
A FORMAL TOOL THAT INTEGRATES RELATIONAL DATABASE
SCHEMES AND PRESERVES THE ORIGINAL INFORMATION ∗

A. Mora, M. Enciso

E.T.S.I. Informática. Universidad de Málaga.
Campus de Teatinos. 29071 Málaga, Spain

Keywords: Functional dependencies, Logic and Information systems; Schema integration.

Abstract: In this work we face on with the main problem concerning the database design process in a collaborative
environment: several users provide different models representing a part of the global model and we must
integrate these database sub-shemes to render a unified database schema.
In this work we propose a technique to integrate relational database sub-schemes based on a formal language.
The extraction, integration and generation tasks are carried out efficiently using the SLF D logic (Substitution
Logic for functional dependencies). We have selected this logic because it is appropriated to manage the
functional dependencies in a automatic way.

1 INTRODUCTION

In (Chang and Moskowitz, 2000) the authors affirm
that “the development of software to ease the in-
tegration and interoperation of existing information
sources is one of the most significant challenges cur-
rently facing computer researchers and developers”.
This sentences emphasizes the needed of intelligent
tools to automate the collaborative database design
database when several designers participate in the
process.

Thus, different sub-sets of information are pro-
vided and a unique and consistent set containing all
the information must be built. The main difficulties
arise from the matching of the different structures de-
fined by the designers in their sub-schemes.

As Arch-int and Batanov says in (Arch-int and
Batanov, 2003), the goal is “to get integrate data-
base in a global model without the existence of redun-
dances and inconsistencies”. In this work we cover
both goals by using the Functional Dependency (FD)
notion as the center of our integration architecture.

FDs are powerful relational constraints introduced
in the 70 by E.F. Cood (Codd, 1974) and consolidated
by outstanding authors like W. Armstrong (Arm-
strong, 1974) and R. Fagin (Fagin, 1977).

∗This work has been partially supported by the CICYT
research project TIC2003-08687-C02-01.

A set of recent works have showed that there ex-
ists a set of classical FD problems which may be suc-
cessfully treated with novel techniques and tools (Lee
et al., 2002). This renewal of FDs are being used also
in the design of databases. Thus, X. Linga (Ling et al.,
1996) considers that “the objective of the logical de-
sign step is to eliminate redundancies and updating
anomalies using the notion of data dependencies”.

In (Enciso and Mora, 2002; Mora et al., 2004), we
propose a Functional Dependencies Data Dictionary
FD3, a tool to store the information provided by dif-
ferent sources in a unified way. FD3 gathers the in-
formation provided by the original sub-schemes, but
it flattens this information removing the two dimen-
sions of the E/R model. So, FD3 is a set of FDs
generated over the set A of all the attributes defined
by all the designers.

Now, we introduce an integration architecture
which uses FD3 as a central element. The architec-
ture provides a framework to cover all the stages of
the collaborative database design with a full level of
automatization.

In this work, we present a technique to integrate
the information in a full automated way. It works
as follows: the collaborative coordinator indicates the
sub-schemes to be integrated. In the architecture, the
structural functional dependencies (from the primary
key and unique keys) are considered and the collabo-
rative coordinator are asked to add extra FDs (named

302
Mora A. and Enciso M. (2006).
A FORMAL TOOL THAT INTEGRATES RELATIONAL DATABASE SCHEMES AND PRESERVES THE ORIGINAL INFORMATION.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 302-305
DOI: 10.5220/0002451603020305
Copyright c© SciTePress



environment FDs). The FDs belonging to different
sub-shemes are uniformly stored in a FD Data Dic-
tionary and the automated algorithms based on the
SL

F D
inference system reduce the redundancy and

render a set of FDs that may be translated into a rela-
tional database.

The technique preservers the foreign key con-
straints and normalizes the output tables into Boyce
Codd Normal Form. We have design an algorithm
which uses the trace of the SL

F D
algorithm execu-

tion and generates a set of INSERT sentences over the
output tables to preserve the original data contained in
the original tables.

2 AN ARCHITECTURE FOR
SCHEME INTEGRATION

We present in this section, a formal tool appropriated
for the integration of DBMS schemes.

We have selected Oracle as the target DBMS. An
oracle scheme is defined as follows: a user (with pass-
word) are associated with a work area where he de-
fines attributes, tables and the following constraints
(dependencies): Primary, Unique and Foreign key.

The architecture (figure 1) have three levels:

• Back-end: the extraction of FDs of the scheme.

• Front-end: the user introduce additional FDs.

• Middle-end: the integration method (based on
logic) renders a global scheme without redundancy.

The formal tool is directly based on this architec-
ture and it has three modules:

• Integration engine, developed in PL/SQL, is re-
sponsible to make both structural integration (gen-
erates a scheme containing the elements of the
schemes) and the integration of contents (cover the
migration of the original data).

• The FD Data Dictionary (ODD), implemented as
an extra Oracle scheme, allows the integration en-
gine to store, query and manipulate efficiently all
the information that needs throughout the integra-
tion process.

• User interface, implemented by means of portless
inside of Oracle Portal. This web interface acts as
an assistant that simplifies the configuration of in-
tegration process and allows the user to examine in
detail the output schema and the way in which it
has been obtained.

2.1 Solving Structural Integration

Our approach use exhaustively the FDs in all the
stages of the integration process. Thus, the functional

User 1 User 2 User k

DF Model

DF Model

DF Model

FD Data Dictionary

X -> Y,Z,T
...

T,W -> Y,L,P

X -> Y,Z,T
...

T,W -> Y,L,P

X -> Y,Z,T
...

T,W -> Y,L,P

SLFD Transformations

DD DD

DD

Integrated DB

Figure 1: Integration architecture.

dependencies data dictionary FD3 (Enciso and Mora,
2002; Mora et al., 2004) is used to store the FDs col-
lected from the original schemes.

These FDs are inferred from the original key con-
straints specified in the Oracle schemes and they are
named structural dependencies. We enrich this re-
verse engineering process with an user aided process
where an external agent with domain knowledge may
specify additional FDs to provide additional semantic
information (the environment dependencies).

When both kinds of FDs have been collected, they
are depurated and integrated by the application of
the RemoveRedundancy algorithm over the FD3 data
dictionary.

The algorithm is based directly in the SL
F D

infer-
ence system rules.

Definition 2.1 (The SL
F D

language) Let Ω be an
infinite enumerable set of atoms (attributes) and let
�→ be a binary connective, we define the language

LFD = {X �→Y | X,Y ∈ 2Ω}
Definition 2.2 The SL

F D
logic is defined as the pair

(LFD,SFDS) where SFDS has one axiom scheme:
�AxFDS� : � X �→Y, where Y ⊆ X .

Particulary, X �→	 is an axiom scheme.

A FORMAL TOOL THAT INTEGRATES RELATIONAL DATABASE SCHEMES AND PRESERVES THE
ORIGINAL INFORMATION

303



The inferences rules are the following:

�Frag� Fragmentation rule:

X �→Y �SF DS
X �→Y ′ if Y ′ ⊆ Y

�Comp� Composition rule:

X �→Y, U �→V �SF DS
XU �→Y V

�Subst�Substitution rule:

X �→Y, U �→V �SF DS
(U -Y )�→(V -Y )

if X ⊆ U , X ∩ Y = ∅

Also, a novel derived rule is defined:

�rSust� r-Substitution Rule:

X �→Y,U �→V �S
F DS

U �→(V -Y )

if X ⊆ UV,X ∩ Y = ∅

Finally, we will use the following derived rules:

�Union�Union Rule:

X �→Y, X �→Z �S
F DS

X �→Y Z

�Reduc� Reduction Rule:

X �→Y �SP ar
X �→Y -X , where Y -X �= ∅

The algorithm removeredundancy is depicted in
the following figure:

Algorithm 2.3

removeRedundancy:
Input: Γ (a FD set)

Output: Γ′ (a FD set with less redundancy)

Begin

1. � Reduc�
2. � Union �

Repeat

3. Substitution:

� Sust � + � rSust �

Until more substitution cannot be applied

End

We remark that this is the first approach to n-Aryan
integration of relational data bases that uses directly
logic as a tool of simplification and integration.

Our algorithms simplifies attributes and removes
redundancy from the global data dictionary. This

redundancy arises when the information of the sub-
schemes are joined in a unique data dictionary.

From the FD3 Data Dictionary, we infer an Oracle
unified scheme. We have designed an algorithm able
to generate SQL sentences which creates the tables,
as well as their foreign and primary key restrictions.

In addition to the conventional FDs, there are other
dependencies stored in the data dictionary which we
will call foreign key dependencies (FKD).

These FKDs represent the foreign key constraints
existing in the original schemes so that their infor-
mation can be included later in the new integrated
scheme.

2.2 Solving Contents Integration

We have developed a powerful and flexible algo-
rithm that constructs a nested SELECT sentence, cra-
dle in OUTER JOIN, for each table in the integrated
scheme.

The migration of original data is guided by the re-
sult of the structural integration process.

Thus, the INSERT SQL sentences that store the
original rows into the new tables are built using the
guidelines provided by the remove redundancy algo-
rithm.

The efficiency of this algorithm has been improved
using the information stored in the FD3. Whenever
an inference rule of SL

F D
logic is applied, we keep

in the FD3, a link between each attribute of the new
unified scheme and the set of attributes of the original
schemes that has produced it.

We remark that it is an incremental process.

3 CONCLUSIONS AND FUTURE
WORK

In this paper we present a formal tool directly based
in the SL

F D
logic. It deduces the FDs (structural de-

pendencies) contained in the key constraints of a set
of schemes from an Oracle database.

The user may add others dependencies (environ-
ment dependencies) that represent a more deeper
knowledge of the sub-systems.

The tool applies an optimization algorithm directly
based on the SL

F D
logic. Thus the functional de-

pendencies data dictionary (FD3) is transformed and
a global database may be inferred from its.

We use a generic algorithm which allows a migra-
tion of data to the output tables, avoiding the loss of
the information.

In a medium-future, we will complete the integra-
tion software with a view generation algorithm. This
extension will be used to join several information sys-
tems that was built in the past.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

304



The views will be used to prevent the re-
compilation of the applications when the new global
database substitute the old set of databases.

The Functional Dependencies appear in other data
models apart from the Relational Model. As a future
work, we may extend the algorithm to generate an FD
model from other source data model such hierarchic,
network data model or even XML.

REFERENCES

Arch-int, S. and Batanov, D. (2003). Development of indus-
trial information systems on the web using business
components. Computers in Industry, 50 (2):231–250.

Armstrong, W. W. (1974). Dependency structures of data
base relationships. Proc. IFIP Congress., pages 580–
583.

Chang, L. and Moskowitz, I. S. (2000). An integrated
framework for database privacy protection. IFIP
Workshop on Database Security, ISBN: 0-7923-8129-
7:161–172.

Codd, E. F. (1974). Recent investigations into relational
data base systems. IFIP Congress, Estocolmo, Suecia.

Enciso, M. and Mora, A. (2002). FD3: A functional
dependencies data dictionary. Proceedings of the
Fourth Conference on Enterprise Information Systems
- ICEIS, 2:807–811.

Fagin, R. (1977). Functional dependencies in a relational
database and propositional logic. IBM. Journal of re-
search and development, 21 (6):534–544.

Lee, M. L., Ling, T. W., and Low, W. L. (2002). Designing
functional dependencies for xml. LNCS, 2287:124–
141.

Ling, T., Goh, C., and Lee, J. (1996). Extending classical
functional dependencies for physical database design.
Information and Software Technology, 38:601–608.

Mora, A., Enciso, M., Cordero, P., Guzmán, I. P. d., and
Guerrero, J. (2004). A/d case: a new heart for FD3.
Proceedings of ICEIS 2004 - 6th International Confer-
ence on Enterprise Information Systems. Porto, POR-
TUGAL.

A FORMAL TOOL THAT INTEGRATES RELATIONAL DATABASE SCHEMES AND PRESERVES THE
ORIGINAL INFORMATION

305


