
APPLYING SOFTWARE FACTORIES TO PERVASIVE SYSTEMS:
A PLATFORM SPECIFIC FRAMEWORK

Javier Muñoz
Technical University of Valencia

Camı́ de Vera s/n, E-46022, Spain

Vicente Pelechano
Technical University of Valencia

Camı́ de Vera s/n, E-46022, Spain

Keywords: Pervasive systems, frameworks, MDA, software factories, templates, model transformation.

Abstract: The raise of the number and complexity of pervasive systems is a fact. This kind of systems involves the
integration of physical devices and software components in order to provide services to the inhabitants of
an environment. Current techniques for developing pervasive systems provide low-level abstraction primitives
which makes difficult the construction of large systems. Software Factories and the Model Driven Architecture
(MDA) are two important trends in the software engineering field that can provide sensible benefits in the
development of pervasive systems. In this paper, we present an approach for building a Software Factory for
pervasive systems, focusing in the definition of a product line for this kind of systems. We introduce a software
architecture for pervasive systems, which is supported by a software framework implemented using the OSGi
technology. Then, we integrate the framework into the MDA standard defining the framework metamodel and
providing tool support for the automatic code generation.

1 INTRODUCTION

Pervasive systems try to build environments where
computation elements disappear from the user point
of view but their functionality is still provided. This
vision was initially described by Weiser (Weiser,
1991) in the early 90s and it is based on the con-
struction of computing-saturated environments prop-
erly integrated with human users.

The application of model driven approaches to this
filed can provide many benefits (Fernandes et al.,
2004). Software Factories (Greenfield et al., 2004)
and the Model Driven Architecture (MDA) (Object
Management Group, 2003) provide strategies for rais-
ing the abstraction level in the software development
process and making affordable the development of
complex systems. The application of the guidelines
defined in these approaches to pervasive systems de-
velopment can help to build better systems in an easier
way than applying traditional methods.
This paper presents an approach for building a Soft-
ware Factory for pervasive systems development, fo-
cusing in the definition of a product line for this kind
of systems. The structure of the paper is the follow-
ing: Section 2 briefly introduces our application of
Software Factories and MDA to Pervasive Systems

Development. Section 3 describes Pervasive Systems
main characteristics and it presents our point of view
for developing this kind of systems. Based on the pre-
vious analysis, section 4 proposes an architecture for
implementing pervasive systems. This architecture is
supported by a framework which is introduced in sec-
tion 5. In order to integrate this framework into an
MDA environment, section 6 shows the framework
metamodel and templates for generating code from
the metamodel. All these contributions constitute a
practical application of the Software Factories and
MDA approaches to a specific domain: the pervasive
systems. Finally, section 7 includes some conclusions
and further work.

2 A SOFTWARE FACTORY FOR
PERVASIVE SYSTEMS

The development of a pervasive system implies the
use of many different technologies in order to sat-
isfy all users’ requirements. Usually these technolo-
gies provide low abstraction level constructs to the
developer. Therefore, applying a MDA approach to
pervasive systems supposes jumping a very wide ab-
straction gap that must deal with the heterogeneity

337
Muñoz J. and Pelechano V. (2006).
APPLYING SOFTWARE FACTORIES TO PERVASIVE SYSTEMS: A PLATFORM SPECIFIC FRAMEWORK.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 337-342
DOI: 10.5220/0002457603370342
Copyright c© SciTePress



of the technology. Fig. 1 describes three strategies
for filling this abstraction gap: (Fig.1.1) generating a
large amount of code, (Fig.1.2) building a framework
that raises the abstraction level of the target technol-
ogy and then generating a minimum amount of code,
(Fig. 1.3) manually refining the model in order to de-
crease their abstraction level until achieve the abstrac-
tion level of the target technology and then generating
a minimum amount of code.

Platform

Generated Code

Model

1)

Platform

Framework

Generated Code

Model

2)

Platform

Generated Code

Model

3)

Figure 1: Strategies for filling the abstraction gap. Ex-
tracted from (Greenfield et al., 2004).

The Software Factories approach follows the second
strategy. A framework for pervasive systems should
be developed applying domain engineering princi-
ples. This framework raises the abstraction level
of the target platform and, therefore, the amount
of code is sensiblely reduced. Thus our proposed
methodological approach to pervasive systems de-
velopment, which was presented in (Muñoz and
Pelechano, 2005), is based on:

• the construction of a domain specific language for
the description of pervasive systems.

• the construction of a framework that raises the ab-
straction level by providing similar constructs to
those defined by the domain specific language.

• the definition of rules for the transformation of
models, that are built using the domain specific lan-
guage, to code that fulfills the defined framework.

Following this strategy, first we have defined Perv-
ML (Pervasive Modeling Language), a Domain Spe-
cific Language (DSL) for specifying pervasive sys-
tems in a technology independent fashion (Muñoz
et al., 2004). Perv-ML promotes the separation of
roles where developers can be categorized as analysts
and architects.
Systems analysts capture system requirements and
describe the pervasive system at a high level of ab-
straction using the service metaphor as the main con-
ceptual primitive. Analysts build three graphical
models that constitute what we call the Analyst View.
In these models the analyst describes (1) the kinds of
services (by means of their interfaces, their relation-
ships, their triggers and a Protocol State Machine for
specifying the behavior of each service), (2) the com-
ponents that are going to provide the defined services
and (3) how these components interact to each other.

On the other hand, system architects specify what
COTS devices and/or existing software systems im-
plement the system services. We call binding
providers to the elements that are responsible of bind-
ing the software system with its physical and logi-
cal environment. For instance, a lighting sensor is
in charge of measuring a physical feature of the en-
vironment, whereas an e-mail server allows sending
information to agents that are out of the scope of the
system. Architects build other three models that con-
stitute what we call the Architect View. We need to
build a detailed specification of the lower level arti-
facts that realize system services in order to have a
complete and operative pervasive system description.
In order to achieve this goal, the architect describes
(1) every kind of binding provider (their interfaces
and their relationships), (2) the binding providers
which are used by each system component, and (3)
which actions should be executed when a component
operation is invoked.
The development process starts from a Perv-ML spec-
ification which is transformed using our model-to-
model transformation tool (we are currently working
with the AGG1 graph grammars engine) into a model
(PSM) that is built using implementation concepts.
This paper is focused in the PSM building block. In
the context of MDA, the implementation framework
for pervasive systems can be considered a platform,
since it provides an implementation environment for
our platform independent language. The construction
of the framework has followed the Software Factories
guidelines. This approach proposes a product line like
strategy, which is composed, in short, by the follow-
ing steps (Greenfield et al., 2004, chapter 11):

1. Product Line Analysis. Its purpose is to decide
what kind of systems the product line will develop.
In order to achieve that goal, the scope of the sys-
tems to be developed should be specified.

2. Product Line Design. Its purpose is to decide how
the product line will develop the software products.
In order to achieve that goal, an architecture for the
systems to be developed should be specified.

3. Product Line Implementation. Its purpose is to
supply the implementation assets required by the
product line architecture. In our case, we are go-
ing to implement a framework for supporting the
specified architecture.

Next sections give an overview of each step.

3 PRODUCT LINE ANALYSIS

Requirements for current and future pervasive sys-
tems involve a great diversity of types of services.

1http://tfs.cs.tu.berlin.de/agg/

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

338



Such different services as multimedia, communica-
tion or automation services need hardware devices
that different manufacturers provide and external soft-
ware systems. These elements live in several net-
works running on different technological platforms,
but they can not satisfy isolatedly all system require-
ments. In this context, our approach to pervasive sys-
tem development consists of:

• The selection of the suitable COTS devices or ex-
ternal software systems. These elements should
provide the services that users require either isolat-
edly or interacting with other elements.

• The development of the software system that in-
tegrates the external elements in order to pro-
vide the services that users require. The devel-
opment of that software may imply the use of dif-
ferent technologies but some gateway technology
should exist.

In order to provide a software architecture that cor-
rectly fits the requirements of this kind of systems,
we should determine the scope of our applications and
we should identify some basic non functional require-
ments that must be satisfied by the assets (the software
architecture and the implementation framework) that
are produced for supporting the product line.

• Support to the conceptual primitives that are
provided by the modeling language. As intro-
duced in section 2, a key goal of our framework is
to rise the abstraction level of the implementation
technology in order to make easier the code genera-
tion from our DSL. Therefore, supporting the Perv-
ML conceptual primitives is a very important issue.

• Integration with external software systems. Ser-
vices provided by pervasive systems can be sup-
plied by physical devices and also by existing soft-
ware systems (multimedia servers, contacts man-
agement software, etc.). Therefore, the integration
with external software systems should be supported
by our framework

• Isolation of the manufacturer-dependent com-
ponents. As outlined above, we consider that a per-
vasive system is built from several COTS elements.
But, on the other hand, our framework should sup-
port the DSL for pervasive systems. Therefore,
in order to integrate these two requirements, the
framework should clearly isolate the manufacturer-
dependent parts from the parts that can be automat-
ically generated.

• Support to multiple user interfaces. Pervasive
systems emphasize new ways of Human-Computer
Interaction (HCI). Different kind of devices and
platforms could be used. Therefore, our systems
should be ready to provide support to several kinds
of user interfaces.

4 PRODUCT LINE DESIGN:
DEFINITION OF A SOFTWARE
ARCHITECTURE

Our proposed architecture for pervasive systems has
been designed in order to support the requirements
introduced in the above section. We apply the Layers
and Model-View-Controller (MVC) architectural pat-
terns (Buschmann et al., 1996) for providing a multi-
tier architecture for the pervasive systems (see Fig. 2).

Interface
Layer

Logical
Layer

Services Layer

WAP
View

Voice
View

Communications Layer

HTML
View

Drivers Layer

Figure 2: Overview of the proposed architecture.

The Drivers Layer is the lowest layer in the archi-
tecture. It is in charge of managing the access to the
devices and to the external software services. In order
to achieve the goals of this layer, drivers should be
manually developed for dealing with manufacturer-
dependent issues. Following this strategy, the drivers
adapt the specific mechanisms for using the binding
providers (the drivers or APIs supplied by the man-
ufacturers), so a common interface is provided for
every kind of binding provider. This means that, for
instance, all the lamp devices must be adapted to a
generic interface.
The Communications Layer provides a representa-
tion of the binding providers that can be used by the
Services Layer, so it provides a bridge between these
two layers. There is a one-to-one relationship be-
tween the elements in the communication layer and
the elements in the Drivers Layer. Concretely, this
layer holds the manufacturer-independent part of the
binding providers whereas the Drivers Layer holds
the manufacturer-dependent issues. For instance, if
there is a driver in the Drivers Layer for accessing a
light sensor which is located in a particular technol-
ogy control network (like EIB or LonWorks in home-
automation systems), there will be too a light sensor
element in the Communications Layer. The driver
would be in charge of dealing with the specific issues
of the control technology, whereas their representa-
tion in the Communications Layer would be in charge
of logging the operations calls, updating an icon im-
age representing the state of the device, etc.
The Services Layer provides the functionality as it is
required by the users of the system. The components

APPLYING SOFTWARE FACTORIES TO PERVASIVE SYSTEMS: A PLATFORM SPECIFIC FRAMEWORK

339



that implement the services make use of the elements
in the communications layer or other services in the
same layer. Moreover, interactions between services
which are triggered by some condition can occur.
Finally, the Interface Layer manages the access to
the system by human or software users. We apply
the Model-View-Controller pattern in this layer. Fol-
lowing this strategy, the components of the Services
Layer could be seen as the model whereas specific
controller and viewers for every supported interface
should be implemented.
Other architectures for pervasive systems have been
proposed (Grimm et al., 2004; Kirby et al., 2003).
Some of them are focused on providing very inter-
esting capabilities like dynamic services discovery or
high robustness. We are very interested in those ad-
vanced features and we plan to extend in the future
our software factory for adding new characteristics,
but they are out of the scope of this version.

5 PRODUCT LINE
IMPLEMENTATION:
BUILDING AN
IMPLEMENTATION
FRAMEWORK

In order to provide support to the architecture that
has been introduced in the above section, we have
developed an implementation framework. We have
selected the middleware OSGi (The Open Services
Gateway Iniatite, 2003) as the implementation tech-
nology, since it has bridges to many of the technolo-
gies used in pervasive systems and provides high-
level implementation constructs. This middleware
help us notably for filling the abstraction gap between
the domain specific language and the target imple-
mentation technology.

5.1 An Implementation Framework
for Pervasive Systems

This section briefly describes the implementation
framework for pervasive systems that has been de-
veloped in order to support the proposed architecture.
We do not implement the Drivers Layer because its
software components should be manually developed
in order to deal with manufacturer dependencies.

5.1.1 The Logic Layer

Fig. 3 shows the design classes diagram that repre-
sents the framework classes of the system logic layer.
Classes in this layer can be classified in three func-
tional groups:

BProvider()

context : BundleContext
bProviderId : String
driverPID : String
driverClassName : String

BProvider

ComponentActivator()

ComponentActivator

Component()
«abstract» enabledOperations()
«abstract» changeState()
«abstract» checkTriggers()

context : BundleContext
componentId : String
state : String

Component

BProviderActivator()

driverPID : String

BProviderActivator

ConsumerProducer

BundleActivator
ServiceListener

producersConnected()
updated()
consummersConnected()
polled()
«abstract» buildProps()
notifyProducers()
notifyConsumers()

wiresProducer : Wire []
wiresConsumer : Wire []

WireParticipant

log()
infoLog()
errorLog()

Logger

getFrameworkElement()
getComponent()
getBProvider()
getDriver()

FrameworkSearcher

serviceChanged()
«abstract» start()
«abstract» stop()
createWire()
«abstract» createAllWires()

serviceClassName : String
serviceSequenceID : String
servicePID : String
location : String
context : BundleContext

FrameworkActivator

LogicElement

Interaction()
«abstract» checkTriggers()
«abstract» executableActions()

context : BundleContext
InteractionId : String

Interaction

InteractionActivator()

InteractionActivator

For mapping 
Perv-ML

Components

For encapsulating 
OSGi functionality

For life-cycle 
management

*
1

* 1* 1

Figure 3: Design classes for the system logic layer of the
framework.

• Classes for mapping the Perv-ML conceptual
primitives. This functional group is composed
by the classes Component, BProvider and
Interaction. These classes define several ab-
stract methods which should be fulfilled for provid-
ing support to the Perv-ML execution strategy.

• Classes for encapsulating OSGi-related func-
tionality. The goal of this group is to isolate some
OSGi-related functionality that is inherited by the
classes in the previous functional group. Classes
in this group provide facilities for logging events
(Logger), for searching services in the OSGi
framework (FrameworkSearcher) and for par-
ticipating in the event notification mechanism sup-
plied by OSGi (WireParticipant).

• Classes for dealing with the system life-
cycle. This functional group is composed
by the classes ComponentActivator,
BProviderActivator and
InteractionActivator. An activator
is an OSGi concept which describes the class that
is in charge of registering and unregistering the
services in the OSGi framework when a bundle in
started or stopped.

5.1.2 The Interface Layer

In order to provide support to interfaces in multiple
devices, the Abstract Factory design pattern has been
applied. Moreover, abstract classes have been in-
cluded for making easy the fulfilment of two critical
user tasks:

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

340



• The ServiceListing class provides mecha-
nisms for accessing the services. Users can index
the services by the kind of service that they provide,
by their location or ordered by their last use.

• The ServiceUI class supports the creation of in-
terfaces for the management of a kind of service.
This interface shows (1) general information about
the service, like their location or their last use; (2)
specific information about that kind of service (eg.
the current state of a multimedia service); and (2)
the mechanism (buttons, textboxex, etc.) for using
the functionality provided by that kind of service.

6 INTEGRATING THE
FRAMEWORK INTO MDA

OSGi Code

Perv-ML
Model Graph Grammars

Framework 
Model Templates

AGG
Framework

Model
FrameworkMM

EMF Library

EMF
Framework 

Model
OSGi CodeFreeMarker

Templates

Step 1 Step 2

Figure 4: Integrating the framework into MDA. Tools and
Techniques.

Fig. 4 shows the techniques and tools provided in or-
der to integrate the framework into MDA. The initial
step for developing an application using the complete
Software Factory is the specification of the platform
independent model using Perv-ML. Then, our model-
to-model transformation tool converts a XML/XMI
representation of a Perv-ML model into a XML file
which represents a model built using concepts of
the implementation framework. Then, the generated
XML file is loaded into a Java data structure which
is used as input to FreeMarker, the templates engine.
As result of the application of the templates, the final
source code is obtained. Next subsections describe
the techniques related to the integration of the imple-
mentation framework in this process.

6.1 Platform Metamodel

The MDA standard proposes the construction of
metamodels for defining (the abstract syntax of) new
modeling languages. Therefore, we have built a meta-
model of our implementation framework for perva-
sive systems, which is shown in Fig. 5.
The models generated by our model-to-model trans-
formation tool conforms to this metamodel. The
model-to-model transformation tool performs the

Component

package : String
componentId : String
location : String

BProvider

package : String
bProviderId : String
driverId : String

Interaction

triggerEvaluation : String

PerMLService

package : String
name : String

0..n
-implements_11

-usesBProvders 0..*
0..*

-usesComponents

0..*

0..*

0..*

-requiredComps1..*

ServiceOperation

name : String
signature : String
returnType : String

1

-operations

0..*

Method

body : String

1

-methods0..*

0..*

1
BProviderInterface

package : String
name : String

BProviderOperation

name : String
signature : String
returnType : String

0..*
-implements1

1

0..*

State

name : String
isInitial : Boolean

1

-states0..*

0..*

-enabledOperations 0..*

Transition
-source1

0..*

-destination

1

0..n

0..*

-operation

1

Actions

body : String1 0..*

Trigger

trigerEvaluation : String
operationCall : String

0..*

-operationActivated1

1

-triggers

0..*

0..*

-specializes

1

0..*

-specializes

1

Figure 5: Framework metamodel.

jump of the abstraction gap between the DSL and the
implementation framework.

6.2 Templates for Code Generation

Using the metamodel introduced above we have a
graph-like representation of the pervasive systems
but, in order to automatically obtain the source code
of the final application, we need to transform that rep-
resentation into Java files (since our aim is to pro-
duce OSGi code) and other textual resources (mani-
fest files, build files, etc.).
In order to put in practice our product line, we have
used the FreeMarker2 template engine. FreeMarker is
a free software engine that works on Java data struc-
tures, and provides a powerful syntax for specifying
templates. We have specified a set of templates for the
main metamodel elements. These templates navigates
through the metamodel structure (which has been im-
plemented using the EMF plugin for Eclipse3) in or-
der to obtain the needed data for filling the gaps.
Next, a FreeMarker template for generating a
Component element of the framework is introduced.
This template receives a Component metamodel el-
ement in the comp variable.
<#assign packageName =
"${comp.getPackage()}.${comp.getImplements().getName()}
${comp.getComponentId()}">

package ${comp.getPackageName()};
//Imports here

public class Component extends
org.oomethod.framework.Component

implements ${getImplements().getName()} {

<#list comp.getUsesBProviders() as bProv>
public static String bProvider${bProv.getBProviderId()}
PID ="${bProv.getImplements().getName()}$

{bProv.getBProviderId()}";

2http://freemarker.sf.net
3http://www.eclipse.org/emf/

APPLYING SOFTWARE FACTORIES TO PERVASIVE SYSTEMS: A PLATFORM SPECIFIC FRAMEWORK

341



</#list>

<#list comp.getMethod() as meth>
public ${meth.getServiceOperation().getReturnType()}

${meth.getServiceOperation().getName()}
${meth.getServiceOperation().getSignature()} {

//Searching the BindingProviders
<#list comp.getUsesBProviders() as bProv>

${bProv.getBProviderInterface().getName()}
bProvider${bProv.getBProviderId()};

bProvider${bProv.getBProviderId()} =
(${bProv.getBProviderInterface().getName()})

this.getBProvider(
${bProv.getBProviderInterface().getName()}.

class.getName(),
bProvider${bProv.getBProviderId()}PID

);
</#list>

<#if meth.getServiceOperation().getReturnType()!="void">
${meth.getServiceOperation().getReturnType()} result;
</#if>

${meth.getBody()}

this.changeState("${meth.getServiceOperation().
getName()}");

this.log("Operation
’${meth.getServiceOperation().getName()}’

invoked on Component ${getPackageName()}");

<#if meth.getServiceOperation().getReturnType()!="void">
return result;
<#else>
this.notifyConsumers();
</#if>

}
</#list>
//constructor, checkTriggers, changeState,
enabledOperations and buildProps definition here. }

Templates like the one presented above have been de-
veloped for the Interaction and BProvider elements.
Moreover, templates for generating their correspond-
ing activators have been developed too, using the data
of the main elements (the ComponentActivator
using the Component data, etc.).

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented and approach for
building a Software Factory for pervasive systems, fo-
cusing in the definition of a product line for this kind
of systems. We have previously experimented the
benefits of the application of similar approaches. Our
research group have developed a model driven de-
velopment method (called OO-Method (Pastor et al.,
2001)) with full code generation capabilities that has
been implemented in the OlivaNova Model Execu-
tion System 4. Our aim is to apply these successful
ideas to pervasive systems development. Concretely,
we are working with a specific kind of pervasive sys-
tems: home automation systems.
Currently our future work is focused on four impor-
tant tasks: (1) specifying and implementing the rules

4http://www.care-t.com/

for automatically transforming the Perv-ML models
into models built using the metamodel introduced
in this work, (2) extending the architecture and the
framework in order to support advanced capabilities
like dynamic evolution or high robustness, (3) provid-
ing new interfaces for accessing the system by means
of new devices, like PDAs, or directly using natural
language, and (4) providing industrial tool support for
the application of the software factory.

REFERENCES

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-Oriented Software Ar-
chitecture, volume 1: A System of Patterns. Wiley.

Fernandes, J. E., Machado, R. J., and ao Álvaro Carvalho,
J. (2004). Model-Driven Methodologies for Pervasive
Information Systems Development. In I International
Workshop on Model-Based Methodologies for Perva-
sive and Embedded Software (MOMPES), pages 15 –
23. Turku Centre for Computer Science.

Greenfield, J., Short, K., Cook, S., and Kent, S. (2004).
Software Factories. Wiley Publising Inc.

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson,
S., Anderson, T., Bershad, B., Borriello, G., Gribble,
S., and Wetherall, D. (2004). System Support for Per-
vasive Applications. ACM Transactions on Computer
Systems, 22(4):421–486.

Kirby, G., Dearle, A., Morrison, R., Dunlop, M., Connor,
R., and Nixon, P. (2003). Active architecture for per-
vasive contextual services. In International Workshop
on Middleware for Pervasive and Ad-hoc Computing
(MPAC 2003). Rio de Janeiro.

Muñoz, J. and Pelechano, V. (2005). Building a Software
Factory for Pervasive Systems Development. In Os-
car Pastor and Joo Falco e Cunha, editor, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, Porto, Portugal, June 13-
17, volume 3520 of Lecture Notes in Computer Sci-
ence, pages 329–343. Springer-Verlag GmbH.

Muñoz, J., Pelechano, V., and Fons, J. (2004). Model
Driven Development of Pervasive Systems. In I In-
ternational Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES),
pages 3 – 14. Turku Centre for Computer Science.

Object Management Group (2003). Model Driven Archi-
tecture Guide.

Pastor, O., Gómez, J., Insfrán, E., and Pelechano, V. (2001).
The OO-Method Approach for Information Systems
Modelling: From Object-Oriented Conceptual Model-
ing to Automated Programming. Information Systems,
26(7):507–534.

The Open Services Gateway Iniatite (2003). OSGi Service
Platform (Release 3). IOS Press.

Weiser, M. (1991). The Computer for the 21st Century.
Scientific American, 265(3):94–104.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

342


