
USING RELATIONAL DATABASES IN THE ENGINEERING
REPOSITORY SYSTEMS

Erki Eessaar
Department of Informatics, Tallinn University of Technology, Raja 15,12618 Tallinn, Estonia

Keywords: Relational data model, Object-relational data model, Repository, Metamodeling.

Abstract: Repository system can be built on top of the database management system (DBMS). DBMSs that use
relational data model are usually not considered powerful enough for this purpose. In this paper, we analyze
these claims and conclude that they are caused by the shortages of SQL standard and inadequate
implementations of the relational model in the current DBMSs. Problems that are presented in the paper
make usage of the DBMSs in the repository systems more difficult. This paper also explains that relational
system that follows the rules of the Third Manifesto is suitable for creating repository system and presents
possible design alternatives.

1 INTRODUCTION

"A repository is a shared database of information
about the engineered artifacts." (Bernstein, 1998)
These artifacts can be software engineering artifacts
like models and patterns. Repository system contains
a repository manager and a repository (database)
(Bernstein, 1998). Bernstein (1998) explains that
repository manager provides services for modeling,
retrieving, and managing objects in the repository
and therefore must offer functions of the Database
Management System (DBMS) and also additional
functions.

The repository manager uses custom-built data
manager or general-purpose DBMS in order to
manage artifacts. System Arcadia (Taylor et al.,
1988) is an example of the system that uses custom-
built object manager. Omega (Linton, 1984), The C
Information Abstraction System (Chen et al., 1990),
PARSE (Gray, 1997) and CommonKADS repository
(Allsop et al., 2002) are examples of the repository
systems that use a Relational DBMS (RDBMS).
RDBMS in this case is a system which uses a
database language that conforms to SQL:1992
standard or is even earlier relational database
language. Object-Oriented DBMSs have been often
seen as a suitable platform for building repository
systems (Bernstein, 1998) (Dittrich et al., 2000).
Object-Relational DBMS (ORDBMS) combine
features of the relational data model and object-
oriented programming languages. An example of an
early attempt to combine relational and object

technologies in one data model is ROSE (Hardwick
& Spooner, 1989) that is experimental data
management system for the interactive engineering
applications. Bernstein (2003) envisions that object-
relational systems are good platform for the model
management systems. ORIENT (Zhang et al., 2001)
and SFB-501 Reuse Repository (Mahnke & Ritter,
2002) are examples of the repository systems that
use a commercial ORDBMS. ORDBMS in this case
is a system which uses a database language that
conforms to SQL:1999 or later standard.

Relational data model was introduced by Codd
(1970) and has been extensively studied since then.
One notable revision is the Third Manifesto (Date &
Darwen, 2000), (Date, 2003). Relational model and
relational systems are often criticized because they
are arguably not powerful enough for the repository
system.

In this work we show that these problems are
caused by the shortages of SQL standard and
systems that implement that standard. There exists
analyzes of SQL and comparisons of it with the
proposals of the Third Manifesto (Date & Darwen,
2000), (Pascal, 2000), (Date, 2003) but they don't
discuss problems in the context of specific
application areas like engineering repositories.

In this paper we also explain how a relational
system that follows the rules of the Third Manifesto
can be used in order to create a repository database.
In this case we wouldn't have problems that are
present in current ORDBMSs.

30
Eessaar E. (2006).
USING RELATIONAL DATABASES IN THE ENGINEERING REPOSITORY SYSTEMS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 30-37
DOI: 10.5220/0002455800300037
Copyright c© SciTePress

We adopt definition (Date, 2003) according to
which the relational data model consists of an
extensible collection of scalar types, relation type
generators, facilities for defining relation variables
(relvars) of such types, assignment operations for
assigning relation values (relations) to relvars and an
extensible collection of generic relational operators
for deriving relation values from other relation
values.

The rest of the paper is organised as follows.
Section 2 contains results of the literature study
about the problems of the relational model and
RDBMSs that hamper their usage in the repository
systems. Section 3 explains how a RDBMS which
data model follows the rules of the Third Manifesto
can be used in a repository system. Nowadays much
attention is paid to the ORDBMSs. Section 4
describes problems of the current ORDBMSs that
make their usage in the repository systems more
difficult. Section 5 summarizes and points to the
future work with the current topic.

2 LITERATURE STUDY

Next we classify problems of the relational model
and RDBMSs based on the literature study and
analyze these problems in terms of the Third
Manifesto. Researchers and developers often present
these problems as reasons why relational database is
not the best choice to use in the engineering systems.
Table 1 presents problems of the relational model
that have been identified by the researchers.

Some issues that have been raised by the
researchers are actually orthogonal to the relational
model. We adopt the approach taken by Date and
Darwen (2000, p. 21): "The question as to what data
types are supported is orthogonal to the question of
support for the relational model." Even Codd (1970)
acknowledged possibility of the nonsimple domains
which permitted values are relations. One reason
why he argues for eliminating nonsimple domains is
that they require more complicated data structures at
the storage level than simple domains. Transaction
model is also orthogonal to the relational model.
Date and Darwen (2000) have requirement for
nested transactions in the section of the Other
Orthogonal Prescriptions.

Hierarchic and networked information can be
represented relationally (Pascal, 2000, chap. 7) Issue
of making queries based on data that represents
graph structure is addressed in the Third Manifesto.
Relational Model Very Strong Suggestion no. 6
(Date & Darwen, 2000, p. 213) requires that
relational language should provide shorthand for
expressing generalized transitive closure query.

Table 1: Problems of the relational model.
Problem Authors who mention

that problem
It is not powerful,
flexible and expressive
enough.

Hardwick and Spooner
(1989),Constantopoulos
et al. (1995).

Fragmentation. Data
about the object is in
the different relations.

Liu et al. (1996),
Gray (1997).

Performance problems
due to fragmentation.

Hardwick and Spooner
(1989), Gray (1997).

Lack of powerful type
system.

Taylor et al. (1988),
Miguel et al. (1990),
Emmerich et al. (1992),
Liu et al. (1996),
Gray (1997).

Poor support to data
that represents graph
structures. Lack of
facilities for making
queries based on such
data including finding
transitive closure.

Hardwick (1984),
Miguel et al. (1990),
Katz (1990),
Emmerich et al. (1992),
Gray (1997),
Lange et al. (2001).

Inappropriate
transaction models for
the engineering
systems.

Hardwick and Spooner
(1989)

Detailed semantics of
the relvars have to be
captured outside the
relational system.

Engle (2003)

Lack of possibility to
preserve semantics of
the relationships.

Zhang et al. (2001)

Fragmentation increases complexity to the user

of database according to Gray (1997). Virtual relvars
(views) help to overcome this problem in the system
that follows the rules of the Third Manifesto. View-
defining expression can join values of relvars that
contain information about the object. It can have
relation-valued attributes which values are
calculated using relational operator GROUP that
provides relation "nest" capability (Date & Darwen,
2000). Gray (1997) writes that fragmentation may
cause performance problems. But "performance is
fundamentally an implementation issue, not a model
issue." (Date, 2005)

Semantics of the relvar that is understandable to
the human user is specified by the external predicate
of the relvar (Date & Darwen, 2000, p. 179). It could
well be recorded in the catalogue of the database that
must be part of the database that it describes.
Semantics of the data that is understandable to the
system is represented by the internal predicate of the
relvar (Date, 2003, p. 262). Constraints to the value

USING RELATIONAL DATABASES IN THE ENGINEERING REPOSITORY SYSTEMS

31

of relvar specify internal predicate. Therefore
RDBMS should provide means for defining tuple-
attribute-, relvar- and database constraints.

Semantics of the relationship determine
constraints that are used in order to implement this
relationship and operations that may be performed
with the data that participate in the relationships
(Zhang et al., 2001). Relational language may
contain shorthand statements that cause creation of
the database objects that implement particular type
of relationship. An example is a generalization
relationship (Pascal, 2000, p. 158).

Table 2: Problems of the RDBMSs.

Problem Authors who mention
that problem

Views (including
updatable) are
inadequately supported.

Haynie (1981),
Emmerich et al. (1992).

Performance problems. Linton (1984),
Miguel et al. (1990),
Chen et al. (1990),
Lange et al. (2001).

Inappropriate
transaction models.

Katz (1990),
Emmerich et al. (1992),
Gray (1997).

Inadequate
concurrency control
mechanisms.

Constantopoulos et al.
(1995)

Lack of versioning
facilities.

Emmerich et al. (1992),
Gray (1997).

Lack of access control
on a level of single
tuples in a relation

Emmerich et al. (1992)

Lack of distributed and
multi-database
architectures

Gray (1997)

Lack of configuration
management

Gray (1997)

Lack of possibilities to
have cooperative work
processes

Gray (1997)

Table 2 presents problems of the RDBMSs that

are mentioned in the literature. Except problems
with views, all other problems are orthogonal to the
relational model. Problems with the views are
problems of the implementation of the relational
model. Problems that are mentioned in Table 1 and 2
should primarily cause improvement of the
implementation and standards but not necessarily
invention of new data models.

3 USING RELATIONAL DBMS IN
THE REPOSITORY SYSTEM

A repository system permits management of artifacts
that are created using some language that belongs to
the set of its supported languages. Repository system
should allow to add new languages to this set in
order to be most useful. Abstract syntax of the
language can be specified using metamodel
(Greenfield & Short, 2004). Each repository has an
information model that "specifies a model of the
structure and semantics of the artifacts that are
stored in the repository." (Bernstein, 1998)

Information model contains general and
metamodel specific part (see Figure 1). The latter is
union of metamodels of languages that are supported
by the system.

We propose to implement the information model
in the relational database using a set of relation
variables (relvars), data types (types), operators and
integrity constraints. There is more than one possible
design of the repository.
1. Encapsulated artifact types: Each artifact type

has a corresponding scalar type and a base relvar
in a database. Artifact is recorded as a tuple that
is part of the value of this relvar.

2. Encapsulated artifact element types: Each
artifact element type ET has a corresponding
scalar type T and relvar R with an attribute that
has type T.

3. Not-encapsulated artifact element types: Each
artifact element type has a corresponding relvar
where each property of the element is repre-
sented by one attribute with the appropriate type.
Artifact is recorded as a set of tuples that are part

of values of more than one relvar in case of design 2
and 3. Design 1 and 2 don't eliminate complexity.
They require more complex scalar type and scalar

Figure 1: Example of the information model.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

32

operator specifications than design 3. In general,
types should correspond to properties and relvars to
entities (Date & Darwen, 2000, appendix C).
Therefore we choose design alternative 3. Next we
explain this design alternative more thoroughly.

Each artifact element type is implemented using
at least following database objects:
1. Exactly one relation type RELATION {H}

where H is heading of the relation in the form
(C1,..., Cn). C1 ... Cn are pairs of type name and
attribute name. Each attribute corresponds to one
property of the artifact element type.

2. Scalar types that are used in the pairs C1 ... Cn.
3. Set of operators that allow selecting and

modifying components of the possible
representation of these scalar types.

4. Exactly one base relvar with the type
RELATION {C1,...,Cn}.

5. Let's assume that we have a generalization/
specialization relationships between element
types ET1 and ETn in the information model. ETk
is supertype and ETk+1 is its direct subtype (1≤k<
n). Relvar Rk that corresponds to ETk and relvar
Rk+1 that corresponds to ETk+1 are associated
using foreign key. For each element type where
k>1 we have to create a corresponding virtual
relvar. For example, element type ETk+1 has
corresponding virtual relvar Vk+1 that joins
values of relvars R1,..., Rk+1. If one assigns a new
value to Vk+1, then system must assign a new
value to all the relvars R1,...., Rk+1.
Integrity constraints – type-, attribute-, relval-

and database constraints enforce well-formedness
rules of the artifacts. Model management operations
like Merge, Diff, Compose etc. (Bernstein, 2003)
can be implemented using read only relation valued
operators.

We illustrate our ideas by using a simple
software design language SimpleM that was
originally presented by Serrano (1999) in order to
introduce VCt specification language. SimpleM
specifies one diagram type. It is used for creating
simple state diagrams. Diagram is a kind of artifact.
Metamodel of the language is presented in the
metamodel specific part in figure 1.

Serrano (1999) describes well-formedness rules
of the language. We have modified rules R1 and R2.

(R1): Both StartState and State have a label with
a name that is unique amongst all other states. (R2):
There is at most one StartState in the repository.
(R3): "The StartState can only be connected to
States by outgoing Events." (R4): "Any pair of
States is connected at most by two Events, one in
each direction." (R5): "Loop Events, i.e. Events that
connect a State to itself, are not allowed."

Next we present examples of statements for
creating integrity constraints. They are written in

TutorialD relational language and have been tested
in the prototypical DBMS Rel (Voorish, 2005).
Tutorial D language has been proposed in the Third
Manifesto (Date & Darwen, 2000) and dialect used
by Rel is based on that proposal.
CONSTRAINT C_2 (COUNT(StartState)<=1);

CONSTRAINT C_3 IS_EMPTY ((Event RENAME
(element_id# AS el_id#, destination AS
element_id#) JOIN State) JOIN
StartState);

CONSTRAINT C_5 (IS_EMPTY (Event WHERE
origin=destination));

CONSTRAINT C_6 IS_EMPTY (Artifact_
element SEMIMINUS Element_in_artifact);

Each relvar must have at least one candidate key.
Some well-formedness rules can be enforced by
creating appropriate key constraints. Rule R1 can be
enforced by creating the relvar constraint
KEY{name} in the relvar State. It declares, that name
of the State is a candidate key. Rule R4 can be
enforced by creating the relvar constraint
KEY{origin, destination} in the relvar Event.
Constraint KEY {artifact_id#, element_id#} in the
relvar Element_in_artifact ensures, that each
element can participate only once in the artifact.
Together with the constraint C_2 they guarantee that
each diagram (artifact) can contain at most one
StartState.

Rules R2 and R5 are enforced by the relvar
constraints C_2 and C_5, respectively. IS_EMPTY
(<relation exp>) is a scalar operator that evaluates to
true if the body of the relation denoted by <relation
exp> contains no tuples (Date et al., 2003).
Constraints C_3 and C_5 could also be created using
Count operator (Count(<relation exp>)=0).

Rule R3 is enforced by the database constraint
C_3. C_3 is created based on the reformulation of
R3 to the equivalent rule R3'. (R3'): StartState can't
be destination of any event. C_3 is a database
constraint and not a relvar constraint because it
references to more than one relvar.

Database constraint C_6 ensures that each
element is part of at least one artifact. It uses
relational operator SEMIMINUS (Date, 2003) in
order to find tuples of one relation that have no
counterpart in another.

If a relvar in a database gets a new value, then
DBMS checks immediately conformance of this
value to the integrity constraints and rejects invalid
changes. Our earlier article (Eessaar, 2005) explains
principles of the repository system that follows
previously described principles and checks well-
formedness of an artifact only if user of the system

USING RELATIONAL DATABASES IN THE ENGINEERING REPOSITORY SYSTEMS

33

wants that. It explains also how to implement
versioning in such a system.

4 USING CURRENT ORDBMS IN
THE REPOSITORY SYSTEM

Metamodel of the artifact language can be
implemented in a object-relational database using a
set of built-in- and user-defined data types, domains,
base tables and virtual tables (views), built-in- and
user defined routines, triggers, sequence generators
and integrity constraints.

This section presents analysis of the problems of
SQL that make usage of the current ORDBMSs in
the repository systems more difficult. It is one result
of this paper. Some problems are caused by the
shortages of SQL standard and some are caused by
the incomplete implementation of the standard in the
ORDBMSs. Following description of SQL standard
is based on SQL:1999 (Gulutzan & Pelzer, 1999)
and SQL:2003 (Melton, 2003). We also compare
existing standard and systems to proposals of the
Third Manifesto.

Current ORDBMSs make it difficult to use
declarative constraints in a database in order to
enforce well-formedness rules of the artifacts.
Firstly, separation of "domain" and "type" concept in
SQL causes problems. Let's assume that we want to
specify that names of patterns can't be empty strings
or strings that contain only spaces or underscores.
The Third Manifesto treats concepts "domain" and
"data type" as synonyms. It prescribes that relational
system should allow specification of new scalar
types and scalar operators which declared types of
parameters are scalar types. Type can be specified
using type constraints. System has to enforce strong
typing by checking that operands that participate in
the operation have a right type.

In SQL a data type is "a set of representable
values" (Melton, 2003, p. 11) and a domain is "a set
of permissible values" (Melton, 2003, p. 49).
According to Mattos and DeMichiel (1994)
specialization by constraints should be prohibited
because it requires overloading of operators.
Negative implications of this approach are discussed
by Date and Darwen (2000, appendix G). We add
that if user wants to define a set of valid data values
by adding constraints to the predefine type, then one
has to create a domain object in SQL. It is not
possible to create a new domain based on existing
one. In addition, Türker and Gertz (2001) evaluate
seven DBMSs that use SQL language and note that
only one of them supports domain objects.

If a user wants to define a new type in SQL,
based on one predefined type and achieve strong

typing, then a distinct type has to be created. One
can't use constraint definitions there. One also has to
use a predefined type as a base type for distinct type
and can't use distinct type as a base type for the
domain. In case of using distinct or structured types
one has to check correctness of the attribute values
using the methods of this type. Methods can be
implemented using some imperative language (SQL
procedural extensions or other). Greenfield and
Short (2004, p. 227) adopt definition: "An
imperative specification describes instructions to be
executed without describing the desired results of
execution". Lloyd (1994) shows advantages of the
declarative programming languages compared to
imperative languages which include easier teaching,
clearer semantics, improved programmer
productivity and better support to meta-
programming and parallelism.

Date and Darwen (2000) treat concepts
"operator" and "function" as synonyms but use the
term "operator". SQL (starting from SQL:1999)
specifies statements for creating user defined
functions but don't specify statement for creating
operators. It is not possible to determine more
convenient infix, prefix or postfix notation that is
used in order to call this function. On the other hand,
SQL dialect of PostgreSQL (PostgreSQL, 2005) and
Oracle (Oracle, 2005) allow to create user defined
operators as well as user defined functions.

Date et al. (2003, p. 22) introduces the scalar
operator IS_EMPTY that could be built-in. For
example, it is useful in order to specify constraints
(see section 3). Currently there is not such built-in
operator or function in SQL (Melton, 2003) and one
has to program it using the Count function.

Current ORDBMSs have problems with the
relvar and database constraints. Relvar constraint is
associated with exactly one relvar and database
constraint is associated with two or more relvars
(Date, 2003). Relvar constraint can be implemented
as a CHECK constraint. There exists ORDBMSs
like PostgreSQL (PostgreSQL, 2005) and Oracle
(Oracle, 2005) that don't allow to use subqueries in
the CHECK constraint although SQL standard
permits that. Relvar and database constraints can be
implemented using assertions that constrain the set
of valid values for one or more base tables in SQL
(Gulutzan & Pelzer, 1999). Unfortunately Ceri et al.
(2000) note that many RDBMSs don't support
assertion objects although this type of object is
specified in SQL standard. Türker and Gertz (2001)
note in the review of integrity constraints in the
different DBMS-s: "assertions are in general not
available and are unlikely to be offered in the near
future". Cochrane et al. (1996) write that RDBMSs
don't support assertions because they are "extremely
expensive to support". Maybe it means that assertion

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

34

reduces performance of the system? But
performance is an issue of the implementation of the
data model. Alternative method for enforcing
constraints in the current ORDBMSs is to use
imperative programs in the SQL-invoked routines or
triggers that where both first time standardized in
SQL:1999. If data in the database is changed using
SQL-invoked routines, then they can check the well
formedness rules. In this case routines must be the
only means for modifying data. Systems like UML-
repository (Marder et al., 1999), and business-rule
enforcer (Zimbrão et al., 2003) use declarative OCL
constraints in order to specify database constraints.
They can't use assertions in order to implement these
constraints and have to generate triggers. Instead of
one declarative constraint we may need many
triggers that are associated with different tables in
order to react to all the relevant events. For example,
constraint C_3 (see section 3) can be implemented
using insert and update triggers that are associated
with the tables Event and StartState.

If triggers have sufficient performance compared
to assertions, then creation of the declarative
constraint at the model level could cause automatic
creation of the imperative programs (triggers) at the
implementation level.

DBMS should have information about semantics
of relationships between entity types in order to be
able enforce properties of the relationships and
answer to the queries (Zhang et al., 2001).
Generalization relationship is an example of a
generic relationship that is often used in the
metamodels. For example, StartState is a State (see
Figure 1). SQL standard defines language constructs
for creating subtables and supertables that seem
suitable in order to implement this kind of
relationship. Both subtable and supertable must be
typed tables and structured type on which subtable is
defined must be subtype of the structured type on
which supertable is defined (Date, 2003). As stated
earlier, it is not possible to use declarative
constraints in the structured type specification.

Non-standard approach is used in PostgreSQL
(PostgreSQL, 2005) where subtable and supertable
don't have to be typed tables. PostgreSQL
implementation of subtable-supertable feature is
immature because many declarative constraints of
the supertable are not inherited by the subtable.

Date and Darwen (2000) show that desired
functionality can be achieve in the relational system
that follows the rules of the Third Manifesto,
without using subtable-supertable feature and
therefore raise question about usefulness it. They
propose that each subtable must have corresponding
virtual relvar that joins relations that correspond to
the subtable and supertable. Value of the virtual
relvar must be updatable and updates must propagate

to the base relvars (Date & Darwen, 2000).
Relational language could have special statement in
order to create relvar that is conceptually associated
with other relvar through generalization relationship
(Pascal, 2000). This kind of statement causes
creation of necessary base- and virtual relvars.

SQL:1992 and earlier standards don't allow to
use joins in the updatable views (Date, 2003).
Starting from SQL:1999 views defined as one-to-
one or one-to-many join of two base tables are
updatable (Date, 2003). Unfortunately there are
ORDBMSs that don't support SQL standard in this
regard. For example, in PostgreSQL all views are
not-updatable without further programming
(PostgreSQL, 2005). In Oracle DML statement must
affect only one underlying table of the updatable
join view (Oracle, 2005). But in this case system
needs to add data to all the base tables that
participate in the join.

Alternative is to use rules (PostgreSQL, 2005) or
instead-of triggers (Oracle, 2005) that are associated
with a view in order to achieve its updatability.
These objects require additional programming and
are not-standardized features.

Yet another possibility is to use triggers that are
associated with the base tables. Let's assume that
table Tsub is a subtable and Tsup is its supertable. For
example, we could create delete and update triggers
that are associated with Tsub. Their task is to delete
corresponding row from Tsup then row in Tsub is
deleted and update primary key of Tsup then
corresponding foreign key is updated in Tsub,
respectively. This approach also requires insertion of
new rows into Tsub and Tsub within one transaction
using two different statements. In contrast, the Third
Manifesto states that constraints must be satisfied at
statement boundaries and relational language must
have multiple form of the assignment operation in
which several individual assignments to relvars are
performed in parallel as a single logical operation
(Date & Darwen, 2000).

Ceri et al. (2000) notes that handcrafted triggers
are error-prone and triggers should be created by the
system. Triggers or rules that implement supertable-
subtable feature must be automatically generated by
the repository system then new base- or virtual table
is added to the repository database. It increases
complexity of the system.

Standardization of some important features that
where strongly suggested by the Third Manifesto has
begun in SQL:1999 or SQL:2003. It takes time
before ORDBMSs start to fully implement the
standard in this regard.

Recursive queries allow to find transitive closure
of graph structure (introduced in SQL:1999).
Information about the associations between artifacts
as well as associations between elements of artifacts

USING RELATIONAL DATABASES IN THE ENGINEERING REPOSITORY SYSTEMS

35

is recorded in a repository. Associations and
associated elements form a graph structure. Example
of the query that is needed then pattern is modified:
Find all patterns in the pattern language PL which
directly or indirectly depend on pattern P.

Multisets (introduced in SQL:2003) could be
used in the views that allow to present artifact to a
user without fragmentation. SQL specifies UNNEST
operator that allows to present elements of a multiset
as rows of a virtual table. Integrity of these rows can
be checked by the table or database constraints. As
we said earlier, current DBMSs provide limited
support for declarative constraints. It hampers usage
of the columns that have multiset types in the base
tables. Examples of the constraints are restrictions to
the cardinality of a multiset or requirement that a
multiset shouldn't contain repeating elements.

Table-functions (introduced in SQL:2003) allow
to implement parameterized relational operators and
return multiset (bag) of rows. They help to
implement queries that search artifacts or statistical
information from the repository.

Sequence generators generate values for the
candidate keys (introduced in SQL:2003).

Multiset can contain repeating elements. It is not
consistent with the Third Manifesto that prohibits
duplicate tuples in a body of a relation. Developer
who wants to use sets of rows instead of multisets
must be continuously aware that most of SQL
statements must explicitly state it.

5 CONCLUSIONS

In this paper, we showed that current RDBMSs and
ORDBMs have problems that hamper their usage in
the repository systems. Some necessary features like
views and constraints are not object-oriented and are
required by the earlier SQL standards. They are not
implemented correctly or not implemented at all in
the current DBMSs. In addition, SQL is not a correct
implementation of the relational model. These
shortages cause criticism towards SQL and
relational model. They cause addition of new
features to SQL standard and dialects that would be
unnecessary if SQL fully conforms to the relational
model. Some object-oriented features that are added
to the ORDBMSs are actually required by the Third
Manifesto. We explained how the RDBMS that
follows these requirements can be used in the
repository system.

Future work will include the creation of a
prototype repository system that uses RDBMS that
follows the rules of the Third Manifesto.

REFERENCES

Allsop, D. J., Harrison A., & Sheppard, C. (2002). A
database architecture for reusable Common KADS
agent specification components [Electronic version].
Knowledge-Based Systems, Vol. 15, No. 5, 275-283.

Bernstein, P. A. (1998). Repositories and Object-Oriented
Databases [Electronic version]. SIGMOD Rec. Vol. 27,
Issue 1, Mar. 1998), 88-96.

Bernstein, P. A., (2003). Applying Model Management to
Classical Meta Data Problems [Electronic version]. In
Proceedings of the Conference on Innovative Data
Systems Research 2003, 209-220.

Ceri, S., Cochrane, R., & Widom, J. (2000). Practical
Applications of Triggers and Constraints: Success and
Lingering Issues [Electronic version]. In Proceedings
of the 26th international Conference on Very Large
Data Bases, 254-262.

Chen, Y.F., Nishimoto, M. Z., & Ramamoorthy, C. V.
(1990). The C Information Abstraction System
[Electronic version]. IEEE Transactions on Software
Engineering, Vol.16, No. 3, March 1990, 325-334.

Cochrane, R. J., Pirahesh, H., & Mattos, N. M. (1996).
Integrating triggers and declarative constraints in SQL
database sytems [Electronic version]. In Proceedings
of the 22th international Conference on Very Large
Data Bases, 567–578.

Codd, E. F. (1970). A relational model of large shared data
banks [Electronic version]. Comm. ACM, Vol. 13, No.
6, 377-387.

Constantopoulos, P., Jarke, M., Mylopoulos, J., &
Vassiliou, Y. (1995). The Software Information Base:
A Server for Reuse [Electronic version]. VLDB
Journal, 4 (1995), Boxwood Press, Pacific Grove, CA,
1- 43.

Date, C. J., & Darwen, H. (2000). Foundation for Future
Database Systems: The Third Manifesto, Addison-
Wesley. Reading, Massachusetts, 2nd edition.

Date, C. J. (2003). An Introduction to Database Systems,
Pearson/Addison Wesley. Boston, 8th edition.

Date, C. J. (2005) Database in depth : relational theory
for practitioners, O'Reilly. Beijing; Cambridge.

Date, C. J., & Darwen, H., & Lorentzos, N. A. (2003).
Temporal Data and the Relational Model, Morgan
Kaufmann. San Diego, CA.

Dittrich, K., Tombros, D., & Geppert, A. (2000).
Databases in Software Engineering: a roadmap
[Electronic version]. In Proceedings of the Conference
on the Future of Software Engineering. ICSE '00.
ACM Press, New York, NY, 293-302.

Eessaar, E. (2005). Truly Relational Databases as a
Platform for the Artifact Management. In Proceedings
of the Fourteenth International Conference on
Information Systems Development: Pre-Conference
14-17 August 2005, Karlstad, Sweden, 207-218.

Emmerich, W., Schäfer, W., & Welsh, J. (1992). Suitable
Databases for Process-centred Environments Do not
yet Exist [Electronic version]. In Proceedings of the
EWSPT '92, 94-98.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

36

Engle, P. (2003). Data Modeling – Left and Right. The
Data Administration Newsletter, Issue 24, April 2003.
Retrieved October 07, 2005, from

http://www.tdan.com/i024hy03.htm#_edn15
Gray, P. (1997). CASE tool construction for a parallel

software development methodology [Electronic
version]. Information and Software Technology, Vol.
39, Issue 4, 235-252.

Greenfield, J., & Short, K. (2004). Software Factories:
Assembling Applications with Patterns, Models,
Frameworks, and Tools, John Wiley & Sons.
Indianapolis.

Gulutzan, P., & Pelzer, T. (1999). SQL-99 Complete,
Really, Miller Freeman. Lawrence.

Hardwick, M. (1984). Extending the relational database
data model for design applications [Electronic
version]. In Proceedings of the 21st Conference on
Design Automation. IEEE Press, Piscataway, NJ, 110-
116.

Hardwick, M., & Spooner, D. L. (1989). The ROSE data
manager: Using object technology to support
interactive engineering applications [Electronic
version]. IEEE Transactions on Knowledge and Data
Engineering. Vol. 1, no. 2, 285-290.

Haynie, M. N. (1981). The relational/network Hybrid data
model for Design Automation Databases [Electronic
version]. In Proceedings of the 18th Conference on
Design Automation. IEEE Press, Piscataway, NJ, 646-
652.

Katz, R.H. (1990). Toward a Unified Framework for
Version Modeling in Engineering Databases
[Electronic version]. ACM Computing Surveys 22:4,
1990, 375– 408.

Lange., C., Sneed, H. M., & Winter, A. (2001).
Comparing Graph-based Program Comprehension
Tools to Relational Database-based Tools [Electronic
version]. In Proceedings of the 9th International
Workshop on Program Comprehension. IEEE
Computer Society. Los Alamitos. 209--218.

Linton, M. (1984). Implementing relational views of
programs [Electronic version]. In Proceedings of ACM
SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
132–140.

Liu, C., Li, H., & Orlowska, M. E. (1996). Object-
Oriented Design of Repository for Enterprise
Workflows. Retrieved October 5, 2005 from
University of Queensland, DSTC Web site

 http://www.dstc.uq.edu.au/Research
/Distributed_Databases/papers/Liu-OOD-1996.ps

Lloyd, J. (1994) Practical Advantages of Declarative
Programming [Electronic version]. Invited Lecture,
GULP-PRODE '94.

Mahnke, W., & Ritter, N. (2002). The ORDB-based SFB-
501-Reuse-Repository [Electronic version]. In
Proceedings of the 8th International Conference on
Extending Database Technology, 745-748.

Marder, U., Ritter, N., & Steiert, H. P. (1999). A DBMS-
based Approach for Automatic Checking of OCL
Constraints [Electronic version]. In OOPSLA’99-

Workshop "Rigourous Modeling and Analysis with the
UML: Challenges and Limitations", Denver, Co.

Mattos, N., & DeMichiel, L. G., (1994). Recent design
trade-offs in SQL3 [Electronic version]. SIGMOD
Rec. 23, 4 (Dec. 1994), 84-90.

Melton, J., ISO/IEC 9075-2:2003 (E) Information
technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation). August, 2003.
Retrieved December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

Miguel, L., Kim, M. H., & Ramaroothy, C. V. (1990). A
Knowledge and Data Base for Software Systems
[Electronic version]. In Proceedings of the 2nd
International IEEE Conference on Tools for Artificial
Intelligence, 417-423.

Oracle® Database SQL Reference 10g Release 1 (10.1)
Part Number B10759-01. Oracle Corp., Retrieved
October 4, 2005, from http://download-
west.oracle.com/docs/cd/B14117_01/server.101/
b10759/toc.htm

Pascal, F. (2000). Practical issues in Database
Management. A Reference for the Thinking
Practioner, Addison-Wesley. Boston, Mass, 1st
edition.

PostgreSQL 8.0.3 Documentation. Retrieved October 4,
2005, from http://www.postgresql.org/docs/8.0/
interactive/index.html

Serrano, J. A. (1999). Formal Specifications of Software
Design Methods [Electronic version]. 3rd Irish
Workshop on Formal Methods.

Taylor, R.N., Belz, F.C., Clarke, L.A., Osterweil, L.,
Selby, R. W., Wileden, J. C., Wolf, A. L., & Young,
M. (1988). Foundations for the Arcadia environment
architecture [Electronic version]. In Proceedings of the
Third ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments. SDE 3. ACM Press, New
York, NY, 1-13.

Türker, C., & Gertz, M. (2001) Semantic integrity support
in SQL:1999 and commercial (object-) relational
database management systems [Electronic version].
The VLDB Journal, Vol. 10, No. 4 (Dec. 2001), 241–
269.

Voorish, D. (2005). An Implementation of Date and
Darwen's "TutorialD". Retrieved March 26, 2005 from
http://dbappbuilder.sourceforge.net/Rel.html

Zhang, N., Ritter, N., & Härder, T. (2001). Enriched
Relationship Processing in Object-Relational Database
Management Systems [Electronic version]. In
Proceedings of the 3rd International Symposium on
Cooperative Database Systems for Advanced
Applications, 53-62.

Zimbrão, G., Miranda, R., Souza, J.M., Estolano, M.H., &
Neto, F.P. (2003). Enforcement of Business Rules in
Relational Databases Using Constraints [Electronic
version]. SBBD 2003, 129-141.

USING RELATIONAL DATABASES IN THE ENGINEERING REPOSITORY SYSTEMS

37

