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Abstract: Visual modeling languages propose specialized diagrams to represent behaviour and concepts necessary to 
specify IT systems. As a result, to understand a specification, the modeller needs to analyze these two types 
of diagrams and, often, additional statements that make explicit the relationships between them. In this 
paper, we define a visual contract notation that integrates behaviour and concepts. Thanks to this notation, 
the modeler can specify, within one diagram, an action and its effects on the specified IT system. The 
notation semantics is illustrated by a mapping to Alloy, a light weight formal language. 

1 INTRODUCTION 

The creation of the specification of an IT system is a 
complex task that requires the division of the 
specification into smaller, partial descriptions (e.g. 
conceptual class diagram, state machine diagram, 
etc.) portraying each a perspective of the system. In 
this paper, we focus on the division between 
conceptual and behavioural diagrams in graphical 
specifications. When such separation is made, four 
main drawbacks appear: First, there are not precise 
relationships among the different diagrams. 
Secondly, each kind of diagram is expressed using 
its own language. Third, the constraints are generally 
expressed in yet another language. Fourth, the 
system specification cannot be easily validated.  

Our concern is how to “glue back” the partial 
system descriptions together in order to obtain a 
holistic view of the system that can be validated. We 
propose a notation that integrates conceptual 
specification together with behavioural specification. 
The goals are to facilitate a) the reasoning of the 
modellers in the terms of actions/services, and b) to 
enable the model checking of the specification. We 
map our visual notation onto the formal language 
Alloy (Jackson, 2002) in order to validate its 
soundness. 

Throughout the paper we show the example of an 
IT system (BoardingITSystem) that controls the 
boarding process of passengers to a plane. Initially, 

the plane is empty but the passengers have already 
checked-in at the company ticket counter. Then the 
system processes the requests from passengers that 
are ready for going onboard: passengers’ boarding 
passes are processed one by one until the plane’s 
maximum capacity is reached. As a safety rule, none 
of the passengers can board or disembark more than 
once. Figure 1 illustrates this example using the 
UML notation (OMG, 2005). 

 Section 2 defines visual contracts and their 
semantics (in Alloy). Section 3 presents the 
BoardingITSystem example using our visual 
contract notation. Section 4 is the state of the art. 

2 VISUAL CONTRACT 

We define Visual Contract (VC) as the visual 
model that represents both the pre and the post 
conditions for an action as well as the changes 
between the two. Our visual contract notation is 
developed in the context of SEAM (Systemic 
Enterprise Architecture Methodology), a method 
designed for reasoning about business and IT 
alignment (Wegmann et al, 2005). 

In our approach, we model the behaviour 
together with the state of the systems. Our modelling 
ontology is based on RM-ODP(ISO/IEC & ITU-T, 
1998) and on our formalization of it (Le & 
Wegmann, 2005).  
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Figure 1: A partial UML specification for activity Board 
of system BoardingITSystem. 

A system is modelled as a RM-ODP object that 
we call working object. Working objects can be 
specified as whole or as composite. A working 
object as whole is described atomically.  Only the 
externally visible behaviour is described using a 
model-based description (Schätz et al, 2002). A 
working object as composite is described as a set of 
component working objects that collaborate 
together. In visual contracts, we consider only 
working objects as whole.  

Working objects as whole are described in terms 
of information objects, set associations and localized 
actions.  

2.1 Information Objects 

An Information Object (IO for short) captures the 
type and the possible states of the concepts 
necessary to describe the observed system.  

For example, Figure 2 represents the IO Person 
that captures the information of a person in the real 
world. The attribute Boarded captures the state of a 
Person in relation with the Plane she wants to 
board. All IOs include an identity attribute Id.  

Person

offBoard onBoard

Id

Boarded

 
Figure 2: Information Object representation. 

2.2 Set-Associations 

We claim that when reasoning with graphical 
models our minds use instances implicitly. 

Set-associations (SA) captures information 
about these instances. As set-associations relate IOs, 
it means that these instances exist within a context. 

For example a set-association between a Plane and a 
Person can represent a person that is either 
offBoard or onBoard. This is illustrated in Figure 3. 
For practical reasons, we avoid drawing the single 
instances (extensional form, like in the object 
diagrams of UML), and we use instead cardinality 
and state information of the set of instances. We call 
this the intensional form. 

Plane
#1

passenger_List
Person

#4

offBoard  
Figure 3: SEAM representation of 4 passengers using 
instance cardinalities. 

As illustrated in Figure 3, a SA requires a name 
(passenger_List), a referring instance cardinality 
(#1), a set of referred instances cardinality (#4), and 
a state (offBoard). 

2.3 Actions 

As illustrated in Figure 1, an action can be modelled 
in UML by a set of quasi-orthogonal diagrams (that 
can be related to each other via OCL). In contrast, 
our visual contract diagrammatically describes in a 
single diagram an action and its effects.  

An action specifies the effects of system’s 
reactions to a set of events for a given system state. 
When we consider a given action A (A), we 
describe the set of predicates for the initial 
conditions (P) that will guarantee that the final state 
(Q) is reached, as expressed in (Hoare, 1969): 

{ P } A { Q }       (1) 

Since state information of objects is represented 
at the set associations, the change of global state is 
equivalent to the sum of changes in set associations: 
changes of cardinality and of state. 

Figure 4 and Figure 5 represent diagrammatically 
changes due to actions op1 and op2, respectively.  

op1

Person

op1

Person

#1
c)a)

op1

Person

#2
b)

#1 -> #2

onBoard onBoard onBoard

 
Figure 4: Action changes cardinality of set-associations. 
On the left side the initial (a) and final (b) conditions. In 
(c) SEAM notation for representing changes. 

In Figure 4.a there is only a single instance of 
type Person. After op1, there are two instances of 
the same IO, as shown in Figure 4.b. The state of the 
instances does not change.  The Figure 4c is the 
SEAM equivalent to the evolution from 4.a to 4.b.  

In Figure 5, we illustrate a state change (without 
cardinality changes). Initially, the SA selected 
includes one instance of IO Person that is offBoard 
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(5.a). At the end, this same person is onboard 
(5.b). Figure 5.c represents the evolution from 5.a 
to 5.b. 

Op2

Person

op2

Person offBoard

c)a)
op2

Person onBoard

b)

offBoard -> 
onBoard

#1 #1 #1

 
Figure 5: Action changes state of instances in set-
associations. 

Figures 4.c. and 5.c introduce the «change» 
operator ( ), central in our approach. As a 
corollary, we may say that what is not shown as 
changing in the specification of an action is 
considered to remain unchanged.  

2.4 Other Modeling Constructs  

We can reason about systems because we can see 
how actions change the instances. Therefore, it is 
fundamental to model the lifecycles of the instances 
(to understand which instances exist and when). A 
context of existence of an instance is the temporal 
frame where an instance or a set of instances exist. 
Our semantics for the context of existence is similar 
to UML composition/ aggregation, so we will use 
the UML notation (black/hollow diamond).  

Given that all instances exist in a context, there is 
a “first context” for each system. It is the model 
element Myself. This element represents the “root” 
of all behavioural and conceptual information 
describing the system. The double nature of this 
model element is represented by a symbol that 
combines an IO and an action: 

Myself
 

We also define a special kind of information 
object: the parameter. Parameters are necessary to 
represent the communication through the boundary 
of the system or through action boundaries. The 
stereotype can be «Par In» or «Par Out» depending 
on whether it is an input or an output parameter. 

3 EXAMPLE: THE PLANE 
BOARDING CONTROL 
SYSTEM 

In this Section, we present the visual contract that 
corresponds to Figure 1. First we introduce the 
necessary information objects (Section 3.1). We then 
define the operations Init and CheckIn (Section 
3.2) and then Board (Section 3.3). Only a normal, 
correct case of behaviour is shown in this paper.  

For each diagram we present, we define the 
Alloy equivalent. Alloy is a light weight model-
checkable specification language that we use to 
define the semantics of our notation. 

3.1 Definition of Information 
Objects 

BoardingITSystem

# *

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

# *

onBoard_passenger_List

Boarded

Figure 6: SEAM notation for data definitions for the 
BoardingITSystem. 

For sake of simplicity, the system 
BoardingITSystem knows one Plane only. SEAM’s 
representation, shown in Figure 6, can be read as 
follows: In the system (i.e. Myself), there is the 
knowledge of one Plane with a capacity. This 
Plane has two passenger_List that can contain 
multiple passengers each; one is for the passengers 
that have checked-in (offBoard) and the other one 
for the ones that have effectively boarded the 
Plane (onBoard). 

The Alloy equivalent is shown in figure 7. 

sig Time { } 
sig Person { id: Int } 
fact uniqueId{ 
 all p,q:Person|p!=q => p.id!=q.id } 
one sig Plane { 
 capacity:   Int, 
 onboard_passenger_List:   
      set Person->Time, 
 offboard_passenger_List:   
      set Person -> Time }  
{ int capacity > 0  
 all t: Time | 
   int capacity >=  
    #onboard_passenger_List.t +  
    #offboard_passenger_List.t 
 all t: Time |  no p: Person |  
  p in onboard_passenger_List.t and  
  p in offboard_passenger_List.t  

} 

Figure 7: Partial Alloy specification for action Board. 

The Alloy can be read as follows:  a set of 
ordered time points are defined (sig Time); a set of 
Person are defined (sig Person) with a unique 
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identifier (fact uniqueID). We define also a Plane  
that has a capacity and 2 lists: onboard_Passenger 
_List and  offBoard_Pass enger_List. These lists 
include a relation between a person and a time point 
(necessary to simulate the execution sequence).  
Some invariants are defined in the plane: the 
capacity is never exceeded, and nobody can be in 
both lists at the same time.  

3.2 Operations Init & CheckIn 

Figure 8 shows the SEAM visual contract for 
operation Init. It states that the number of Person 
in both passenger_List (offBoard, onBoard) is set 
to zero. 

Init

BoardingITSystem

# * --> #0

capacity

Plane

Myself

#1

Person

onBoard offBoard

id

# * --> #0
offBoard_passenger_List

onBoard_passenger_List

Boarded

 
Figure 8: The SEAM contract of Init: the cardinality of the 
passenger_List SA changes. 

The cardinality of each set-association that links 
passenger_List to Person goes from some initial 
value (any, symbolized by the character ‘*’) to 0. In 
the practice, this means erasing all instances of 
Person linked to both passenger_List 
(offBoard, onboard).  

The action checkIn, not presented in this paper, 
assigns instances of Person to the 
offBoard_passenger_List. 

3.3 Operation Board 

The specification of action Board is the following: 
“The plane preconditions are: a) an input parameter 
represents the identifier of the person that desires to 
go on board, b) this person has already checked-in, 
and c) the number of people onboard has not reached 
the maximum capacity of the plane. The post 
condition is that the person is now onboard. In 
addition, the system emits a message confirming the 
entry of the person into the plane”. 

Before creating the Visual Contract for action 
Board, we illustrate the action by making two 
snapshots: one before and one after the operation 
Board. The situation would be as shown in Figures 9 
and 10, respectively.  

In the precondition, there is an instance of 

Id_Person that is considered as valid. The valid 
condition is defined by a constraint in the diagram: 
the Id_Person should correspond to the id of only 
one Person that has already checked-in (she is in 
the offBoard_passenger_List).  

Board

Id_Person
<<Par In>>

#1

valid

Valid = one (Persoin.id 
== Id_Person)

BoardingITSystem

# *

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

# *

onBoard_passenger_List

Boarded

  
Figure 9: Precondition for action Board. 

During the action Board, the parameter 
Id_Person is validated and the corresponding 
instance of Person in the offBoard_ 

passenger_List is referenced by the action via the 
SA selected. 

In the post condition, Figure 10, the selected 
instance of Person will be transferred to the 
onBoard_passenger_List (supposedly the one that 
has been admitted in the precondition); the 
cardinality change in the corresponding SA 
symbolizes this. Simultaneously, the 
offBoard_passenger_List is decremented by one. 
Finally, a Response parameter is emitted, 
indicating the success of the operation (represented 
by the SA Greetings_Response). 

Response
<<Par Out>>

#1

Greetings_ResponseBoard

BoardingITSystem

# * -> # (*+1)

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

# * -> # (*-1)

onBoard_passenger_List

Boarded

  
Figure 10: Post condition of action Board. 

The whole visual contract is shown in Figure 11. 
Here we make explicit the changes and the instances 
involved, in order to avoid misunderstandings. The 
instance of the offBoard_passenger_List that 
corresponds to the Id_Person is represented by the 
SA selected, that exists in the context of action 
Board. Remark that this temporary information does 
appear neither in the pre nor in the post condition. 

Notice also that the constraint regarding the 
Plane capacity has become a guard for a transfer of 
the instance selected of IO Person from 
offBoard_passenger_List onto the onBoard_ 

passenger_List.  
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Board

Id_Person
<<Par In>>

#1 -> #0

valid

Valid = one (Persoin.id 
== Id_Person)

BoardingITSystem

# * -> # (*+1)

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

# * -> # (*-1)

onBoard_passenger_List

selected

Response
<<Par Out>>#0 -> #1

Greetings_Response

[notFull]

notFull = onBoard_passenger_List.cardinality < Aircraft.capacity

Boarded

 
Figure 11: Visual contract for action Board. It illustrates the «change» operator. 

 
 

The Figure 12 illustrates the evolution of state of 
the IT system during the contract execution. It is the 
result of the execution of the Alloy code presented 
below. It shows a scenario where the plane has two 
people (Person0, Person1) in the offBoard_ 

passenger_List before the action execution (at 
Time0). One passenger (Person1) actually boards the 
plane, as can be seen in the nodes that represent the 
state after the action execution (at Time1). The 
person Person0 has changed to the 
onBoard_passenger_List.  

 
Figure 12: Result of simulating the action Board in the 
Alloy analyzer. Time0 and Time 0 are the moment before 
and after the action takes place. 

4 RELATED WORK  

UML (OMG, 2005) is the industry standard in 
object-oriented analysis and design. UML creating 
heterogeneous models made up of different 
diagrams and notations. In our approach, we try to 
minimize the number of diagrams to one by 
representing conceptual and behavioural 
specifications together. Our syntax is comparable to 
UML –in order to improve the usability— however 
semantics are totally dissimilar. We can say that 
VCs are complementary to UML diagrams. 

One of the challenges we face is how to express 
the relationships between instance and types in 
conceptual modelling. UML proposes the use of 
separate diagrams: class and object (OMG, 2005). 
Heckel (Heckel & Sauer, 2001) deals with types and 
instances in collaboration diagrams. While these 

approaches represent static information, our goal is 
to represent how actions change information. 

The use of contracts allowed validating 
implementations of object-oriented designs (Helm et 
al; 1990; Meyer, 1992). The use of contracts to 
specify actions, interactions, use cases, and activities 
is presented in (D'Souza & Cameron Wills, 1998; 
Rik Eshuis, 2001; Stevens, 2001; Wirfs-Brock et al, 
1990). However, most of the work has been done 
mostly using OCL and textual logics. Only recently, 
two research groups (Lohmann et al, 2005; De la 
Cruz et al, 2005) have proposed independently the 
concept of “visual contracts”. The first focuses on 
automatic generation of code that reinforces the 
compliance of the applications of the IT system with 
the constraints and business rules whereas the latter 
focuses on conceptual modelling and IT system 
specification. 

The graph transformation (GT) languages like 
QVT (OMG, 2005) , VPM (Varro & Pataricza, 
2003) and the one proposed by Heckel (Heckel & 
Sauer, 2001) are syntactically similar to our 
contracts because a) we use UML-like notation and 
b) the contracts are also executed according to a 
pattern-matching oriented philosophy. However, 
they use OCL and are used mostly for 
transformation among languages –e.g. class 
diagrams to java code, statecharts to sequence 
diagrams, etc. — at the metamodel level. They are 
not used as languages for specification but for 
extraction/transformation from models that should 
generate object-oriented code. Their primary goal is 
to guarantee well-formedness and translatability, and 
not to support reasoning about actions/services and 
system evolution. Besides, our approach is 
declarative whereas many of the GT languages are 
mostly operational/ imperative. Our approach is 
complementary to these UML-based initiatives. 
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5 CONCLUSIONS AND FUTURE 
WORK 

In order to define visual contracts, we extend the 
traditional interpretation of the association and we 
integrate diagrams that are usually considered as 
separate. We define the concept of set associations 
that capture the existence of instances of concepts in 
a given context. We use these set associations to 
relate information objects (our term for concepts) to 
information objects but also actions to information 
objects. To represent the pre and the post condition 
on a single diagram, we define a new graphical 
symbol to express the change of cardinality or state. 

Our visual contracts addressed the four issues 
raised by the separation of conceptual and 
behavioral diagrams for modeling actions. First, 
differente descriptions were put along in a single 
diagram; our visual contracts include structure, state, 
communication & synchronization, action/activity 
and constraint information. Secondly, the proprietary 
languages of each notation were harmonized with 
each other by our semantics. Third, constraints were 
illustrated as logic guards for changes in the visual 
contracts. Fourth, the diagram themselves can be 
used to reason about the system actions.  

We also reconcile and integrate the formal 
methods that allow us model-checking and 
simulating our models. The mapping between the 
visual contracts and a model-checkable language as 
Alloy is useful to validate the specification model 
before a real/complex implementation is done. 

Our future work includes testing and improving 
the usability of the notation, developing tool support 
that translates automatically the visual contract into 
the Alloy code, and the integration of this feature 
into our CAD tool (Le & Wegmann, 2005), as well 
as formalizing the model-checking capability. We 
plan also to build a UML to SEAM translation tool. 
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