
AN ONTOLOGY FOR ARCHITECTURAL EVALUATION
Case Study: Collaboration Systems

Anna Grimán, María Pérez
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

José Garrido, María Rodriguez
Software Engineering Department – LSI

Universidad de Granada
Granada – España

Keywords: Software Quality, Software Architecture, Evaluation, Collaboration Systems.

Abstract: Barbacci et al. (1995) state that the development of systematic ways to relate the quality attributes of a
system to its architecture, it constitutes the basis for making objective decisions on design agreements, and
helps engineers do reasonably accurate predictions as to the system attributes, free of prejudice and non-
trivial assumptions. The aim is being able to evaluate architecture quantitatively to reach agreements among
multiple quality attributes and thus globally attain a better system. However, the elements required to
incorporate this evaluation into different types of development models, are not clear. This paper proposes an
ontology to conceptualize the issues inherent to architectural evaluation within a development process,
which will help identify the scope of the evaluation, as well as the issues to be guaranteed to achieve
effectiveness within different development processes, both agile and rigorous. The main conclusion of the
research allowed us to identify the interaction elements between the development process and an
architectural evaluation method, establishing the starting and end points as well as the inputs required for
the incorporation into different kinds of processes. This interaction was validated through a case study, a
Collaboration Systems Development Methodology.

1 INTRODUCTION

According to Barbacci et al. (1995) software quality
is defined as the degree of the desired combination
of attributes. These attributes are additional
requirements of the system (Clements et al., 2002),
different to the functional requirements, which refer
to characteristics that the system should have.

Bosch (2000) states that quality requirements are
highly influenced by the system architecture. In this
regard, Bass et al. (2003) state that system quality
should be considered throughout all the design
phases, but quality attributes are promoted
differently throughout them.

Since architecture is crucial for quality, an
architecture analysis can, and should, be performed

to evaluate how satisfactory it is for the intended
purpose (Bass et al., 2003). However, the evaluation
criteria should be fully clear before the architecture
analysis is started.

Due to the significance of architectural decisions,
they obviously receive particular attention. It is
always more cost-effective to evaluate software
quality as early as possible in the life cycle (Bass et
al., 2003).

Based on this premise, it is necessary to count on
methods for the early architectural evaluation of
software quality, considering the issues of the
development process involved in this evaluation to
ensure the inputs required. The goal of his work is to
conceptualize the issues inherent to the architectural
evaluation into the development process, through an

310
Grimán A., Pérez M., Garrido J. and Rodriguez M. (2006).
AN ONTOLOGY FOR ARCHITECTURAL EVALUATION - Case Study: Collaboration Systems.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 310-315
DOI: 10.5220/0002462803100315
Copyright c© SciTePress

ontology used to identify the evaluation scope and to
ensure its effectiveness within different development
processes, both agile as well as rigorous.

The paper presents a review of the theoretical
constructors upon which the research is based, and
the methodology applied for the creation of
ontologies, followed by their description in terms of
model and their meanings; then an instantiation of
the developed model by applying a case study is
presented, and finally conclusions and problems for
future research are pointed out.

2 SOFTWARE ARCHITECTURE
AND QUALITY ATTRIBUTES

Most authors (Bass et al., 2003; Clements et al.,
2002; Hofmeister et al., 2000; Buschmann et al.,
1996) consider that software architecture defines the
system structure. This structure consists of
components – modules or pieces of codes – which
arise from the notion of abstraction, perform specific
functions, and interact with each other exhibiting a
defined behaviour. Shaw and Garlan (1996) state
that such structural issues include organizational and
global control structures, communication protocols,
synchronization, data access, functionality allocation
to design elements, physical distribution,
composition of elements of design, scalability and
performance, and selection among design
alternatives..

Bass et al. (2003) point out that to meet a
specific attribute it is necessary to make architectural
decisions which require a little knowledge of
functionality. They also establish that when the
architect is considering a decision to software
architecture, he or she asks him/herself which will
be the impact of the decision on certain attributes.
Based on this, they state that every decision
incorporated into software architecture can have a
potential impact on a set of quality attributes.
Therefore, the significance of a software system
architecture is recognized as the design basis of a
system (Kruchten, 2003), and as an artefact
determining quality attributes (Clements et al.,
2002).

Until recently there were not general usable
methods to evaluate software architecture (Clements
et al., 2002). If there was one, its approach would
have been incomplete, ad hoc, non repeatable, and
little reliable. Accordingly, multiple evaluation
methods have been proposed (Bosch, 2000;
Clements et al., 2002; In et al., 2001), which use

different techniques to evaluate software architecture
quality.

3 ONTOLOGY METHODOLOGY

To specify the issues related to a early evaluation of
software quality within the development process, an
Ontology Creation Methodology was employed as
starting point: Ontology Development 101 (Noy and
McGuinnes, 2001). In this research, this
methodology was selected because of: a) it proposes
a semi-formal specification for conceptualization,
such as classes and relations between them, and b) it
promotes an iterative, top-down approach. These
characteristics made this methodology adequate to
our research objective.

The steps that Noy and McGuinnes (2001)
propose for their methodology are: Determine the
domain and scope of the ontology, Consider the
reuse of existing ontologies, List relevant terms in
the ontology, Define classes and hierarchy of
classes, Define classes –properties of slots (classes,
hierarchy of classes and properties), Define the slots
facets (ontology), Create instances (ontology and the
modelled domain).

4 ONTOLOGY FOR
ARCHITECTURAL
EVALUATION

As suggested by Noy and McGuinnes (2001), an
iterative process was followed. It began with the
conceptualization of Architectural Evaluation of
Software Quality within a Development Process.
Then the steps were repeated for those complex
concepts requiring special detail (highlighted). For
this reason, the final model developed present a set
of shared concepts derived from the relationship
between main dimensions.

Concepts for the Evaluation of Software
Architecture: According to Sommerville (2005) the
Design of the system is the stage at which the
structure is designed based on the specifications.
The software architecture is the key artefact of
design discipline. Software architecture can be
considered the system structure as a function of
components definition and their interactions (Bass et
al., 2003), organized in models and views.

Bosch (2000) states that the imposition of
determined architectural styles increases or reduces

AN ONTOLOGY FOR ARCHITECTURAL EVALUATION - Case Study: Collaboration Systems

311

the possibility of satisfying certain system quality
attributes. Similarly, he proposes the use of
architectural patterns and design patterns to meet the
system quality requirements. These concepts
(architectural styles and patterns) are not widely
differentiated in reviewed literature; nevertheless,
Kruchten (2003) establishes that the style may be
defined by a set of patterns. According to this author
some mechanisms are embedded in architectural
styles and patterns.

Software architecture can be then considered as
the “bridge” between the system requirements and
implementation (Hofmeister et al., 2000). In this
sense, Bosch (2000) states that software architecture
evaluation is a non-trivial task, since the goal is to
measure system properties based on abstract
specifications, for example architectural designs.
This evaluation should produce results directly
observable for the architect.

On the other hand, the additional system
characteristics or quality attributes are closely
related to the intended use of the proposed system
(Clements et al., 2002), because the domain defines
the system behaviour, without forgetting
functionality (Barbacci et al., 1995). Therefore an
analysis of the system context is necessary, because
this provides abundant information on its quality.
Most quality attributes can be differently organized
and broken down into what is known as quality
models, which makes it possible to better specify
them. Software quality models make it easier to
understand the process of software engineering
(Pressman, 2005).

Concepts for a Software Quality Model:
Various software quality models are presented in the
literature; some of them are product oriented (ISO
9126, McCall, FURSP, etc.) and other are process
oriented (SPICE, CMM, PSP, etc.). However, the
reference model considered in this research is ISO
9126-3 (ISO/IEC, 2001), which is a standard related
to the internal quality of the software product. This
is a general-purpose quality model and includes
quality characteristics and metric examples
(ISO/IEC, 2001).

ISO/IEC 9126-1 defines a set of quality
characteristics and their respective sub-
characteristics. ISO/IEC 9126-1 is used as a base for
the construction of the three upper levels
(characteristics, sub-characteristics and attributes) of
the quality model. The quality model of software
products described in ISO/IEC 9126-1 can be used
to define the software product requirements, as well

as a reference for the quality evaluation of a
software product (ISO/IEC, 2001).

The characteristics of the ISO/IEC 9126 standard
are: Functionality (suitability, accuracy,
interoperability, compliance, security), Reliability
(maturity, fault tolerance, recoverability), Usability
(understandability, learnability, operability),
Efficiency (time behaviour, resource utilization),
Maintainability (analyzability, modifiability), and
Portability (adaptability, instalability, suitability,
replaceability).

Concepts for Quality Requirements:

According to Kruchten (2003) software development
process begins with a need expressed by the user or
another stakeholder. This need is normally translated
into one or more characteristics, which are part of
the development vision. The characteristics expected
from the system are translated into requirements
representing the behaviour expected from the system
in terms of both functionality and quality.

According to Whitten et al. (2004), software
requirements are documented with a certain degree
or thoroughness and through a set of specifications
that help define the development scope. These
specifications reflect not only the vision of those
involved in the development, but also a set of
constraints imposed by the business in form of rules
limiting the own needs of the domain, which is
clearly established in the Vision. The modern
techniques used to specify functional requirements
include the use-case models which are used to
represent the behaviour of the system in response to
the requests by each actor, taking into account that
some supplementary characteristics of the system
cannot be represented by means of models.

Therefore, requirement specifications are the
basis for the definition of the design model or
software architecture, as well as for other artefacts.
Kruchten (2003) points out, then, that software
architecture will be stable as long as it meets both
functional as well as quality software requirements.

The last iteration in the methodology is applied
to the concept of Evaluation Technique, identified in
the first iteration.

Concepts for the Evaluation Technique:

According to Bosch (2000), software architecture
evaluation techniques help the architect measure
some quality attributes.

Clements et al. (2002) classify the software
architecture evaluation techniques into questioning
techniques and measuring techniques. Questioning

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

312

techniques include questionnaires, checklists and
scenarios.

Clements et al. (2002) propose three kinds of
scenarios: use-case, growth, and exploratory. Use-
case scenarios reflect an interaction with the running
system, foreseen by the users. Growth scenarios
represent anticipated characteristics of future
changes to the system. Exploratory scenarios are
intended to expose the limits or conditions of the
current design, exposing possibly implicit
assumptions. Nowadays, techniques based on
scenarios use two relevant evaluation instruments,
namely: Utility Tree, proposed by Clements et al.
(2002), and Profiles, proposed by Bosch (2000).

According to Clements et al. (2002), the Utility
Tree is a tree-like scheme presenting the quality
attributes of a software system. These attributes are
refined into scenarios which specify, sufficiently in
detail, each one’s priority level. A Profile is a set of
scenarios, generally with certain relative
significance related to every one of them (Bosch,
2000).

Clements et al. (2002) establish that measuring
techniques are used to answer specific questions
about determined quality attributes. Measuring
techniques use tools such as architectural description
languages (ADL) and metrics, which are quantitative
interpretations of particular observable
measurements of the architecture. Metrics are used
to measure the system complexity, determine how
fault tolerance the modules are, etc.

When concepts in this section are considered
together, a whole Conceptual Model representing the
ontology is achieved (See Figure 1).

Once this approach is reached, an instantiation of
the model is presented through a case study, as
pointed out in the methodology. Since an
approximation to the architectural evaluation of
Collaboration Systems is a future research, a
methodology specially developed for constructing
this kind of software has been selected.

5 INSTANTIATION OF
CONCEPTS BY EVALUATING
COLLABORATION SYSTEMS

AMENITIES (Garrido, 2002) is a methodology used
for the analysis and design of cooperative systems,
inspired in the Unified Process for developing
distributed systems. It is aimed at systematically
addressing the analysis and design of the cooperative
system facilitating further software development.
The proposal comprises a specific set of models and
phases to be followed. The general phases of the
methodology are: 1) system analysis and
requirement identification; 2) cooperative system
modelling; 3) cooperative system analysis; 4) system
design; and 5) software system development.

Figure 1: Integrated Conceptual Model for Architectural Evaluation.

AN ONTOLOGY FOR ARCHITECTURAL EVALUATION - Case Study: Collaboration Systems

313

A concepts instantiation is presented in order to

evaluate the application of the previous ontology.
Domain: the software domain studied in this case
includes a wide set of groupware supporting the
cooperative and collaborative work, which impose
diverse technical, socio-cultural, and organizational
restrictions. In AMENITIES this concept is
represented by the Requirement and Cooperative
Model. They comprise the system requirements and
the interactions between users. Cooperative Model
include: Organizational, Interaction, Information,
and Cognitive view.
Design: this discipline is present in AMENITIES as
an activity that is related to Cooperative Model.
Software Architecture and Architectural Models:
AMENITIES comprise a set of models developed
since earliest phases, such as Use-Case Model,
Formal Model, Cooperative Model, and Software
Development Model. In this case, all of them could
be considered for Evaluation. Software
Development Model is specially related to software
architecture.
Architectural views: AMENITIES includes a set of
views in its Software Development Model, such as:
Component, Functional, Dynamic, and Development
view. Each view include packages or layer which
represent architectural mechanisms, such as:
Identification, Meta-information, Group Conscience,
and Application Package.
Quality Requirement: this concept is represented in
our case study by different non-functional
requirements and socio-cultural restrictions. First
ones include Efficiency, Portability, Maintainability
and Evolution, Reliability, and -specially- Usability.
Second ones is concerned with social and behaviour
patterns in individual or groups. These requirements
are not specified explicitly in AMENITIES;
however, they could be collect and organized
through a model, for example, ISO 9126 standard-
compliant.
Functional Requirement: there are wide set of
functional requirements for Collaboration Systems
but we can identify that mostly they are related to
cooperation, coordination, and communication. In
addition, Interoperability and Security can be
associated to this kind of software. Functional
Requirements are represented in AMENITIES by
the Use-Case, Cooperative, and Formal Models.
These models also implicitly specified Business
Rules, Needs and Characteristics, and establish the
Vision of Collaboration System development.
Evaluation Techniques: this concept is not directly
represented by any element in AMENITIES. It is

incorporated in order to carry out the evaluation. In
this sense, it is possible to apply a wide set of
techniques depending on the evaluation objective
and the available resources. Bellow, some
techniques appropriate to evaluate Collaboration
Systems Architectures, relating them to architectural
models and quality attributes, as observed in our
ontology.
– Objective: Validating the requirements

identification based on Cooperative Model.
Technique: Semantic analysis, traceability
analysis, metrics. Quality Attributes:
Functionality (structure, coordination and other
collaborative process, accessibility of data-
information and knowledge).

– Objective: Validating the Requirements
identification based on Formal Model.
Technique: Semantic analysis, simulation based
on formal models, metrics, traceability analysis.
Quality Attributes: Functionality (vivacity,
feasibility, and persistence), Reliability
(deadlocks), and Efficiency.

– Objectives: Estimating software quality
characteristics based on Software Development
Model. Selecting between different architectural
decisions. Identifying sensitivity points of
architecture, and identifying quality
characteristics trade-offs. Technique: Scenarios
(utility tree or profile), metrics, traceability
analysis. Quality Attributes: Internal quality
characteristics: Functionality, Reliability,
Maintainability, Efficiency, Portability.
Once these concepts were instantiated, a

dynamic representation proposing the evaluation
incorporation in the process is reached. Figure 2
shows a dynamic view of the evaluation into
AMENITIES process. Notice that needs and rules
can be used in the whole process to validate
requirements and architectural models. In addition,
Use Case model collects functional requisites to be
supported by software architecture. These elements
are the main outputs of earliest phase, and they
become inputs for architectural evaluation. At the
same time, the outputs of design phase represent the
bridge between analysis and construction phases.

Figure 2, also shows the traceability between
different artefacts in the whole development process,
which implies an attention point to architectural
evaluation. It can be observed, a feedback loop
provided by architectural evaluation that promotes
decisions making about next activities or artefacts
construction.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

314

Figure 2: Architectural Evaluation dynamic view in AMENITIES.

6 CONCLUSIONS

As observed in our Conceptual Model, the
Architectural Evaluation is a complex process that
depends on a clear and complete requirement
specification. It is also based on models and their
relationship (traceability). In this sense, the previous
Requirement Elicitation phase is fundamental to
establish the right inputs. At the same time,
architectural evaluation results will be considered in
late evaluations.

The instantiation of concepts in AMENITIES
allowed determining: (1) the necessity of a well-
defined development process in terms of activities
and artefacts, as well as their traceability; (2) the
advantage of applying standard notation and formal
model, as well as the use of multiple views in
Software Architecture. Counting with these elements
could implicitly guarantee some quality attributes,
and facilitate the evaluation. Features researches will
focus on the application of this proposal to an actual
system development.

REFERENCES

Barbacci, M., Klein, M., Longstaff, T., & Weinstock, C.
(1995) Quality Attributes. Carnegie Mellon
University. Technical Report. Retrieved from:
http://www.sei.cmu.edu/publications/documents/
95.reports/95.tr.021.html

Bass, L., Clements, P. & Kazman, R. (2003) Software
Architecture in Practice. Second Edition Addison
Wesley Publising Co.

Bosch, J. (2000) Design & Use of Software Architectures.
Addison-Wesley.

Buschmann, F.; Meuner, R.; Rohnert, H.; Sommerland, P.;
Stal, M. (1996) A System of Patterns. John Willey &
Sons.

Clements, P. Kazman, R y Klein M. (2002) Evaluating
Software Architectures: Methods and Case Studies.
The SEI Series in Software Engineering,

Garrido, J., Gea, M., Padilla, N., Cañas, J.., Waern,
Y.(2002) AMENITIES:Modelado de Entornos
Cooperativos. In: Aedo, I., Díaz, P., Fernández,
C.(eds.):Actas de Interacción'02, Madrid, Spain , 97-
104

Hofmeister, C.; Nord, R.; Soni D. (2000). Applied
Software Architecture. Addison Wesley.

In, H., Kazman, R., y Olson, D. (2001). From
Requirements Negotiation to Software Architectural
Decisions. Software Engineering Institute, Carnegie
Mellon University. Jasper and Uschold

ISO/IEC (2001) Software Engineering – Software quality
– General overview, reference models and guide to
Software Product Quality Requirements and
Evaluation (SQuaRE). Report. JTC1/SC7/WG6

Kruchten, P. (2003). The Rational Unified Process.
Reading, MA: Addison Wesley Longman, Inc.

Noy, N.. & McGuinness, D. (2001) Ontology
Development 101: A Guide to Creating Your First
Ontology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 .

Pressman R. (2005) Software Engineering. A practical
approach. (7a. ed.) Mc Graw Hill.

Shaw, M., and Garlan, D. (1996). Introduction to Software
Architectures. New perspectives on an emerging
discipline. Prentice Hall.

Sommerville, I. (2005) Software Engineering. Addison-
Wesley. 6th Edition.

Whitten, J., Bentley, L., & Dittman, K. (2004) Systems
Analysis and Design Methods. Sixth Edition.
McGraw-Hill.

AN ONTOLOGY FOR ARCHITECTURAL EVALUATION - Case Study: Collaboration Systems

315

