProperty 
(?P rdf:type owl:TransitiveProperty) 
^ (?A ?P ?B) ^ (?B ?P ?C) (?A ?P 
?C) 

subClassOf 
(?a rdfs:subClassOf ?b) ^ (?b 
rdfs:subClassOf ?c) (?a 
rdfs:subClassOf ?c) 

subPropertyOf 
(?a rdfs: subPropertyOf ?b) ^ (?b 
rdfs: subPropertyOf ?c) 

(?a rdfs: subPropertyOf ?c) 

disjointWith 
(?C owl:disjointWith ?D) ^ (?X 
rdf:type ?C) ^ (?Y rdf:type ?D) 

(?X owl:differentFrom ?Y) 

inverseOf (?P owl:inverseOf ?Q) ^ (?X ?P ?Y) 
(?Y ?Q ?X) 
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We used the above reasoning for feedback 
generation to student from his/her student model. 
For detecting authoring problems, we used Schema 
analysis. Schema analysis techniques are based, 
amongst others, on mathematical results about fixed 
points. Since these results are not widely known, we 
will explicitly show how to use them in the context 
of schema analyses. Schema analyses will be 
expressed in the functional, declarative, 
programming language Haskell; since this allows us 
to stay close to the mathematical results we use 
(Haskell, 2005). We give some examples of schema-
analyses that determine whether or not certain 
properties hold. The results of these analyses form 
the basis of feedback to the author. The analyses 
take the schemata as input. In this paper we perform 
two types of analyses: 1) the analysis of structural 
properties of a schema, for example the recursive 
property, and 2) the comparison of a schema with 
one or more other schemata, for example to test the 
correctness of a definition. 

6.1 Solving Authoring Problems 
with Schema Analysis 

 In this section we describe six algorithms (four 
briefly and two in more detail), which can be used to 
signal the (possible) mistakes listed in section 5. 

Completeness − we distinguish three kinds of 
(in) completeness: (1) within a course, (2) within 
domain ontology and (3) between a course and 
domain ontology. If a concept is used in a course, 
for example in a definition or an example, it has to 
be defined elsewhere in the course. The undefined 
concepts in a course are calculated in three steps: (1) 
determine the set of concept id’s that appear in the 
right- and left hand sides of concepts within 
examples and all concept id’s that appear in the right 
hand side of concepts within definitions (used 
concepts), (2) determine the concept id’s that appear 
in the left-hand side of concepts in definitions 
(defined concepts) and (3) check that each of the 
used concepts appears in the set of defined concepts. 
A course is complete if all concepts used appear in 
the set of defined concepts. Completeness can also 
be applied to (domain) ontology, and between a 
course and ontology. The first one check whether all 
used concepts in the ontology are defined in the 
same ontology, the second one if all used concepts 
in a course are defined in the ontology. The same 
three steps are performed in both functions.  

Timely − A concept can be used before it is 
defined. This might not be an error if the author uses 
an inductive instead of a deductive strategy to 

teaching, but issuing a warning is probably helpful. 
Furthermore, there may be a large distance 
(measured for example in number of pages, 
characters or concepts) between the definition and 
the use of the concept, which is probably an error. 
We define the function timely to determine whether 
or not concepts in a course are defined in time and a 
function outOfOrderConcepts to list the concepts 
that appear to be out of order.  
timely::Course → Bool  
timely = null.outOfOrderConcepts  

In function outOfOrderConcepts, function 
extractActivities returns for every activity in the 
course the tuple (Strategy, [Extra_p]) and puts these 
tuples in a list activities. Then, using functions inits 
and tails every [Extra_p] list is split as follows: for 
every element x in the list [Extra_p] the list is 
subdivided into a left part (epl), which contains all 
elements to the left of element x, and a right part 
(epr), which contains element x as and all elements 
to the right of x. For example, for the input list [e, d] 
we get [([], [e, d]), ([e], [d]), ([e, d], [])], where e is 
example and d is definition. Finally, function intime 
tests the timely constrains for all tuples (es, (epl, 
epr)): if the first element of epr is a definition and 
the educational strategy is deductive, then: 1) a 
related example appears after the definition, and 2) 
no related example appears before the definition 
(tested by elemBy eqConcept c in the code below). 
In case of an inductive activity, a related example 
appears before the definition and no related example 
appears after the definition. Function intime is 
always true if epr is empty or the first element of epr 
is an example.  
outOfOrderConcepts::Course → [Extra_p]  
outOfOrderConcepts c =  
let activities = extractActivities c  
split = [(es, s) | (es, eps) <- 
activities, s <- zip (inits eps) (tails 
eps)]  
in [head epr | (es, (epl, epr)) ← 
split, not (intime (es, epl, epr))]  
intime (_, _, []) = True  
intime (_, _, Ex (j, c, cs, r) :_) = 
True  
intime (Deductive, epl, Def (j, c, cs): 
epr) = elemBy eqConcept c epr && not 
(elemBy eqConcept c epl)  
intime (Inductive, epl, Def (j, c, cs): 
epr) = elemBy eqConcept c epl && not 
(elemBy eqConcept c epr)  
eqConcept id (Def (i, c, cs)) = False  
eqConcept id(Ex(i, c, cs, r)) = id == c  

 
Recursive concepts − A concept can be defined 

in terms of itself. Recursive concepts are often not 
desirable. If a concept is recursive, there should be a 
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base case that is not recursive. Recursive concepts 
may occur in a course as well as in ontology. We 
define two functions: recursiveOntology and 
recursiveCourse which take ontology respectively a 
course as argument. Both first extract all concept 
definitions, and use function recursiveConcepts. We 
show the definition of recursiveOntology.  
recursiveOntology::Ontology → Bool  
recursiveOntology =  
not.null.listRecursiveConceptsOntology  
listRecursiveConceptsOntology:: 
Ontology → [Id]  
listRecursiveConceptsOntology = 
recursiveConcepts.xtractAllConceptsOnt  

 
Function recursiveConcepts calculates for every 

concept all reachable concepts. Every concept in 
reachables is checked for recursiveness: a concept is 
recursive if the concept’s Id is a member of the set 
of reachable concepts. The recursive concepts are 
collected in a list.  
recursiveConcepts:: 
[(Id, RelatedConcepts)] → [Id]  
recursiveConcepts allConcepts =  
let nonTerminalConcepts =  
filter (not. null. snd) allConcepts  
reachables = reachable 
nonTerminalConcepts allConcepts  
in [x |(x, y) ← reachables, elem x y]  

 
Synonyms − Concepts with different names may 

have exactly the same definition. For example, 
concept a, with concept definition (a, [c, d]), and 
concept b, with concept definition (b, [c, d]), are 
synonyms. In general, given a set productions, two 
concepts x and y are synonyms if their identifiers are 
different, Id

x 
≠Id

y
, and (reachableTerminals 

productions x) equals (reachableTerminals 
productions y).  

We define function synonyms to check for 
synonyms in ontology: for all concepts in the 
ontology all reachable terminal concepts are 
determined. Concepts with the same reachable 
terminal concepts and different concept id’s are 
collected in a list.  

Homonyms − A concept may have multiple, 
different definitions. If for example concept “a” has 
definitions (a, [b, c]) and (a, [d, f]), then these two 
definitions are homonyms. To list the homonyms in 
an ontology, we calculate the concepts that appear at 
least twice in the left hand side of a definition.  

Correctness − the concepts in a course should 
correspond to the same concepts in its domain 
ontology. To determine whether or not this is the 
case, for every concept in a course all reachable 

terminal concepts are determined by function 
reachableTerminals. The set of productions contains 
the course’s concepts completed with the concepts 
of the ontology for concepts that are not defined in 
the course. The result of this calculation is compared 
against the reachable terminal concepts of the same 
concept defined in the ontology. 

7 CONCLUSION 

Feedback is crucial in education: it is an essential 
element needed for effective learning. Semantically 
rich feedback is sparse in most eLearning systems. 
In this paper we present our ideas about an 
Intelligent Tutoring system that produces 
semantically rich feedback for learners as well as for 
authors. The system we imagine consists of a 
generic feedback engine: different ontologies can be 
plugged in, i.e. they are the arguments of the 
feedback engine. This is important because 
mechanisms for automatically generating feedback 
are involved, and should be reused for different 
ontologies. The system supports the generation of 
generic as well as domain specific feedback.  

The most important aspect of this idea is that it 
uses student model and its features that we 
considered in it for better automatic feedback 
generation. We defined feedback patterns based on 
ontologies for educational elements such as certain 
types of questions, examples, definitions, etc. So all 
the parts of this designed system is ontology based. 
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