
MINIMIZING THE COMPLEXITY OF DISTRIBUTED 
TRANSACTIONS IN CORPORATE ARCHITECTURES WITH 

THE USE OF ASYNCHRONOUS REPLICATION 

S. R. Poltronieri, S. F. Paula, L. N. Rossi 
Departamento de Informática da Reitoria – Universidade de São Paulo - Brasil 

Rua da Reitoria, 109 - Bl K – 2o andar 
Butantã, São Paulo - SP 
ZIP CODE 05508-900 

Keywords:  Database, asynchronous replication, two-phase commit, distributed transactions. 

Abstract: In software architectures commonly adopted by large corporations, the use of the “two-phase commit” 
protocol for distributed transactions presents inconveniences such as code complexity, long response times 
for the final user and need of an environment that allows complete simultaneity. We present here an 
alternative strategy, based on asynchronous replication, successfully implemented since 1997 at the 
University of São Paulo as infrastructure of integration for its corporate systems, which propitiates 
distributed transactions in the context of databases deployed at several host servers. 

1 INTRODUCTION 

In an application with transactions distributed 
through several databases, the “two-phase commit” 
protocol is commonly used to guarantee the integrity 
among the several databases. This strategy, however, 
presents inconveniences: it makes the transactions 
lengthy and its code more complex, burdening the 
development teams and reducing the satisfaction of 
the user in regard to the response times. In addition, 
in order to complete a transaction, this strategy 
requires that all the servers involved are 
simultaneously available; namely, it depends on a 
network infrastructure and on servers that present 
high availability. 

In this article we present an alternative strategy 
of implementation using asynchronous replication of 
data, which can face these problems, simplifying the 
applications and integrating many databases in 
different hosts. This strategy combines physical 
project of the databases, the way the applications 
connect to them and some features of a commercial 
replication agent. 

This solution is in use since 1997 for the 
corporate systems of the University of São Paulo, 
Brazil, to support the activities of the institution, 
which today counts with 32 integrated databases. 

2 TWO-PHASE COMMIT 
VERSUS ASYNCHRONOUS 
REPLICATION 

The strategy “two-phase commit” is synchronous, 
i.e., it implies that a transaction is only completed 
after each one of the participants guarantees that the 
transaction has been completed locally. If any of the 
participants does not answer because the transaction 
was not completed locally, or even due to 
connectivity fault, all transaction is undone 
(rollback). For instance, in scenery where a 
transaction is distributed in five databases, it is 
necessary to wait for the five databases to answer 
affirmatively in order to consider the transaction 
concluded. If, for any reason, the transaction needs 
to be redistributed to a larger number of databases, 
the transactional control needs to be recoded and it is 
expected an increase in the response times. If one of 
the databases is not accessible at the moment of the 
transaction, it is undone in all the databases. 

With the use of asynchronous replication data 
changes do not happen at the same time. The 
transaction is completed in a database and reapplied 
to the others. If the transaction fails in one of the 
databases, it does not necessarily fail in all the 

323R. Poltronieri S., F. Paula S. and N. Rossi L. (2006).
MINIMIZING THE COMPLEXITY OF DISTRIBUTED TRANSACTIONS IN CORPORATE ARCHITECTURES WITH THE USE OF ASYNCHRONOUS
REPLICATION.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 323-330
DOI: 10.5220/0002458103230330
Copyright c© SciTePress



 

databases. Transactions are undone just in the site 
where the fault occurs and they are submitted again 
later on. This strategy always implies in a period of 
latency for the data to be available (replication 
latency). Updates delays will always occur in 
databases that are inaccessible, but the other 
databases will be updated after the time of latency.  

Nevertheless, a measure of the latency can be 
used by the application to limit risks for some 
transactions. For example, an application can change 
its behavior using an estimate of latency as an 
advisory. If the latency is above a pre-defined 
threshold, the application can reduce the values of a 
loan or withdrawal. 

3 IMPLEMENTATION AT THE 
UNIVERSITY OF SÃO PAULO 

Founded in 1934, the University of São Paulo (USP) 
is the largest institution of higher education and 
research in Brazil, and the third in size in Latin 
America. With 746 courses taught in its teaching and 
research units, 202 of which are undergraduate 
courses attended by approximately 46,000 students, 
and 487 are graduate courses (including 280 for 
masters' and 264 for doctors' degrees). Its teaching 
units are distributed among its eight campuses 
spread in six cities.  

To support its activities, USP has a complex 
administrative infrastructure, most of which is 
centralized in the city of São Paulo, but operations 
are wide decentralized: each of the teaching units 
has its administrative office and there are regional 
headquarters hosted in each campus. 

To confront this complexity, each business area 
has its workflows implemented in control systems 
for the business area (here called “application”). 
However, since many of the flows pass through 
more than one area, data integration is highly 
needed. 

The corporate data model of the University of 
São Paulo was conceived to support this integration 
and distribution of data and applications. This 
logical model cover all businesses of the University 
(Academic control for undergraduate and masters 
degrees, Finances, Human Resources etc.) and it is 
structured as a single relational model for all the 
institution, having an extensive number of entities 
and relationships. The physical implementation, due 
to performance and availability considerations, is 
distributed among several databases. 

At the time of the initial implementation, the 
hardware available at the University could not 
operate satisfactorily all these databases from the 
same server. The choice made, therefore, was to 
distribute the databases among 4 servers, each one of 
them concentrating on one of the main business 
areas. 

This scenery, if implemented in the traditional 
“n-phase commit” way, would have implied in high 
code complexity and transactional cost regarding 
tables of common use to the applications, because, 
in addition to repeating the same transaction in 
several databases, guaranteeing in this way the 
referential integrity of the model, each application 
would have to establish connections with each one 
of these databases for reading or recording 
operations. 

The physical implementation followed the 
premises and definitions below: 

3.1 Global Data Model 

The downsizing process, that motivates systems 
migration from mainframe to client server, started 
with premise of a unique and integrated logical data 
model, internally named “global data model”. This 
logical abstraction was the answer to integration 
problems with old mainframe data structure (apart 
databases, one for each business area) such as 
different id for same people, address or personal data 
updated only in one database and incorrect in others, 
difficulty in identify the same people data in each 
database and so on. 

The global data model contains unique logical 
abstractions for each concept used in corporate 
systems, independently which application uses it. 
For example; all personal data, used by all 
applications, is stored in a “PERSON” table. 
People’s roles, such as student, graduate, professor 
or faculty staff are stored in another table set. All 
these tables (persons, roles, relationships) constitutes 
a sub-model named “PERSON”. Organizational 
unity information is stored in a sub-model named 
“STRUCTURE”. Another example is applications 
access, that is centralized and its control data is 
represented in sub-model “USER”.  

Although logical abstraction is unique to each 
concept (PERSON, by way of example), its physical 
implementation is distributed among several 
databases. All databases that require PERSON for 
read data, consistency or referential integrity have a 
PERSON table replica. PERSON is primary in one 
and only one database (see 3.5.1). Nowadays there 
are PERSON table replicas in 28 databases. 

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

324



 

The applications’ use of tables determine their 
physical distribution and is better explained in 
section 4. 

By way of example, logical and physical views 
of PERSON table are showed schematically in 
Figure 1. 

3.2 Database Servers 

The ambient is composed by 4 database servers. 

3.3 Databases 

The databases are grouped by business area and 
distributed in the 4 servers. For example, 
“undergraduate” and “graduate” databases lie in 
same server. Each application has its preferential 
database. “Human Resources” database is the one 
that contains most of the tables and stored 
procedures used by Human Resources management 
application. 

3.4 Replication Server 

The replication agent chose for this implementation 
is an autonomous and independent server that runs 
in parallel mode to the database server (origin 
database), scanning the current log of the databases 
and writing all committed transactions executed at 
the databases in a replication proprietary queue. This 
queue is used to distribute data changes to other sites 
(destination databases). The transactions are 
reapplied in the destination databases in the same 
order that occurred in the origin database, doing 
another transaction at the destination databases. This 

strategy preserves chronological events in all 
databases. The replication agent guarantees that all 
transactions on the replication queue are completed 
on the destination databases, even if some of the 
destinations are unavailable for a time. The pending 
transaction lies in the queue until the destination 
becomes available. Therefore, the replication latency 
between the sites is very short if the environment has 
high availability. 

An instance of replication agent in each site 
coordinates the data replication communicating with 
replications agents in other sites. Thus, the main 
tasks of a replication agent are to receive data 
transactions from databases and distribute them to 
sites with subscriptions for the data and to receive 
transactions from other replication agents and apply 
them to local databases, as showed schematically in 
Figure 2. 

Consider the tables T1 (primary in database DB1 
and replicated in database DB2) and T2 (primary in 
database DB2 and replicated in database DB1). The 
replication process steps are: 

 
1. Changes in table T1 are registered in 

database DB1 log 
2. Replication agent R1 reads data 

transaction from DB1 log 
3. Transaction is sent to replication agent R2 
4. Replication agent R2 apply locally in 

database DB2 the received transaction, 
replicating the changes in table T1 

 
This process is symmetric for table T2, and 

occurs in analogue way, represented by steps 5 to 8 
and dotted lines. 

 

Global data model

Human
Resource
application

Academic
control

application

PERSON
table

PERSON
sub-model STRUCTURE

sub-model

USER
sub-model ...

Logical view

Academic
control

database

Human
Resource
database

Human
Resource
application

Academic
control

application

PERSON
table

PERSON
table

replication

Physical view

Figure 1: Global data model - logical and physical views. 

MINIMIZING THE COMPLEXITY OF DISTRIBUTED TRANSACTIONS IN CORPORATE ARCHITECTURES WITH
THE USE OF ASYNCHRONOUS REPLICATION

325



 

3.5 Tables 

3.5.1 Primary and Replicated Tables 

Regardless of the application that is manipulating 
the data, all the transactions of data manipulation 
(insert, update and delete) on a table should 
necessarily occur in a single database. The motto of 
this strategy is “write once here, read anytime, 
anywhere”. This fundamental premise implies that 
each table is primary in only one site. Other sites 
contain a replica of the table (replicated table) and 
the applications only read data from replicated 
tables.  

The process is summed up in Figure 3: 

1. Application A1 transacts in database DB1 
updating data on some table 

2. Replication agent R1 receive data 
transaction 

3. Transaction is sent to other replication 
agents (R2 and R3) 

4. These agents apply locally the received 
transactions (in DB2 and DB3 
respectively) 

5. Replicated data (updated!) in DB2 and 
DB3 is available to applications A2 and 
A3 

DB1 R1writeA1

A2

A3

DB2

DB3

read

read

1 2

34
R2

R3
4

5

5 3

Figure 3: Database access and replication process. 

R1

DB1

T1 T3T2

DB2

T1 T3T2

DB3

T1 T3T2

R2 R3

Figure 4: Scalable architecture. 

A1

A2

A3

.

.

.

.

An

read,write

no action

no action

no action

Only ONE
application access

the table

Table
Analyzed

Figure 5: Unique table. 

R1
1

3

L
O
G

DB1

2

4
7

8
T2

T1

R2
5

L
O
G

DB2

6

T1
T2

Figure 2: Basic structure of a replication system. 

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

326



 

Actually, this solution has properties of 
symmetry, is scalable and presents emergent 
behavior. If table T1 is primary in database DB1, 
table T2 is primary in DB2 and table T3 is primary 
in DB3 and all tables are mutually replicated, we can 
construct a very complex architecture based in this 
simple mechanism (Figure 4). 

3.5.2 Unique Tables 

A table which residence was defined in only one 
database in the whole ambient is called “unique 
table”. Unique tables are commonly accessed by 
only one application (Figure 5). 

3.5.3 Common Tables 

Some tables, used by several applications, such as 
tables with data of the organizational structure, of 
people and their roles and relationship with the 
institution (students, faculty employees, suppliers, 
etc.), end up residing in more than one database and 
even in different servers. 

A table which residence was defined in more 
than one database in the whole ambient is called 
“common table” (Figure 6). In general, all databases 
end up possessing a group of common tables. 

4 STRATEGY OF SITE 
ELECTION FOR PRIMARY 
AND REPLICATED TABLES 

The tables are usually grouped by application. For 
each application, a main database is chosen, that is, a 
database in which the group of tables used by the 
application will reside. The relationships are   
respected in this grouping, guaranteeing the 
implementation of the referential integrity through 
the migration of keys. 

The business and its respective applications 
maintain a hierarchy of responsibility on the data. 
For instance, the students’ personal data are the 
responsibility of the academic systems. If a person is 
at the same time student and faculty employee, the 
responsibility of that person’s data becomes of the 
human resources system. 

For each common table, it is analyzed which 
application requires more transaction on it, that is, 
which applications will accomplish more frequently 
operations of data manipulation (insert, update and 
delete). 

It is elected as primary database of the table the 
one that is the “preferential” database of the 
application that is more demanding of operation on 
the table. 

The operations of data manipulation on this table 
(insert, update and delete) will be made by the 
applications only in the primary database. The other 
sites (replicated sites) will contain only a replica of 
this table, for reading or referential integrity 
purposes. A “Student” table will lie in “Academic” 
database, where its data are changed and updated. 
The Library application will use “Student” only to 
read students personal data, such as address to get 
back a lent book. 

The ways that each table are accessed by the 
several applications (Figures 5 and 6) are analyzed 
and the use – r=read, w=write (update, delete, insert) 
– is mapped  (sample in Table 1). 

Applying the concept of preferential database of 
the application, the primary site (P), the replicated 
sites (R) and the site in which the table is unique (U) 
are defined for each of the common tables (sample 
in Table 2).  

If a table is used for more than one application, 
the primary site of the table is chosen as the 
preferential database of the application that:  

1. requires more operations of data manipulation 
on the table or 

A1

A2

A3

.

.

.

.
An

read

Table
Analyzed

No action

read, write

read, write

Figure 6: Common table. 

MINIMIZING THE COMPLEXITY OF DISTRIBUTED TRANSACTIONS IN CORPORATE ARCHITECTURES WITH
THE USE OF ASYNCHRONOUS REPLICATION

327



 

2. posses more referenced tables for the table in 
question or 

3. requires minor latency of data update 
 

Table 1 : Access of the Tables by the Applications.
 Applications 
Table A1 A2 A3 .. An 
T1 r,w r r .. - 
T2 r - r .. r 
T3 - r - .. r 
T4 r r r .. r 
...      
Tn - r,w - .. - 

 
Table 2 : Tables and their respective sites. 

 Databases 
Table DB1 DB2 DB3 .. . DBn 
T1   P R R .. . - 
T2   R - R .. R 
T3   - R - .. R 
T4   R R R .. R 
...      
Tn  - U - .. - 

5 STRATEGY OF THE 
TRANSACTIONS IN EACH 
APPLICATION 

The applications are then coded according to the 
architecture described above, establishing in a 
selective way connections with the databases for the 
accomplishment of the operations of data 
manipulation (select, insert, update and delete). 

5.1 Insert and Update 

All transactions of any application that involve 
insert or update shall be accomplished only in the 
database in which the common table is elected as 
primary or unique. 

5.2 Select 

If the application only reads from some common 
table, this can be accomplished in the own database 
where the application is connected, since the table is 
already there as replicated table. 

5.3 Delete 

In a similar way to the insert and update operations, 
the transaction shall be accomplished only in the 
primary site of the table, however, in this case, it is 
necessary a verification and the previous removal of 
the data from the referenced tables in all the 
replicated sites before the removal is made in the 
primary site so that the referential integrity of the 
model is maintained among all the databases. 

6 LATENCY MEASURE 

The replication agent used has a graphic monitor 
tool that shows information about replication 
process between two databases. Typically it shows 
how latency and commit age change with time. 

Latency shows the time it takes to distribute an 
update from a origin database and commit it to a 
destination database. Latency includes replication 
agent internal queue processing, network overhead 
and replication agents (origin and destination) 
processing. It is defined as the difference between 
the time when the transaction was committed to 
database destination and when the transaction was 
committed on the origin database, considering time 
zones difference:  
 

latency = destination_commit – (origin_commit – 
time_zone_dif) 

 
Commit age shows the amount of time that has 

passed since the last update was committed to the 
origin database. A continuous increase in commit 
age indicates that no new transactions have been 
received. When this occurs, the graph shows the last 
latency for which transactions were actually 
committed and not the current latency.  

A sample of graph provided by this tool is 
showed in Figure 7. Latency and commit age are 
measured in seconds. The sample was caught in a  
interval of regular database use. 

When processing small transactions, latency and 
commit age are small because the replication agent 
processes the transactions quickly. Large 
transactions take longer for the replication agent to 
commit and the number of transactions in queue 
increases. If other transactions arrived in queue, the 
latency stays constant and the commit age starts to 
increase. 

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

328



 

We can observe from graph that the latency is 
always lower than 5 seconds, with average time of 3 
seconds. Plateaus occur after the arrival of a single 
large transaction spaced in time. Valleys occur after 
a small transaction, and latency constant value with 
maximum committed age (actually increasing, but 
not showed in graph) means no transaction and the 
latency value is the last latency value measured. 

7 CONCLUSIONS AND FUTURE 
WORKS 

The strategy here presented has been implemented in 
the corporate systems of the University of São Paulo 
since 1997, initially with six databases. The first 
applications to use this architecture were client-
server two-tier. The natural increase of the IT 
participation in the business of the institution raised 
this initial group to the 32 databases currently in use, 
occupying 300 Gbytes of data, with more than 1,500 
logic tables, implemented physically in more than 
4,500 tables. 

Even in the complex environment as the one 
described here, the latency presented is very low 
and, in practice, it is possible to say that the 
integration of data is online, that is, data that is 

handled by any of the applications are made 
immediately available in all the environment for use 
by other applications and users. 

In addition, due to easiness of handling and 
configuration of the replication agent, the 
operational management is surprisingly simple, 
requiring part-time work of only one IT staff 
member. 

From its conception, the solution has shown to 
be absolutely robust and scalable. In the eight years 
since its implementation, the model has supported 
the growth of the number of modules of the 
applications as well as the appearance of new 
systems and, with the coming of applications in the 
Web, it has shown to be extremely advantageous, 
facilitating the fast and easy implementation of 
several functionalities related, for instance, to safety 
and performance, since the public consultations 
made available through the Internet are 
accomplished in databases that possess only 
replicated tables for consultation, isolated from the 
transactional ambient (OLTP). 

Given the success of this strategy, we are 
accomplishing studies for its use in the integration of 
purchased software (with the proprietary data 
model)  to the corporate model of the institution. 

Figure 7: Latency and commit age graph. 

MINIMIZING THE COMPLEXITY OF DISTRIBUTED TRANSACTIONS IN CORPORATE ARCHITECTURES WITH
THE USE OF ASYNCHRONOUS REPLICATION

329



 

REFERENCES 

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. 1992. 
Providing high availability using lazy replication. 
ACM Transactions on Computer Systems 10, 4 
(Nov.), 360-391.  

Sybase Replication Server Design Guide, 1995, 
Replication Server Technical Publications - Sybase, 
Inc., Doc ID 32580-01-1100-01   

Sybase Replication Server Administration Guide, 1995, 
Replication Server Technical Publications - Sybase, 
Inc, Doc ID 32511-01-1100-02  

Sybase Replication Server Manager User’s Guide for 
Microsoft Windows, 1996, Systems Management 
Products Technical Publications - Sybase, Inc, Doc ID 
32002-01-1100-01  

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

330


