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Abstract: Collaborative Filtering (CF) is one of the most popular recommendation techniques. It is based on the 
assumption that users with similar tastes prefer similar items. One of the major drawbacks of the CF is its 
limited scalability, as the complexity of the CF grows linearly both with the number of available users and 
items. This work proposes a new fast variant of the CF employed over multi-dimensional content-
addressable space. Our approach heuristically decreases the computational effort required by the CF 
algorithm by limiting the search process only to potentially similar users. Experimental results demonstrate 
that our approach is capable of generate recommendations with high levels of accuracy, while significantly 
improving performance in comparison with the traditional implementation of the CF. 

1 INTRODUCTION 

The quantity of available information grows rapidly 
and exceeds our cognitive processing capabilities. 
Thus, there is a pressing need for intelligent systems 
providing services tailored to users' real needs and 
interests. Recommender Systems (RSs) (Resnick & 
Varian, 1997) are one of the commonly used 
approaches to address this problem. These systems 
assist users to select a suitable item among a set of 
potential selectable items through applying statistical 
and knowledge discovery techniques (Sarwar et al, 
2000). RSs are used in different domains, such as, 
movies (Good et al, 1999), jokes (Goldberg et al, 
2001), music (Aguzolli et al, 2002), and many 
others. 

Collaborative Filtering (CF) (Herlocker et al, 
1999) is probably one of the most familiar and most 
widely-used techniques to generate 
recommendations in RSs. It relies on the assumption 
that people who agreed in the past will also agree in 
the future (Shardanand & Maes, 1995). The input for 
the CF algorithm is a matrix of users' ratings on a set 
of items, where each row represents ratings of a 
single user and each column represents ratings on a 
single item. CF aggregates the ratings to recognize 
similarities between users and generates new 
recommendation for an item by weighting the 
ratings of similar users on the item.   

CF algorithm is typically partitioned to three 
generic stages: (1) Similarity Computation: 
weighting all the users with respect to their 
similarity with the active user (i.e., the user whose 
ratings are predicted), (2) Neighborhood Formation: 
selecting the most similar users for the prediction 
generation, and (3) Prediction Generation: 
computing the prediction by weighting the ratings of 
the selected users. 

A major drawback of CF is its limited scalability. 
The stages of Similarity Computation and 
Neighborhood Formation require comparing an 
active user with all the other users over all the 
available ratings. Hence, the complexity of the CF 
grows both with the number of users and items in 
the ratings matrix. For a matrix containing ratings of 
M users on N items, computational complexity of the 
above stages is O(MN). This poses a problem in 
real-life systems, where the recommendations are 
generated using millions of ratings on thousands of 
items, e.g., Web-based RSs. Although previous 
studies, such as (Breese et al, 1998), (Goldberg et al, 
2001), and (Chee et al, 2001) tackle the issue of 
reducing the computational effort required by the 
CF, it remains one of the most important issues in 
CF research.  

In this work we develop a fast heuristic variant 
of the CF algorithm that decreases the computational 
effort required by the Similarity Computation and 
the Neighborhood Formation stages. The basic 
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conjecture of the heuristic algorithm is that losing 
general completeness of the exhaustive search (1) 
has a minor negative effect on the accuracy of the 
predictions, but (2) significantly decreases the 
required computational effort. Thus, it provides a 
scalable approach, applicable to real-life scenarios 
with high number of users and items. 

The proposed heuristic approach is based on a 
notion of content-addressable data management 
(Ratnasamy et al, 2001), providing an adaptive 
topology for mapping of users' profiles to a multi-
dimensional space. This mapping implicitly clusters 
similar users and limits the Similarity Computation 
and the Neighborhood Formation stages to a 
heuristic search among highly similar users only.  

Experimental evaluation of the proposed 
approach demonstrates high efficiency and good 
accuracy of the proposed algorithm, in comparison 
with the traditional (exhaustive) KNN search. The 
algorithm is also highly scalable with the number of 
nearest neighbors to be found. 

The rest of the paper is organized as follows. 
Section 2 surveys the works focusing on the CF and 
the required computational effort reduction. Section 
3 describes CAN, Peer-to-Peer content-addressable 
platform for decentralized data management. Section 
4 describes the decentralized storage of users' 
profiles over CAN platform and elaborates on the 
proposed variant of the CF over CAN. Section 5 
presents and analyzes the experimental results. 
Finally, section 6 lists our conclusions and presents a 
list of open questions for future research. 

2 COLLABORATIVE FILTERING  

Collaborative Filtering (CF) is probably one of the 
most familiar and widely-used recommendation 
techniques. An input for the CF is so-called ratings 
matrix, where each user is represented by a set of 
ratings given on various items, and each item is 
represented by a set of ratings given by the users. 

CF requires similarity metric between users to be 
explicitly defined. The state-of-the-art CF systems 
exploit three similarity metrics: Cosine Similarity 0, 
Mean Squared Difference (MSD) (Pennock et al, 
2000), and Pearson correlation (Sarwar et al, 2000). 
This work focuses on the MSD, computing the 
degree of similarity between users x and y by: 
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where |x∩y| denotes the number of items rated by 
both users, and Rx,i denotes the rating of user x on 
item i. In some sense, simx,y can be considered as the 
dissimilarity of the users, as the lower the result of 
the MSD computation, the greater is the real 
similarity of the users. 

Prediction Pa,j for the rating of the user a on item 
j is computed as a weighted average of the ratings of 
his K most similar users, i.e., K nearest neighbors, 
by: 
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where Rx,y denotes the rating of user x on item i, Rz' 
denotes the average rating of user z, and simv,u 
denotes the level of similarity between users v and u. 

The Similarity Computation stage of the CF 
requires comparing the active user with every other 
user in the system. For a ratings matrix storing the 
ratings of M users on N items, the computational 
complexity of the Similarity Computation stage is 
O(MN). This points on the poor scalability of the 
Similarity Computation stage, as the complexity 
grows linearly with both the number of users and the 
number of items in the matrix. 

2.1 Reducing the Computational 
Effort Required by the CF 

Many works deal with decreasing the computational 
effort required by the CF. In general, it is achieved 
either by preprocessing the ratings matrix, or by 
distributing the computationally intensive stages of 
the CF among multiple machines. 

Various preprocessing techniques for decreasing 
the computational effort required by the CF (e.g., 
correlation coefficients, vector-based similarity, and 
statistical Bayesian methods) are discussed and 
analyzed in (Breese et al, 1998). Another technique, 
exploiting pre-clustering of the ratings matrix, is 
discussed in (Goldberg et al, 2001). There, principal 
component analysis is used to find two 
discriminative dimensions of the ratings matrix and 
all the vectors are projected onto the resulting plane. 
This inherently partitions the users to clusters or 
neighborhoods, which are further used to generate 
the recommendations. In (Chee et al, 2001), the 
authors use a tree-like data structure and apply a 
divide-and-conquer approach using an iterative K-
means clustering to group the users. This leads to 
smaller and more homogeneous clustering of users 
for the recommendations generation stage. 
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An alternative approach is to distribute the CF 
and the required computational effort among the 
users, such that every user independently computes 
its similarity with the active user. This is initially 
proposed in (Tveit, 2001) and elaborated in (Sarwar 
et al, 2001). The latter also develops a detailed 
taxonomy of the CF distribution approaches and 
presents implementation frameworks for different 
application domains. PocketLens project (Miller et 
al, 2004) compares five decentralized distributed 
architectures for the CF. The experiments show that 
performance of the decentralized mechanism is 
similar to the performance of the centralized CF, 
while it provides increased  robustness and security.  

Further improvements to the decentralized CF 
are discussed in (Han et al, 2004) that proposes 
Peer-to-Peer platform for decentralized management 
of user profiles. However, it approximates the 
identification of the most similar users, and 
therefore, the accuracy of the prediction is reduced. 

This work loosely bases on the ideas of CAN 
(Ratnasamy et al, 2001), content-addressable Peer-
to-Peer platform. We implement a fast heuristic 
variant of the CF, using CAN-like multi-dimensional 
space for maintaining connectivity of similar users. 
This allows to significantly decrease the 
computational effort required by the Similarity 
Computation and Neighborhood Formation stages 
through limiting the search process to a search 
among highly similar users only. 

3 CONTENT-ADDRESSABLE 
DATA MANAGEMENT  

This section present the general architecture of CAN 
(Ratnasamy et al, 2001), scalable decentralized data 
management platform. In CAN, the users are 
represented by nodes in virtual N-dimensional 
coordinate space. Each node maintains an N-
dimensional subspace, called a zone. For example, 
consider a 2-dimensional space partitioned to 3 
zones, maintained by the users A, B, and C (figure 1-
left).  
 

 
Figure 1: 2-Dimensional CAN Space. 

 

Two nodes are called neighbors if their 
coordinate spans overlap along N-1 dimensions and 

adjoin along one dimension (e.g., nodes A and B in 
figure 1-left). To maintain connectivity, each node 
maintains a table of pointers to its neighbors. CAN's 
routing algorithm greedily forwards messages to the 
nodes that are closer to the target node than the 
current node (the distance metric exploited is the 
discrepancy in the address space). Thus, the 
messages are routed between any pair of CAN nodes 
in a logarithmic number of hops. 

Also, CAN provides connectivity maintenance 
algorithm, stable to sporadic joins and departures of 
nodes. When a new node is inserted, it must be 
given its own zone. This is done by splitting a zone 
of one of the existing neighbors according to the 
following steps: (1) the new node finds an existing 
networks node, (2) the new node is routed to the 
target zone that will be split, and (3) the target zone 
is split and the neighbors of the new zone are 
updated to maintain connectivity and facilitate 
routings. Note, that only a subset of neighbors of the 
zone that was split is affected by the insertion of a 
new node. 

The issue of splitting the target zone (i.e., how to 
split the existing zone, where the new node was 
mapped to) is one of the important issues affecting 
the performance of CAN. A number of policies are 
proposed, analyzed and compared in (Ratnasamy et 
al, 2001). The simplest policy for the zones splitting 
is so-called ordered splitting. According to this 
policy, the number of dimension across which a 
zone is split, iteratively increases from 1 to N.  

For example, consider a node D joining CAN 
space (figure 1-middle). Assuming that the zone of a 
node C will be split, D is routed to C, and the zone is 
split across the horizontal dimension (i.e., the next 
split of the zones C or D will be performed across 
the vertical dimension and so forth). Finally, D 
notifies its neighbors, i.e., the nodes B and C, about 
the new node and the neighbors' pointers are 
updated. Note that in this case, only the zone that 
was split (C), and part of its neighbors (only B) are 
affected by the join of a node D, whereas other 
nodes are not affected. 

Disconnections of nodes are handled in a similar 
manner. Disconnecting node finds a neighbor node 
that will take the responsibility for its zone, and 
updates other neighbors about the departure. For 
example, consider node B disconnecting (figure 1-
right), and assume node D taking the responsibility 
for the zone previously managed by B.  

Thus, CAN provides a decentralized platform, 
supporting (1) dynamic space partitioning and zones 
allocation, (2) efficient routing algorithm, and (3) 
connectivity maintenance algorithm over virtual N-
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dimensional coordinate space. Note that distributed 
structure of CAN is not robust against sudden 
departures of node, as fault-tolerance is not one of 
the main goals of the platform. However, CAN 
facilitates completely decentralized self-manageable 
platform for content-addressable data management 
in distributed environment. 

4 CF OVER CONTENT-
ADDRESABLE SPACE 

This work proposes a fast heuristic variant of the CF 
algorithm. It uses content addressing architecture for 
the purposes of optimizing traditional exhaustive 
search to a search among highly similar users only. 
Although our algorithm is heuristic by nature, 
experimental results demonstrate that it facilitates 
efficient search process without hampering the 
accuracy of the generated recommendations.  

4.1 Mapping User Profiles 

The input for the CF algorithm is a matrix of users' 
ratings on items, where each row (vector) represents 
the ratings of a single user and each column 
represents the ratings on a single item. The total 
number of items (N) defines an N-dimensional 
space, where the coordinates range in each 
dimension corresponds the range of ratings on the 
respective item.  

To handle the ratings matrix in content-
addressable manner, we map it to CAN-like space. 
Each rating is projected using uniform injective 
mapping onto the appropriate dimension, such that 
the whole vector of length N is mapped to a single 
point in N-dimensional space. Thus, every user is 
represented in the space by a single node (whose 
location corresponds the set of ratings given by the 
user), and the respective zone (storing a list of 
neighbor zones). Users (through  their ratings 
vectors) can be dynamically inserted and removed, 
since connectivity maintenance algorithm guarantees 
that the structure remains connected regardless of 
joins and disconnections of the nodes.  

Deciding on the zones split policy affects the 
evolving structure of the ratings vectors. In our 
implementation, we used the above mentioned 
ordered splitting policy. This policy may be sub-
optimal in terms of the number of neighbor zones, 
resulting in less efficient algorithm, i.e., more 
comparisons or finding less similar neighbors. 
However, our experimental results indicate that the 

use of this simple policy considerably increases the 
efficiency of KNN, in comparison with traditional 
exhaustive search. Evaluating other splitting policies 
is beyond the scope of this work. 

In addition to the guaranteed connectivity, 
content-addressable space inherently clusters similar 
users. Thus, the distance between two similar users 
(in our case, according to the MSD similarity metric) 
is lower than the distance between two arbitrary 
users. This is achieved through the use of injective 
mapping, preserving users' similarity while inserting 
the ratings vectors into the content-addressable 
space. The next subsection shows a use of the 
inherent clustering for the purpose of developing fast 
heuristic variant of the CF algorithm. 

4.2 Heuristic Neighbors Search 

The Neighborhood Formation stage of the CF over 
the evolving N-dimensional space can be 
schematically described as heuristically expanding 
breadth-first search. The algorithm for finding K 
Nearest Neighbors (KNN) of a user x is briefly 
explained by the following pseudo-code. It uses two 
lists of size K: (1) CANDIDATES – list of candidates 
for nearest neighbors, and (2) KNN – list of real 
nearest neighbors. In principle, the algorithm needs 
the CANDIDATES list only, as the KNN list is 
completely static. For the sake of clarity, we show 
an algorithm that uses two lists.  
 

K_Nearest_Neighbors (user x) 
(1) let KNN and CANDIDATES be lists of 
    size K, initially empty 
(2) map(x) into the CAN space 
(3) foreach u∈map(x)∪ neighbors(map(x))  
(4)   compute distance(x,u) 
(5)   insert u into CANDIDATES, s.t.  
      CANDIDATES is sorted by distances 
(6) for i=1 to K 
(7)   choose v from CANDIDATES,  
      s.t. distance(x,v) is smallest 
(8)   for each w in neighbors(v) s.t.  
      distance(x,w) is not computed yet 
(9)   compute distance(x,w) 
(10)    insert w into CANDIDATES, s.t. 
       it remains sorted by distances 
(11)    move v from CANDIDATES to KNN 
(12)return KNN 

 

Initially, the algorithm pretends to map the active 
user x to its location in the N-dimensional space 
(step 2). Next, the algorithm identifies the zone  x is 
mapped to, and its neighbors, i.e., users managing 
the neighbor zones (step 3). For each of these zones, 
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the degree of similarity, i.e., the distance between x 
and the relevant node, is computed. The neighbor 
node is inserted into the CANDIDATES list such that 
the candidate nodes are sorted according to their 
distances from the active user x (steps 4 and 5). 

Then the algorithm iteratively performs the 
following operations: 
• Selects v, the nearest neighbor stored in the 

CANDIDATES list (step 7),  
• Identifies the neighbors of v that are not in the 

CANDIDATES list yet, computes their distances 
from x, and inserts them to the CANDIDATES, 
while keeping the list sorted (steps 8, 9, and 10).  

• Removes v from the CANDIDATES list and 
inserts it to the KNN list. 

Finally, the algorithm returns the resulting KNN list 
(step 12). 

Consider an example execution of the KNN 
search as illustrated in figure 2. The initial structure 
of 2-dimensional space is depicted in figure 2a. 
Assume that the active user is mapped to the zone e. 

 

 
Figure 2: Stages of KNN Search over 2-D CAN Space. 

Thus, e and its neighbors, i.e., nodes managing 
the zones c, d, f, and i, are the first candidates for the 
being nearest neighbors and they are added to the 
CANDIDATES list. Assume that the node managing 
the zone e is the closest one. It is moved from the 
CANDIDATES list to the KNN list (figure 2a). Since 
all the neighbors of e are already known, the next 
closest neighbor is chosen among its neighbors. 
Assume that the next closest neighbor is the node 
managing the zone f. It is moved from the 
CANDIDATES list to the KNN list, and its only new 
neighbor, node managing g, is added to the 
CANDIDATES list (figure 2b). The next closest 
neighbor is from the zone c, adding the node 
managing the zone b to the CANDIDATES list 
(figure 2c). Assume that the next closest neighbor is 
the node managing g (not a neighbor of e). It adds 
the node managing the zone h to the CANDIDATES 
list (figure 2d). This process is iteratively repeated 
until the KNN list contains K nearest neighbors.  

The proposed algorithm reduces the 
computational effort required by the Similarity 
Computation and the Neighborhood Formation 
stages, in comparison with the traditional CF 
algorithm, where an active user is compared with all 
the available users. Conversely, the proposed 
heuristic algorithm compares the active users with 
potentially similar users only.  

Since every user in the N-dimensional space 
continuously maintains an updated list of neighbors, 
any neighbor of a given user can be accessed 
through a single network hop. This is true regardless 
of the distance between the neighbors. Thus, the 
algorithm will also work in sparse spaces, where the 
distance between neighbors in the underlying 
network might be very high.  

5 EXPERIMENTAL RESULTS  

In the experimental part of our work we used Jester 
dataset of jokes (Goldberg et al, 2001). Jester is 
Web-based jokes RS, containing 4.1 millions of 
ratings (from -10.00 to +10.00) of 73,421 users on 
100 jokes. We chose a subset of 14,192 users that 
rated all 100 jokes to get a dense matrix of complete 
vectors where every value corresponds to actual 
rating. We implemented a centralized simulation of 
a 100-dimensional space (space dimension equals to 
the number of rated jokes) and inserted the above 
14,192 users into the space. Insertions of the users 
were done using the ordered splitting policy. 

5.1 Scalability 

These experiments were designed to evaluate the 
scalability of the proposed variant of KNN. The 
efficiency of CAN-based KNN is measured by the 
number of comparisons performed during the 
Neighborhood Formation stage of the CF.  

In the first experiment we measured number of 
comparisons performed during the search. We 
gradually increased the number of users (M) in the 
system from M=1,000 to M=14,000. For each M, we 
computed the number of comparisons performed in 
the traditional exhaustive KNN search and in CAN-
based variant of KNN. Both searches aimed to find 
K=5 nearest neighbors. For each value of M, the 
experiments were repeated 1,000 times for different 
active users. The results are shown on Figure 3. 
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Figure 3: Average Number of Comparisons vs. M. 
 

As expected, the number of comparisons in 
CAN-based KNN is significantly lower than in 
traditional KNN and it grows at a logarithmic-like 
manner with the number of users. This is explained 
by the fact that in CAN-based KNN the active user 
is compared only with a subset of highly similar 
users (located in a close vicinity in content-
addressable space), whereas in traditional KNN it is 
exhaustively compared with all other users.  

To achieve a better understanding of 
comparison-based scalability of the proposed 
approach, we computed the ratio between the 
number of comparisons in CAN-based KNN and the 
number of comparisons in traditional (exhaustive) 
KNN. This ratio was computed for different values 
of M. The results show that the ratio steadily 
decreases with M. This allows us to conclude that 
the proposed algorithm is applicable in large-scale 
systems with high number of users and items, e.g., 
on the Web.  

The second experiment evaluated the scalability 
of CAN-based KNN with the number of nearest 
neighbors (K) to be found. We gradually increased 
the value of K from K=1 to K=50. For each value of 
K, we measured the number of comparisons needed 
to find K nearest neighbors for M=1,000, 2,000, 
4,000, 8,000, and 14,000 users. For each value of M 
and K, the experiments were repeated 1,000 times 
for different active users. The number of 
comparisons as a function of K for the above values 
of M is shown on figure 4.  

As can be clearly seen, the number of 
comparisons in CAN-based KNN remains roughly 
unchanged when K increases. This is explained by 
the observation that most of the KNN users are 
located in a close vicinity to the active user (this 
characterizes a real-life naturally clustered data). 
Thus, the similar users are discovered in the early 
stages of the KNN search, while further expansions 
contribute very few new similar users. 
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Figure 4: Average Number of Comparisons vs. K. 

 

Both experiments show good scalability of CAN-
based KNN with K. This means, that practical RSs 
can use higher values of K, form a larger and more 
reliable neighborhood, and generate more accurate 
predictions with only a very minor computational 
overhead. 

5.2 Accuracy  

The following experiments were designed to 
evaluate the accuracy of the results obtained by the 
proposed heuristic variant of KNN. In the first 
experiment we compared the sets of users, i.e., the 
neighborhoods, found by the traditional (exhaustive) 
KNN and by CAN-based variant of KNN.  

Let us  denote by KNNe the set of users found by 
the traditional exhaustive KNN search and by KNNh 
the set of users found by CAN-based heuristic 
variant of KNN. Since CAN-based KNN is a 
heuristic approach, a sub-optimal structure of zones 
may lead to KNNe≠KNNh. As predictions are 
produced by aggregating the ratings of similar users, 
identifying the most similar user is critical for 
producing an accurate prediction. Thus, we define 
the accuracy of CAN-based search by: 

 
                
               (3) 
The cardinality of the KNNe set was K=10, while 

the cardinality of the KNNh set was gradually 
increased from K'=1 to K'=100. The accuracy was 
computed for M=1,000, 2,000, 4,000, 8,000 and 
14,000 users. For each value of M and K', the 
experiments were repeated 1,000 times for different 
active users. Figure 5 shows the accuracy as a 
function of K' for the above values of M. 
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Figure 5: Precision of CAN-based KNN. 
 

As can be clearly seen, the curves behave 
similarly and the accuracy increases with K', such 
that for K'>50 it is over 0.9 for all the given values 
of M. Previous experiments show that the algorithm 
is highly scalable with K. Thus, retrieving a larger 
set of users (i.e., higher values of K') leads to a 
minor increase in the computational overhead. 
Hence, it is reasonable to increase the number of 
neighbors found by CAN-based search in order to 
achieve higher accuracy and to generate better 
recommendations. 

We evaluated the quality of the neighborhood 
found by CAN-based search by computing the 
average similarity between the nearest neighbors and 
the active user. This was compared to the average 
similarity of neighborhood found in an exhaustive 
manner. In addition, we evaluated the accuracy of 
the recommendations through well-known Mean 
Average Error (MAE) metric (Herlocker et al, 
1999):  

1
| |N

i ii
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M A E
N
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where N denotes the number of predicted items, and 
pi is the predicted, and ri is the real rating on item i. 

We gradually increased the number of users from 
M=1,000 to M=14,000. For each value of M, we 
compared the average similarity of heuristically 
found neighbors with the average similarity of 
exhaustively found neighbors for K=K'=10. We 
also generated the recommendations basing on both 
heuristically and exhaustively found neighborhoods. 
For each value of M, the above experiments were 
repeated 1,000 times for different active users. The 
results of the average similarity comparison are 
shown on figure 6, while MAE computation results 
are shown on figure 7. 
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Figure 6: Average Similarity vs. M. 
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Figure 7: MAE of the Recommendations vs. M. 
 

Although both the similarity and MAE of CAN-
based search are higher (i.e., the neighbors are more 
dissimilar and the accuracy is lower), the curves are 
very close and the results are quite similar. Average 
deviation of the similarities is 2.93% and of the 
MAEs is only 0.38%. This allows us to conclude 
that the proposed heuristic algorithm succeeds in 
producing both accurate neighborhoods and 
recommendations. 

6 CONCLUSIONS AND FUTURE 
RESEARCH  

One of the major drawbacks of the state-of-the-art 
CF implementations is their high computational 
complexity, which grows linearly both with the 
number of users and items in the system. In this 
work we propose to heuristically decrease the 
required computational effort through implementing 
the CF over content-addressable CAN-like N-
dimensional space.  

Experiments conducted over Jester dataset of 
jokes ratings show that proposed heuristic algorithm 
outperforms traditional exhaustive KNN search. Our 
algorithm decreases the number of required 
comparisons, while the ratio between the numbers of 
comparisons steadily decreases with the number of 

COLLABORATIVE FILTERING BASED ON CONTENT ADDRESSING

97



 

users. For example, for 14,000 users the number of 
comparisons was decreased by almost an order of 
magnitude (by 87%). Other experiment shows that 
the number of comparisons roughly remains 
unchanged when K increases. This allows us to 
increase the number of nearest neighbors to be 
retrieved (and to improve the accuracy of the 
prediction) with a very minor computational 
overhead.  

In the accuracy experiments we compare the 
neighborhoods and the predictions found by CAN-
based KNN and by the traditional KNN. The found 
neighborhoods are similar and the recommendations 
are very close, which indicates on a high accuracy of 
the proposed algorithm. In summary, comparing the 
proposed heuristic KNN search with traditional 
exhaustive search shows that our algorithm achieves 
high accuracy (similar to the accuracy of the 
traditional exhaustive search), while significantly 
decreasing the required computational effort. 

In this work, we assumed that user's ratings on 
all the items are available. Thus, the mapping of the 
ratings vectors to CAN space is straightforward. 
However, this is unachievable in many real-life 
scenarios, where an average user rates only a small 
portion of the available items. In the future, we plan 
to study CAN-based management of incomplete 
vectors, where part of the ratings is missing. Using 
statistical methods to complete the vectors through 
predicting the missing ratings might be a promising 
research direction. 

In addition to decreasing the computational 
effort, our algorithm can naturally be extended to 
distribute it among multiple users. In traditional 
implementations of the CF, the Similarity 
Computation and the Neighborhood Formation 
stages are performed in a single central location. 
However, as the underlying CAN platform is 
originally distributed Peer-to-Peer platform, it 
inherently allows distributed and fully decentralized 
storage of the ratings matrix. In future, we plan to 
implement a distributed variant of the algorithm and 
to investigate the distribution issues. 

The current work is limited to the Mean Squared 
Difference similarity metric, since the injective 
mapping to a multi-dimensional CAN-like space 
inherently supports it. However, for other metrics, 
such as Cosine Similarity or Pearson correlation, 
CAN space might be inappropriate and new types of 
topologies and the respective mappings should be 
developed. We plan to study other metrics and to 
produce a general framework for efficient heuristic 
Collaborative Filtering. 
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