
USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN
REAL-TIME EMBEDDED SYSTEMS SOFTWARE

A Review of Scheduling, Resource Allocation and Synchronization

Pericles Leng Cheng
Department of Computer Science, Cyprus College

6, Diogenes Street, Engomi, Nicosia 1516

Department of Computer Science, University of Cyprus
75 Kallipoleos Str., P.O.Box 20537, CY-1678 Nicosia

George Angelos Papadopoulos
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str. PO Box 20537

Keywords: Aspect-oriented programming, AOP, Aspect-oriented Software Development, AOSD, Embedded Systems,
Real-time Systems.

Abstract: Timeliness and criticality of a process are the two main concerns when designing real-time systems. In
addition to that embedded systems are bounded by limited resources. To achieve these concerns while at the
same time using a minimal amount or resources, real-time embedded systems use different techniques such
as task scheduling, resource management and task synchronization. These techniques involve a number of
the modules of the system which makes the use of Aspect-Oriented Software Development imperative.
AOSD is a programming technique which uses the notion of join points to capture specific locations in code
execution and then use advices to insert new code. This paper examines existing work in the development of
schedulers, resource allocation agents and synchronization techniques using Aspect-Oriented Software
Development in real-time embedded systems. An analysis of the existing research is used to describe the
advantages of using AOSD over conventional OOP methods and to identify areas where further research
may be required.

1 INTRODUCTION

An embedded system is a combination of software
and hardware in such a way that it performs a
specific operation. In most cases an embedded
system needs to be able to perform in real-time.
Real-time systems are developed with two important
areas in mind: Timeliness and criticality (Cooling,
2002). Timeliness is the ability of a process to
complete within a specified timeframe whereas
criticality has to do with the importance of a process
to complete and what might occur if the process is
not able to complete. In addition, real-time
embedded systems require more efficiency due to
the limited amount of resources available. When
designing real-time embedded system software, the

developer needs to take into account concepts such
as concurrency, system resource usage and task
structuring and implementations (Cooling, 2002).
This is why embedded systems utilize real-time
schedulers to control processes and their execution.
Resource usage also plays an important role in real-
time embedded applications and that is why it is
important to have a good way in which to manage
resources. Finally, tasks in such systems need to be
synchronized therefore a good concurrency control
or synchronization policy needs to be implemented.

Embedded systems have a functional perspective
which can be developed using conventional Object-
Oriented programming but there is also a real-time
perspective which includes scheduling policies, and
synchronization mechanisms, which is better
implemented using Aspect-Oriented Software

388 Leng Cheng P. and Angelos Papadopoulos G. (2006).
USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN REAL-TIME EMBEDDED SYSTEMS SOFTWARE - A Review of Scheduling, Resource
Allocation and Synchronization.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 388-393
DOI: 10.5220/0002451703880393
Copyright c© SciTePress

Development concepts. AOSD (Kiczales et al.,
1997) is a programming technique which enhances
existing programming techniques by allowing the
description of components that cross-cut numerous
modules of the system. Instead of developing code
for each module where a functional component is
encountered, an aspect is developed and then code is
injected in the appropriate locations using an aspect
weaver. The aspect weaver may increase the code
size but the gains obtained by removing redundant
code from the different modules are sometimes more
than the addition of the aspect weaver as described
in (Kiczales et al., 1997).

When applied to the realm of real-time embedded
systems, a developer that wants to use AOSD
techniques needs to take into account the
characteristics of such systems as described
previously. This paper is an overview of research
done in the field of real-time and embedded systems
using Aspect-Oriented techniques and more
importantly in the realm of task scheduling, resource
management and synchronization.

The rest of the paper is organized as follows. In
Section 2, the paper discusses research done on task
scheduling in real-time and embedded systems and
how AOSD may be utilized to enhance the
scheduling aspect. Then, in Section 3, the resource
allocation aspect is discussed and various research
papers that approach that aspect are examined. In
Section 4 the paper investigates synchronization
using AOSD. Section 5 summarizes conclusions
made in the review of the research done in the area
and also presents opposing views to the use of
AOSD in real-time and embedded systems. It also
provides information on future work in the area
investigated by the authors.

2 SCHEDULING

As discussed earlier, Cooling (Cooling, 2002)
addresses scheduling in a real-time system as an
important feature in any real-time software system.
Real-time operating systems run a number of
processes and these processes need to be scheduled
correctly to achieve both timeliness and criticality
issues. There are several problems with designing
schedulers for embedded and real-time systems like
the need for more flexible policies which are not
hard-coded in the system. There are a number of
research papers that deal with scheduling using
AOSD techniques (Nyström et al., 2003, Tesanovic
et al., 2004). This section introduces the existing
research on the area of scheduling in real-time

systems using AOSD and then discusses the results
obtained from these papers. Since most of the
research done in this area deals with real-time
systems and not with embedded systems a
discussion of how this research may be applied in
embedded systems and what are the advantages and
disadvantages will also be presented.

2.1 Existing literature

2.1.1 COMET and ACCORD

The Component-based Embedded Real-Time
Database (COMET) (Nyström et al., 2003), is a real-
time database application which uses a design
method developed by the authors to demonstrate the
concept of “aspectual component-based real-time
system development”, ACCORD (Tesanovic et al.,
2004). ACCORD aspects are divided into
application aspects which change components to suit
a particular application, run-time aspects that
provide information to the run-time system and
composition aspects which provide information
about components and how they can be extended or
combined with other application aspects. Because
components are black-box implementations but
aspects require white-box implementations to
capture certain join points in the code the authors
developed “grey” components which allow aspects
to alter their behaviour. The authors implement
seven basic components that are used in real-time
systems and present the different aspects that
crosscut these components with real-time scheduling
being one of them. The Transaction Scheduler that
COMET implements can support various scheduling
policies such as EDF and RM. In their conclusions,
the authors state the advantages and disadvantages
of using aspects and components in developing an
application such as COMET. Advantages include the
high reusability of code which is apparent in the
definition of the system’s Concurrency Control as an
aspect and its ability to interact with other
components such as the Transaction Scheduling
Component, the Locking Component and the
Transaction Management Component. Additional
advantages include the ability of a component to fit
specific requirements and the good separation of
parts into functional components and aspects
allowing the reconfiguration of the aspect part. The
authors state that good composition rules need to be
followed because of the large number of components
and aspects which may be combined in numerous
ways. Another disadvantage is the large code
overhead that may appear due to the number of

USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN REAL-TIME EMBEDDED SYSTEMS SOFTWARE -
A Review of Scheduling, Resource Allocation and Synchronization

389

mechanisms implemented in the components to
support the weaving of aspect code.

2.1.2 BOSSA

In (Barreto and Muller, 2002) the authors identify
the demand for new scheduling policies and
implement a new Domain-Specific Language named
Bossa. Because of the crosscutting of the scheduling
process to numerous parts of the operating system
kernel, the authors suggest the process’s evolution to
a modular component. To modularize scheduling,
the authors identified scheduling points, such as the
creation and destruction of processes or the change
in the priorities of a process. An AOSD framework
may capture these join points and control the Bossa
scheduler by adapting the code to represent a certain
scheduling policy. An event-based AOP framework
EAOP (Douence et al., 2001) is identified by the
authors as being able to “smoothly” integrate the
Bossa DSL. This framework allows dynamic
weaving of code. In this way Bossa may use EAOP
to capture events such as process creation,
termination or blocking and then execute scheduling
code as part of the aspect. The paper concludes that
AOSD techniques may be utilized in a variety of
kernel subsystems and therefore they can help in
developing an Aspect-Oriented operating system. A
number of schedulers have been developed using the
Bossa DSL such as Borrowed Virtual Time (BVT)
(Duda and Cheriton, 1999) and Best (Banachowski
and Brandt, 2002).

2.1.3 Open Layered Aspect Moderator
Framework

In (Netinant et al., 2001), the authors discuss how
AOSD can be used in designing Operating Systems.
In their paper, the authors introduce a layered way of
modularizing operating systems. They further
identify the fact that operating systems implement
numerous crosscutting concerns such as
synchronization, scheduling and logging. Code for
addressing these concerns is spread throughout the
modules in an operating system restricting the
developers’ ability to easily change the functionality
of such a concern. The authors introduce an Open
Layered Aspect Moderator Framework which will
allow developers to modify policies for crosscutting
concerns. This is done through the use of an Aspect-
Moderator Framework (AMF) where components
have no aspectual properties, a proxy captures
methods and sends them to the Aspect Moderator
which in turn selects the appropriate aspect rules and
strategies from an Aspect Bank and weaves that

code during runtime. When considering the
scheduling concern, developers can change from one
scheduling policy to another by simply choosing a
policy from the Aspect Bank or adding a new policy.
Even though the paper discusses operating systems
in general most of the ideas presented in the Open
Layered Aspect-Oriented System Framework apply
to real-time operating systems as well. One should
be careful when working with real-time systems
because any change in code could negatively affect
other areas the system which could prove
disadvantageous.

2.2 Analysis

Implementing a scheduling algorithm in any
operating system is hard because of the immensity
of modules that interact with the kernel and the
requirement of rebuilding the kernel and those
modules with aspects in mind. In real-time
embedded systems though, the number of modules
are reduced and most of the time operating systems
for real-time systems are custom-built allowing the
designers to utilize aspects to represent schedulers.
Additionally, the uniqueness of each embedded
system requires a way of modularizing various parts
of the system so that the production is faster and
cost-effective. There exists a wide variety of
research on scheduling that can be studied and
implemented using AOSD in order to come up with
an efficient aspect-based scheduler for real-time
embedded systems.

3 RESOURCE ALLOCATION

Real-time embedded systems and all systems in
general do not involve one resource and one process
but several resources with varying availability such
as network, CPU, memory and energy. Resource
Allocation Management deals with the system’s
ability to allocate resources to processes. A good
resource manager should be able to manage
resources, guarantee minimum demands, and smooth
variations in streams of process arrivals. High
performance real-time applications have to face
challenges including dynamic changes in the
environment, and limited resource availability (Rosu
et al., 1997). The implementation of a resource
allocation manager using AOSD is clearly apparent
since this involves a number of resources which
need to be efficiently managed to ensure timeliness
of process execution and to reduce interference
between processes competing for the same resource.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

390

3.1 Existing Literature

3.1.1 Xelha

Introducing Quality of Service in middleware
platforms is the objective of the authors of (Duran-
Limon et al., 2003). In order to provide QoS, the
authors present an architecture description language
(ADL) called Xelha and a resource configuration
description language (RCDL). The authors divide
their resource model into resource managers and
resource factories. In the design of the RCDL, the
authors used aspect-oriented languages which allow
the configuration and reconfiguration of distributed
multimedia systems. An example of the aspects in
RCDL is the Resource Description Language (RDL)
defining resource templates which include worst-
case-execution times, typical execution times, and
amounts of resources used. Using this information
the system knows what resources a certain service
will require. Aspects provide the authors with a
better separation of concerns giving the whole
framework a more readable and reusable
specification. Compared to Quality Objects project
(QuO), the authors target an open framework rather
than targeting CORBA and Xelha handles both fine-
grained and coarse-grained interactions whereas
QuO only handles fine-grained interactions.

3.2 Analysis

Resource allocation is a very important feature of
any real-time and especially embedded system due
to the scarcity of resources. To this extent the
research done in (Duran-Limon et al., 2003) works
in developing resource management techniques
utilizing aspect-oriented paradigms. RCDL managed
to separate the cross-cutting concerns in a system
and allowed the straightforward definition of various
services. One of the problems apparent in the design
of both Xelha and RCDL was the need of a language
interpreter whenever a change was made which
added some overhead and another overhead was
incurred when developing the middleware. In order
for AOSD to prove beneficial these overheads need
to be dealt with or at least prove insignificant to the
overall gains of the system.

4 SYNCHRONIZATION

One important concern in the development of
embedded systems is the synchronization or

concurrency control function. Most of the embedded
systems work in a distributed way and processes
from various systems might require a specific
synchronization policy to execute efficiently. There
are several problems that can be tackled using
synchronization policies such as a deadlock. This is
more important in embedded systems which cannot
recover in the same way as any other system. Due to
the fact that processes from different modules need
to be synchronized both in uniprocessor and
distributed systems it is apparent that
synchronization can be represented as an aspect.

4.1 Exiting Literature

4.1.1 Synchronization in CAN-Based
Systems

In (Su and Singh, 2004) the authors discuss
Controller Area Networks (CAN). A CAN is a
communications bus which is responsible for
sending and receiving short real-time control
messages. Due to the increasing complexity of
embedded systems, the authors define and
implement aspect-oriented synchronization code
which enables designers of CAN-based applications
to develop functional components and then applying
the necessary synchronization policies. The
methodology used allows the developer of the
system to implement the functional part of the
system, identify the areas where synchronization
will occur and finally set a global invariant which
will control the synchronization policy that is to be
used. In developing the system, the authors
developed the code without taking into consideration
any synchronization aspect. Then they identified
synchronization regions which are code segments
which depend on certain events to occur. For each of
these regions global invariants are specified which
will enable the incrementing of in and out counters.
Finally, an aspect weaver was used to weave the
synchronization code in the base code by
intercepting the appropriate regions. An aspect-
oriented methodology was used to develop two
invariants; one that is centralized in nature and one
that is decentralized. The authors found that the first
approach was simpler and with less code in the CAN
nodes but the second approach was more efficient
due to a lower number of messages being
transmitted and lower latency. One major advantage
of using aspects in this project was the ability to
change synchronization policies whenever the global
invariant was changed. The aspect changed the code
and weaved it back into the system with the new

USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN REAL-TIME EMBEDDED SYSTEMS SOFTWARE -
A Review of Scheduling, Resource Allocation and Synchronization

391

policy allowing the development of more complex
policies.

4.1.2 PURE system

AspectC++ was used by (Mahrenholz et al., 2002) to
develop an aspect-oriented interrupt synchronization
strategy. This synchronization strategy handles
interrupts in an operating system by injecting calls to
the synchronization primitives in the operating
system code. Since code needs to be inserted in
various areas in the operating system code it is clear
that interrupt synchronization is a crosscutting
problem that can be solved using AOSD. To
eliminate the need of an aspect weaver the authors
used compile-time aspect weaving and not runtime.
In the paper the authors developed two variants of
strategy using aspects; one which weaves code in
every method that needs to be synchronized and one
which uses methods grouped in subsystems and
synchronization code is weaved only when a
subsystem boundary is crossed. The second variant
provides more robustness over the first variant
because the use of subsystem groups offers higher
abstraction. After implementing the variants a
comparison of memory consumption was performed
and the authors found that code size did not increase
but rather decreased due to the fact that classes that
were only used for synchronization were removed
since the aspect handled those calls. This lead to
more compact code which is very important in the
development of embedded systems. The interrupt
synchronization method described was used in the
PURE operating system (Mahrenholz et al., 2002)
and now the authors are implementing it in the
CiAO project (Lohmann et al., 2005).

4.1.3 Application-Tailored Database
Systems

In an embedded database, synchronization is a very
important crosscutting concern which spans all of
the database system. Data manipulation needs to be
synchronized correctly to keep the database
consistent therefore semaphores are used to protect
data consistency. (Tesanovic et al., 2004b) presents
the different crosscutting concerns in embedded
databases and discusses how aspects can help in the
development of an embedded database management
system. The authors use the Berkeley DB, an
embedded database system, and reengineer the
application using aspect-oriented programming to
tackle failure detection, synchronization and error-
handling. The results of using aspects include a 42%
code reduction and more comprehensibility since the

synchronization aspect is no longer spread
throughout the modules but centralized in as a single
aspect code.

4.2 Analysis

Process synchronization is spread throughout the
code in various modules therefore synchronization
can be viewed as a crosscutting concern that can be
expressed using aspect-oriented programming. It is
apparent to the authors that aspects provide a lot of
benefits to the developers of embedded systems and
overall to real-time systems. These benefits include
code size reduction, more comprehensible code as
well as a more modular design because aspects can
be seamlessly changed without interfering with the
remaining code.

5 CONCLUSIONS AND FUTURE
WORK

This paper shows how current scheduling, resource
management and synchronization implementations
can be enhanced by the use of AOSD. In schedulers,
AOSD allows code reuse throughout several
modules in the system and also provides the
developer with the ability of adapting the scheduling
policies used depending on the situation. Using
AOSD techniques in the development of resource
allocation managers can prove beneficial since
resource usage is a crosscutting concern that spans
all the modules of a system. Resource policies can
be implemented as aspects and can be injected
whenever they are required to determine efficient
resource usage. Finally, since the synchronization
aspect is spread throughout all the modules of a
system, consolidating all the code in a centralized
area provides a reduction in code in those modules
that may prove beneficial even after the overhead of
adding the aspect code and the aspect weaver needed
to integrate the code.

In contrast to the advantages, the authors of
(Tsang et al., 2004) evaluated aspect-oriented
software development for use in java-based real-
time systems development. Based on the seven areas
of concern addressed by RTJava (Real-time Java)
the paper designed a system both using Object-
Oriented programming and Aspect-Oriented
Programming and determined that using AOP
improved modularity of the code but negatively
affected system properties. This paper brings forth
one of the main concerns of using AOSD in the
design of software. If the trade-off between weaving

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

392

crosscutting concerns and the overhead they cause is
not balanced or tilting towards the gains then AOSD
will not be able to influence the real-time and
embedded areas. Therefore more work needs to be
done in identifying ways of using AOSD without
inducing too much resource utilizations.

Trade-offs such as the increase in method calls
may negatively affect the performance of a system.
Nevertheless, the ability to remove unwanted
scheduling code from within the various processes
themselves could increase the effectiveness of the
system in other areas, such as code size. Another
advantage is the ability to change from one
scheduling technique to another by simply replacing
the aspect code and not interfering with other
modules. This leads to better reusability of code
since it can be used in a lot of areas depending on
how it is developed.

Using AOSD in embedded systems is also
beneficial due to the development of unique device
drivers without prior knowledge of what non-
functional concerns are going to be implemented.
An embedded system can then combine the different
modules and then implement an aspect to add further
functionality to the system.

The authors of this paper feel that more research
needs to be done for embedded systems and
experiments should be performed to prove the
benefits of using aspect-oriented software
development. Furthermore, the trade-offs performed
will be investigated to prove that an overall gain is
observed.

REFERENCES

Banachowski, S. A. & Brandt, S. A. (2002) The BEST
Scheduler for Integrated Processing of Best-Effort and
Soft Real-Time Processes. Multimedia Computing and
Networking (MMCN 2002).

Barreto, L. P. & Muller, G. (2002) Bossa: a language-
based approach to the design of real-time schedulers.
10th International Conference on Real-Time Systems
(RTS’2002). Paris, France.

Cooling, J. (2002) Software Engineering for Real Time
Systems, Addison-Wesley.

Douence, R., Motelet, O. & Sudholt, M. (2001) A Formal
Definition of Crosscuts. 3rd International Conference
on Metalevel Architectures and Separation of
Crosscutting Concerns. Springer-Verlag.

Duda, K. J. & Cheriton, D. R. (1999) Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. 17th ACM
symposium on Operating systems principles.
Charleston, South Carolina, United States, ACM
Press.

Duran-Limon, H. A., Blair, G. S., Friday, A., Sivaharan,
T. & Samartzidis, G. (2003) A Resource and QoS
Management Framework for a Real-time Event
System in Mobile Ad Hoc Environments. 9th IEEE
International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2003F). Capri Island,
Italy.

Huang, E.-H. & Elrad, T. (1998) Scheduling control
mechanisms for managing indeterminate object
behavior. ACM symposium on Applied Computing.
Atlanta, Georgia, United States, ACM Press.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M. & Irwin, J. (1997) Aspect-
Oriented Programming. European Conference on
Object-Oriented Programming. Finland, Springer-
Verlag.

Lohmann, D., Spinczyk, O. & Schröder-Preikschat, W.
(2005) On the Configuration of Non-Functional
Properties in Operating System Product Lines. 4th
AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS 2005).
Chicago, IL, USA.

Mahrenholz, D., Spinczyk, O., Gal, A. & Schröder-
Preikschat, W. (2002) An Aspect-Oriented
Implementation of Interrupt Synchronization in the
PURE Operating System Family. 5th ECOOP
Workshop on Object Orientation and Operating
Systems. Malaga, Spain.

Netinant, P., Elrad, T. & Fayad, M. E. (2001) A layered
approach to building open aspect-oriented systems: a
framework for the design of on-demand system
demodularization. Communications of the ACM, 44,
83 - 85.

Nyström, D., Tesanovic, A., Norström, C. & Hansson, J.
(2003) The COMET Database Management System.
MRTC Report. Mälardalen Real-Time Research
Centre, Mälardalen University.

Rosu, D. I., Schwan, K., Yalamanchili, S. & Jha, R.
(1997) On Adaptive Resource Allocation for Complex
Real-Time Applications. 18th IEEE Real-Time
Systems Symposium.

Su, Y. & Singh, G. (2004) Synchronization in CAN-based
Embedded Systems. Embedded Systems and
Applications. Las Vegas, Nevada, USA.

Tesanovic, A., Sheng, K. & Hansson, J. (2004)
Application-Tailored Database Systems: a Case of
Aspects in an Embedded Database. 8th International
Database Engineering and Applications Symposium
(IDEAS'04). Coimbra, Portugal, IEEE Computer
Society.

Tsang, S. L., Clarke, S. & Baniassad, E. (2004) An
Evaluation of Aspect-Oriented Programming for Java-
based Real-time Systems Development. Seventh IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC'04). Vienna,
Austria.

USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN REAL-TIME EMBEDDED SYSTEMS SOFTWARE -
A Review of Scheduling, Resource Allocation and Synchronization

393

