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Abstract: Empty results of queries are a hint for semantic errors in users’ queries, and erroneous and unoptimized 
queries can lead to highly inefficient processing of queries. For manual optimization, which is prone to 
errors, a user needs to be familiar with the schema of the queried data and with implementation details of 
the used query engine. Thus, automatic optimization techniques have been developed and have been used 
for decades in database management systems for the deductive and relational world. We focus on the 
satisfiability problem for the queries formulated in the XML query language XPath. We propose a schema-
based approach to check whether or not an XPath query conforms to the constraints given in the schema in 
order to detect semantic errors, and in order to avoid unnecessary evaluations of unsatisfiable queries. 

1 INTRODUCTION 

XPath (W3C, 1999) (W3C, 2003) is either a 
standalone XML query language or is embedded in 
other XML languages (e.g. XSLT, XQuery, XLink 
and XPointer) for specifying node sets in XML 
documents. Different from the query languages for 
relational databases, XPath supports complex 
navigational paths and qualifiers. Thus, it is not 
trivial to develop efficient XPath evaluators and 
many current implementations of XPath evaluators 
have a high runtime complexity (Gottlob et al., 
2002). There has been work on physical 
optimization of XPath expressions, i.e. efficient 
algorithms for XPath evaluation, e.g. the XPath 
evaluator proposed in (Gottlob et al., 2002), which 
considers bottom-up processing of XPath 
expressions, indexing techniques (Rao et al., 2004) 
(Wang et al., 2003) and structural join algorithms 
(Jiang et al., 2003) (Bruno et al., 2002). Many 
research efforts focus on the minimization of XPath 
expressions (Amer-Uahis et al., 2001) (Ramanan, 
2002) since the size of XPath expressions 
significantly impacts the processing of queries. The 
study on the minimality of XPath actually relates to 
the issues of the equivalence and containment with 
respect to two XPath queries (Miklau et al., 2002) 
(Wood, 2000). Currently, logical rewriting and 
optimization of XPath expressions attract more 
attention (Olteanu et al., 2002) (Benedikt et al. 2003) 
(Chan et al., 2004). The satisfiability problem of 
XPath queries is another important determinant of 
XPath evaluation. An XPath query is satisfiable if 

there exists a document on which the evaluation of 
the XPath query returns a non-empty result. 
Therefore, using the satisfiability test can avoid the 
submission and unnecessary computation of an 
unsatisfiable XPath query, and thus saves users’ cost 
and evaluation time. One of our contributions is to 
show how we can detect unsatisfiable queries based 
on schema information. 
Since schemas impose the constraints of the 
structure and vocabulary of XML documents, 
schemas provide an additional dimension for the 
satisfiability check of XPath. Our approach supports 
the recursive as well as non-recursive schemas and 
all XPath axes. The most widely used schema 
languages are XML Schema (W3C, 2004) and DTD 
(W3C, 1998), but only DTDs are used in the existing 
work. In this paper, we focus on XML Schema for 
the definition of schemas. An XML Schema can 
express more restrictions than a DTD. Thus, a DTD 
can be easily transformed into an XML Schema 
representation, but in general, an XML Schema 
definition cannot be transformed into a DTD.  
A common XPath evaluator is typically constructed 
to evaluate XPath queries on XML documents. Our 
approach modifies the common XPath evaluator in 
order to evaluate XPath queries on XML Schema 
definitions rather than the instance documents of the 
schemas. Since the satisfiability test for the class of 
XPath queries supported by our approach in the 
presence of schemas is undecidable (Benedikt et al., 
2005), we present a fast, but incomplete satisfiability 
tester, i.e. for the satisfiability test of XPath queries, 
our approach computes to one of the following 
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results: {unsatisfiable, maybe satisfiable}. Whereas 
we are sure that the XPath query is unsatisfiable, 
whenever our satisfiability tester returns 
unsatisfiable, we cannot be sure that the XPath 
query is satisfiable if our satisfiability tester returns 
maybe satisfiable. 
      Related Work. Several contributions focus on 
the satisfiability problem of XPath queries. 
(Benedikt et al., 2005) theoretically studies the 
complexity problem of XPath satisfiability in the 
presence of DTDs, and shows that the complexity of 
XPath satisfiability depends on the considered 
subsets of XPath expressions and DTDs. We present 
a practical algorithm for testing the satisfiability of 
XPath queries. (Hidders, 2003) investigates the 
problem of satisfiability of XPath expressions in the 
absence of schemas. (Lakshmanan et al., 2004) 
examines the test of satisfiability of tree pattern 
queries (i.e. reverse axes are not considered) with 
respect to non-recursive schemas. (Kwong et al., 
2002) suggests an algorithm to test the satisfiability 
of XPath queries, but allows only non-recursive 
DTDs and does not support all XPath axes. We 
support recursive schemas and all XPath axes. 
(Groppe et al., 2006) filters the unsatisfiable XPah 
queries by a set of simplification rules while we use 
the constraints given by an XML Schema definition 
to check the satisfiability of XPath. (Groppe, 2005) 
extends the applications of satisfiability testers to 
optimizations for XML query reformulation and 
shows how to reduce the containment and 
intersection test of XPath expressions to the 
satisfiability test. 
The rest of the paper is organized as follows. Section 
2 defines the XML Schema subset and XPath subset 
supported by our approach. Section 3 develops a 
data model of XML Schema for evaluating XPath 
queries on an XML Schema definition. Section 4 
presents our approach, the XSchema-XPath 
evaluator, including the satisfiability test of XPath 
expressions. This paper ends up with the summary 
and conclusions in Section 5.   

2 XML SCHEMA AND XPATH 

Due to space limitations, we do not introduce XML 
Schema here, but we refer readers to the 
specification (W3C, 2004). We support the subset of 
the XML Schema language, which contains the most 
important language constructs to express XML 
Schema definitions, where a given XML Schema 
definition must conform to the following rules 
defined in Extended Backus Naur Form (EBNF).  
 

XSchema::=  <schema> (elemD|attrGD|groupD|compTD)*  

           </schema>. 
elemD::=  <elem name='N' occurs? (type=’T’)?>  
         <compT (mixed='true')? (ref='N')?>     
           compT? </compT> (attrR|attrD)* </elem>. 
groupD::=  <group name='N'> compT? </group>. 
compTD::=  <compT name='N'> compT </compT>. 
compT::=   <all occurs?> compT? </all> | <seq occurs?>  
            compT? </seq> | (elems | groupR)*. 
elems::=  (elemD | <elem ref='N' occurs? />)*. 
groupR::=  <group ref='N'/>. 
attrR::=  <attrG ref='N'/>. 
attrGD::=  <attrG name='N'> (attrD)* </attrG>. 
attrD::=  <attr name='N' type=’T’ (use=’required’)?/> 
occurs::= minO=num maxO=(num|'unbounded'). 
 

where T is a simple type, N is a name and num is a 
number. Furthermore, we use elem as short name for 
element, compT for complexType, seq for sequence, attrG 
for attributeGroup, attr for attribute, minO for minOccurs and 
maxO for maxOccurs. 
 

Example 1: Figure 1 presents an example of an 
XML Schema definition bib.xsd. 
 

(D1)   <schema>  <group name='jArticle'> <seq> 
(D2)       <elem name='article' minO='1' maxO='1'> 
(D3)          <compT> <seq> 
(D4)    <elem name='year' minO='0' maxO='1’ type='string'/> 
(D5)    <elem name='ref' minO='0' maxO='1'> 
(D6)             <compT> <group ref='jArticle' minO='0'  
                              maxO='unbounded'/> </compT> </elem> 
               </seq></compT></elem></seq></group> 
(D7)          <elem name='bib'> 
(D8)              <compT><group ref='jArticle' minO='0'        
                           maxO='unbounded'/> </compT> </elem> 
              </schema> 

Figure 1: An XML Schema definition bib.xsd. 

In this paper, we consider the basic properties of the 
XPath language. Due to space limitations, we do not 
introduce XPath here, but we refer readers to the 
specifications (W3C, 1999) and (W3C, 2003). Let e 
be an XPath expression, q be a predicate expression 
of XPath and C be a literal, i.e. a string or a number. 
The abstract syntax of the supported XPath subset is 
defined in EBNF as follows: 
 

e::=  e|e | /e | e/e | e[q] | axis::nodetest. 
q::=  e | e=C | e=e | q and q | q or q | not(q) | (q) | true() | false(). 
axis::=  child | attr | desc | self | following | preceding | parent |   
             ances | DoS | AoS | FS | PS. 
nodetest::=  tagname | ∗ | node() | text(). 
 

where we write DoS for descendant-or-self, AoS for 
ancestor-or-self, FS for following-sibling and PS for 
preceding-sibling. Furthermore, we use attr as short 
name for attribute, desc for descendant and ances for 
ancestor. 

3 DATA MODEL FOR XML 
SCHEMA 

Based-on the data models for the XML language 
given by (Wadler, 2000) and (Olteanu et al., 2002), 
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we develop a data model for XML Schema for 
identifying the navigation paths of XPath queries on 
an XML Schema definition. The transitive closure f+ 
and reflexive transitive closure f* of a relationship 
function f:T→Set(T) are defined as follows: 
 

f n(x) = { z | y∈f n-1(x) ∧ z∈f(y) }, where  f 0(x) = {x}, f 1(x) = f (x) 
f +(x)  =  ∪n=1

∞ f n(x) and f *(x)  =  ∪n=0
∞ f n(x)  

 

An XML Schema definition is a set of nodes of type 
Node. There are four specific Node types in XML 
Schema definitions, which are associated with 
instance nodes of the schema: root, iElem, iAttr and 
iText. Accordingly, we define four functions of 
Node→Boolean to test the type of a node: isRoot, isiElem, 
isiAttr, and isiText, which return true if the type of the 
given node is a root node, is of type iElem, iAttr or iText 
respectively, otherwise false. 
 

Definition 1 (instance nodes): The instance nodes 
of an XML Schema definition are 
 

• <elem name=N> (which is of type iElem), 
• <attr name=N> (which is of type iAttr), 
• <compT mixed= ‘true’> (which is of type iText),  
• <elem type=T> (which is of type iText), where T is 
a simpleT. 

 

Definition 2 (succeeding nodes): A node N2 in an 
XML Schema definition is a succeeding node of a 
node N1 in the XML Schema definition if 
 

• N2 is a child node of N1, or  
• N1=<elem type=N> and N2=<compT name=N> with 
the same N, or 
• N1=<elem ref=N> and N2=<elem name=N> with the 
same N, or 
• N1=<group ref=N> and N2=<group name=N> with the 
same N, or 
• N1=<attrG ref=N> and N2=<attrG name=N> with the 
same N. 

 

Definition 3 (preceding nodes): Node N1 in an 
XML Schema definition is a preceding node of a 
node N2 in the XML Schema definition if N2 is a 
succeeding node of N1. 
 

Figure 2 defines the relation functions of 
Node→Set(Node), which relate a schema node to other 
schema nodes. For instances, root(x) returns the root 
node of the document in which x occurs; iChild relates 
a node to its instance child nodes. For computing 
iChild(x), an auxiliary function S(x) is defined, which 
relates the node x to the self node and all the 
descendant nodes of x, which occur before the 
instance child nodes of x in the document order. iDesc 
relates a node to all its instance descendant nodes 
and is defined to be the transitive closure iChild+. The 
relation function iSibling(x) relates the node x to its 
instance sibling nodes. iBranch(x) relates node x to all 
the instance element nodes excluding any ancestors 
and descendants of the node x. iPS(x) relates the node 
x to its instance sibling nodes that occur before node 

x in the document order, and iPreceding(x) relates node 
x to its instance branch nodes that occur before node 
x in the document order. We write y<<x to indicate 
that the node y occurs before the node x in the 
document order of an instance document. The 
document order is computed from an XML Schema 
definition in the following way: if a set of elements 
is declared as seq with the attribute maxO set to 1, the 
document order of elements is the order in which 
they are defined; if it is declared as all or as seq with 
the attribute maxO set to a number greater than 1, any 
element of this set of elements can occur before any 
other elements of this element set in an instance 
document. 
 

root(x) = { y | isRoot(y)} 
succeeding(x) = { y | y is a succeeding node of x } 
preceding(x) = { y | y is preceding node of x } 
S(x) = ∪i=0

∞ Si, where S0 = {x}, Si = { z | y∈Si-1 ∧  
           z∈succeeding(y) ∧ ¬isiElem(z) ∧ ¬isiAttr(z) } 
P(x) = ∪i=0

∞ Pi, where P0 = {x}, Pi = { z | y∈Pi-1 ∧  
           z∈preceding(y) ∧ ¬isiElem(z) ∧ ¬isiAttri(z) } 
iChild(x) = { z | y∈S(x) ∧ z∈succeeding(y) ∧  
            ( isiElem(z) ∨  isiText(z) ) } 
iAttribute(x) = { z | y∈S(x) ∧ z∈succeeding(y) ∧ isiAttr(z) } 
iParent(x) = { z | y∈P(x) ∧ z∈preceding(y) ∧ isiElem(z) } 
iDesc(x) = {z | z∈iChild+(x)} 
iAnces(x) = {z | z∈iParent+(x)} 
iDoS(x) = {z | z∈iChild∗(x)} 
iAoS(x) = {z | z∈iParent∗(x)} 
iSibling(x) = {y | z∈iParent(x) ∧ y∈iChild(z)} 
iBranch(x) = {y | y∈iChild+(root(x)) ∧ y ∉iParent∗(x) ∧  
                      y ∉iChild+(x) ∧ ¬isiAttr(y)} 
iPS(x) = {y | y∈iSibling(x) ∧ y << x} 
iFS(x) = {y | y∈iSibling(x) ∧ x << y} 
iPreceding(x) = {y | y∈iBranch(x) ∧ y << x } 
iFollowing(x) = {y | y∈iBranch(x) ∧ x << y} 

Figure 2: Used relation functions. 

 

Let nodeTest be the type of the node tests of XPath. 
An auxiliary function attr(x, name) retrieves the value 
of the attribute name of the node x. The function NT, 
which tests a schema node against a node test of 
XPath, is defined as: 
 

NT: Node × NodeTest → Boolean 
• NT(x, tagname) = ( isiElem(x) ∧ (attr(x, name)=tagname) 
)   

              ∨   ( isiAttr(x) ∧ (attr(x, name)=tagname) ) 
• NT(x, ∗) = isiElem(x) ∨ isiAttr(x) 
• NT(x, node()) = true 
• NT(x, text()) = isiText(x) 

4 XSCHEMA-XPATH 
EVALUATOR 

As a variant of a common XPath evaluator, our 
XSchema-XPath evaluator evaluates XPath 
expressions on an XML Schema definition rather 
than XML instance documents. Instead of 
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computing the node set of a given instance XML 
document, our XSchema-XPath evaluator computes 
a set of schema paths to the possible nodes specified 
by a given XPath query when the XPath query is 
evaluated by a common XPath evaluator on XML 
instance documents. If an XPath query cannot be 
evaluated completely, the schema paths for the 
XPath query are computed to an empty set of 
schema paths, i.e. the XPath query is unsatisfiable 
according to the schema.  
 

Definition 4 (Schema paths): A schema path is a 
sequence of pointers to either the records <XP’, N, z, lp, 
f> or the records  <o, {f, …, f}>, where 
 

• XP’ is an XPath expression, 
• N is a node in an XML Schema definition, 
• z is a set of pointers 
• lp is a set of schema paths, 
• f is a schema path list, or a predicate 
expression without location steps,  and 
• o is a keyword. 

 

XP’ is the part of a given XPath expression, which 
has been evaluated; N is a resultant node of a schema 
whenever XP’ is evaluated by our XSchema-XPath 
evaluator on the schema definition; z is a set of 
pointers to the records in which the schema node is 
the parent of the schema node of the current record. 
Note whenever a record is the first record of a loop, 
the record has more than one possible parent record. 
lp represents loop schema paths; f represents either a 
schema path list computed from a predicate q that 
test the node N, or the predicate expression q itself 
from which no schema paths can be computed like 
true() or false(), but also including self::node()=C. o 
represents operators like or, and and not.        

4.1 Computing Schema Paths 

We use the technique of the denotational semantics 
(Schmidt, 1994) to describe our XSchema-XPath 
evaluator, and define the following notations. Let z 
be a pointer in a schema path and d is a field of a 
schema record, we write z.d to refer to the field d of 
the record to which the pointer z points. We use the 
letter S to represent the size of a schema path p, thus 
p(S) to represent the last pointer, p(S-1) the pre-last 
pointer, and so on.  
Figure 3 defines the denotational semantic L of the 
XSchema-XPath evaluator. The function L takes an 
XPath expression and a schema path as the 
arguments and yields a set of new schema paths, and 
is defined recursively on the structure of XPath 
expressions. For evaluating each location step of an 
XPath expression, our XSchema-XPath evaluator 
first computes the axis and the node test of the 

location step by iteratively taking the schema node 
p(S).N from each schema path p in the path set as the 
context node. The path set is computed from the part 
xp’’ of the XPath query, which has been evaluated by 
the XSchema-XPath evaluator. For each resultant 
node r selected by the current location step xpf, a new 
schema path is generated based on the old path p. 
The auxiliary function ϑ(r, g) generates a new schema 
path record e=<xp’, r, g, -, ->, adds a pointer to e at the 
end of the given schema path p and returns a new 
schema path, where xp’=xp’’/xpf and g is a set of 
pointers. 
      In the case of recursive schemas, it may occur 
that the XSchema-XPath evaluator revisits a node N 
of the XML Schema definition without any progress 
in the processing of the query. We call this a loop. A 
loop might occur when an XPath query contains the 
axis desc, ances, preceding or following, which are boiled 
down to the recursive evaluation of the axis child or 
parent respectively. We detect loops in the following 
way: let r be a visited schema node when evaluating 
the part xp’ of an XPath expression with p(S).N as the 
context node. If there exists a record p(i) in p, such 
that p(i).N=r, and p(i).XP’=xp’, a loop is detected and the 
loop path segment is lp = (p(i), …,p(S)). lp will be 
attached to the schema node p(i).N where the loop 
occurs. For computing L⎡desc::n⎦(p), we first compute 
pi | pi∈L⎡child::*⎦(pi-1) where p1=L⎡child::*⎦(p). If no loop is 
detected in the  path pi, i.e. ∀i∈{1, ..., S-1}: pi(i).N≠pi(S).N 
∧ pi(i).XP’≠pi(S).XP’,  L’⎡self::n⎦(pi) is then computed in 
order to construct a possible new path from pi. If a 
loop is detected in the path pi, i.e. ∃k∈{1,.., S-1}: 
pi(k).N=pi(S).N ∧ pi(k).XP’=pi(S).XP’,  a loop path segment, 
i.e. {pi(k), …, pi(S-1)} is identified. The function X 
modifies the record, which is the head of the loop, 
by adding the loop path into the record, i.e. X(pi(k), 
(pi(k),..,p(S-1))), and returns true. Furthermore, 
although the schema nodes in two records are the 
same, i.e. pi(k).N=pi(S).N, these two nodes have 
different parents, i.e, pi(k).z ≠ pi(S).z. Therefore, the 
new parent pi(S).z has to be recorded and this is done 
by the function Z, which adds a parent pointer to the 
record pi(k), i.e. Z(pi(k), pi(S).z), and returns true. 
       The schema paths of a predicate are attached to 
the context node of the predicate. The function A(F, i, 
p) writes F into the field p(i).f and returns the modified 
schema path p. The parameter F = {f1,..,fk} is computed 
from a set of predicates q1,..qk. fi is either a schema 
path list computed from a predicate qi, or is the 
predicate expression qi itself when qi does not contain 
location steps. The node p(i).N is the context node of 
these predicates. qi is evaluated to false if qi is 
computed to the empty schema paths with the 
exception of not(q), which is computed to true. For 
instance, L⎡e[q1 and q2]⎦(p) is computed to empty paths 
if q1 or q2 are evaluated to false. When computing the 
schema paths of a predicate, the XSchema-XPath 
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evaluator initializes a schema path variable f with 
null, which is logically concatenated with the main 
path p, denoted by p+f, for the need of both finding 
the context node of the predicate and finding the 
nodes specified by reverse axes in the predicate, 
which occur before the context node of the predicate 
in the document order.  
 

L: XPath expression × schem path → set(schem path) 
• L⎡e1|e2⎦(p) = L⎡e1⎦(p) ∪ L⎡e2⎦(p)  
• L⎡/e⎦(p) = L⎡e⎦(p1) ∧ p1=( </,/,-, -, - > ) 
• L⎡e1/e2⎦(p) = { p2 | p2∈L⎡e2⎦(p1)  ∧  p1∈L⎡e1⎦(p) } 
• L⎡self::n⎦(p) = { ϑ(p(S).N, p(S).z) | NT(p(S).N, n) } 
• L⎡child::n⎦(p) = {ϑ(r, p(S)) | r∈iChild(p(S).N) ∧ NT(r,n) } 
• L⎡attr::n⎦(p) = { ϑ(r, p(S)) | r∈iAttr(p(S).N)  ∧ NT(r,n) } 
• L’⎡self::n⎦(p) = { p | NT(p(S).N, n) } 
• L⎡desc::n⎦(p) = { p’ | p’∈∪i=1

∞ L’⎡self::n⎦(pi) ∧  
      ∀k∈{1, …, S-1 }: pi(k).N≠pi(S).N ∧ pi(k).XP’≠pi(S).XP’     
              where pi∈L⎡child::∗⎦(pi-1) ∧ p1∈L⎡child::∗⎦(p), or  
       p’∈∪i=1

∞ L’⎡self::n⎦(pi-1)  ∧ X(pi(k), (pi(k),..,p(S-1))) ∧   
       Z(pi(k), pi(S).z)) ∧  ∃k∈{ 1,.., S-1 }:   
             pi(k).N=pi(S).N ∧ pi(k).XP’=pi(S).XP’, 
             where pi∈L⎡child::∗⎦(pi-1)  ∧ pi-1∈ L⎡child::*⎦(pi-2) ∧   
                   p1∈L⎡child::∗⎦(p). 
• L⎡DoS::n⎦(p)= L⎡self::n⎦(p) ∪ L⎡desc::n⎦(p) 
• L⎡parent::n⎦(p) = { ϑ(r, x)| r=Z1.N ∧ Z1∈p(S).z ∧ x=Z1.z ∧   
                  NT(r,n) } 
• L⎡ances::n⎦(p) =  { p’ | p’∈∪i=1

∞ L’⎡self::n⎦(pi) ∧  
      ∀k∈{1,.., S-1}: pi(k).N≠pi(S).N ∧ pi(k).XP’≠pi(S).XP’,    
            where pi∈L⎡parent::∗⎦(pi-1) ∧ p1∈L⎡parent::∗⎦(p), or  
      p’∈∪i=1

∞ L’⎡self::n⎦(pi-1)  ∧ X(pi(k), (pi(k),..,p(S-1))) ∧ 
      Z(pi(k), pi(S).z)) ∧ ∃k∈{1,.., S-1}:  
             pi(k).N=pi(S).N ∧ pi(k).XP’=pi(S).XP’,  
             where pi∈L⎡parent::∗⎦(pi-1) ∧ pi-1∈L⎡parent::*⎦(pi-2) ∧   
                   p1∈L⎡parent::∗⎦(p). 
• L⎡AoS::n⎦(p) =  L⎡self::n⎦(p) ∪ L⎡ances::n⎦(p) 
• L⎡FS::n⎦(p) = { ϑ(r, p(S).z) |  r∈iFS(p(S).N) ∧ NT(r,n) } 
• L⎡following::n⎦(p) = L⎡AoS:: ∗/FS :: ∗/DoS::n⎦(p) 
• L⎡PS::n⎦(p) = { ϑ(r, p(S).z) | r∈iPS(p(S).N) ∧ NT(r,n) } 
• L⎡preceding::n⎦(p) = L⎡AoS:: ∗/PS :: ∗/DoS ::n⎦(p) 
• L⎡e[q]⎦(p) = A( {L⎡q⎦(p’+f)}, S, p’ ),  where f=∅ ∧ p’∈L⎡e⎦(p) 
• L⎡e[q1[q2]]⎦(p) = A( {L⎡q1[q2]⎦(p’+f)}, S, p’ ),  
         where f=∅ ∧ p’∈L⎡e⎦(p) 
• L⎡e[self::node()=C]⎦(p) = A( {‘self::node()=C’}, S, p’ ),   
         where p’∈L⎡e⎦(p) 
• L⎡e[q = C]⎦(p) = L⎡e[q[self::node()=C]]⎦(p) 
• L⎡e[q1][q2]⎦(p) = A( {A( {L⎡q2⎦(p’+f2), L⎡q1⎦(p’+f1)}, S, f)}, S, p’),   
         where p’∈L⎡e⎦ (p) ∧ f=(<‘and’, ->) ∧ f1=∅ ∧ f2=∅. 
• L⎡e[q1 and q2]⎦(p) = L⎡e[q1][q2]⎦(p) 
• L⎡e[q1 or q2]⎦(p) = A( {A ({L⎡q2⎦(p’+f2), L⎡q1⎦(p’+f1)}, S, f)}, S, p’),   
         where p’∈L⎡e⎦(p) ∧ f=(<‘or’, ->) ∧ f1=∅ ∧ f2=∅. 
• L⎡e[q1 = q2]⎦(p) = A( {A ({L⎡q2⎦(p’+f2), L⎡q1⎦(p’+f1)}, S, f)}, S, p’),   
         where p’∈L⎡e⎦(p) ∧ f=(<‘=’, ->) ∧ f1=∅ ∧ f2=∅. 
• L⎡e[not(q)]⎦(p) = A( {L⎡q1⎦(p’+f1)}, S, f) , where 
         f=(<‘not’, ->) ∧ p’∈L⎡e⎦ (p) ∧ f1=∅.     

Figure 3: Formulas for constructing the schema paths. 

Example 2: Our XSchema-XPath evaluator 
evaluates an XPath query Q in Figure 4 on the XML 

Schema definition of Figure 1 and computes a 
schema path (cf. Figure 5). Figure 6 is the graphical 
representation of Figure 5, in which we only present 
the schema node item of records of the schema path. 

Figure 4: XPath query Q and its subexpressions. 

 

(R1)   { (</,    /,   -,    -,   -> , 
(R2)      <S1, D7,  {R1},  -,  ->,         
(R3)      <S2, D2,  {R2, R4},      
(R4)      {(<S2,  D5, {R3}, -, ->)},  
(R5)                         (<‘and’,  
(R6)                                        {(<S3, D4, {R3}, -, ->),  
(R7)                                          ‘true()’} > ) >, 
(R8)           <Q, D5, {R3}, -, -> )} 
 

Figure 5: Schema paths of the query Q. 

Figure 6: Graphical representation of the schema paths of 
Figure 5. 

4.2 Satisfiability Test 

Definition 5 (Satisfiability of XPath querys): A 
given XPath query Q is satisfiable according to a 
given XML Schema definition XSD, if there exists an 
XML document D, which is valid according to XSD, 
and the evaluation of Q on D returns a non-empty 
result. Otherwise Q is unsatisfiable according to XSD. 
 

Proposition 1 (Unsatisfiable XPath querys): A 
given XPath query Q is unsatisfiable according to a 
given XML Schema definition XSD if the evaluation 
of Q by the XSchema-XPath evaluator on XSD 
generates an empty set of schema paths.  
 

Proof. The XSchema-XPath evaluator is constructed 
in such a way that the XSchema-XPath evaluator 
returns an empty set of schema paths, if the 
constraints given in Q and the constraints given in 

/bib//article[year][not(self::node()[editor]/AoS::node()[self::node()=‘bib’])]/parent::ref

S1

S2

S3

D7

/

D2

D5
‘and’

‘true()’ D4
D5

main schema path
loop schema path

predicate schema path

schema record
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XSD exclude the constraints of the other. Thus, there 
does not exist a valid XML document according to 
XSD, where the application of Q returns a non-empty 
result.  
 

      If the XSchema-XPath evaluator computes a 
non-empty set of schema paths for a given XPath 
query Q, the XPath query is only maybe satisfiable, 
since the satisfiability test of XPath expressions 
formulated in the supported subset of XPath is 
undecidable (Benedikt et al., 2005).  

5 SUMMARY AND 
CONCLUSIONS 

We have proposed a fast satisfiability tester of 
XPath queries, the XSchema-XPath evaluator, which 
evaluates XPath queries on recursive and non-
recursive XML Schema definitions. We have 
developed a data model of the XML Schema 
language to identify the node relationships parent-
child and next-sibling of declared XML nodes in 
XML Schema definitions so that we can support all 
XPath axes.  Based on the data model, the 
XSchema-XPath evaluator evaluates given XPath 
queries on an XML Schema definition and generates 
a set of schema paths. Whenever the set of schema 
paths is computed to an empty set, the XPath query 
is unsatisfiable, otherwise the XPath query is maybe 
satisfiable.  
The experimental results of our prototype (which we 
do not present here due to space limitations) show 
that our approach can significantly optimize the 
evaluation of XPath queries by filtering unsatisfiable 
XPath queries. A speed-up factor up to several 
magnitudes is possible. 
We will investigate how to support a bigger subset 
of XPath in our future work. 
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