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Abstract: The systematic translation from a UML/RT model into CSP+T specifications, proposed in a previous paper, 
may give a way to use jointly UML and CSP in a unified, practical and rigorous software development 
method for real-time systems. We present here a systematic transformation method to derive a correct 
system specification in terms of CSP+T from a semi-formal system requirement specification (UML-RT), 
by applying a set of transformation rules which give a formal semantics to the semi-formal analysis entities 
of UML/RT, and thus open up the possibility of verifying a software system design that also includes real-
time constraints. As to show the applicability of the approach, a correct design of a real-time system is 
obtained by following the process of development proposed here. 

1 INTRODUCTION 

Distributed Embedded Control Systems 
development is a complex task, especially if they 
should fulfil real-time system (RTS) properties, 
where the multi-functionality, concurrency of their 
active objects and their temporal requirements make 
them difficult to model and analyze. We are 
particularly interested in solving the problems that 
appear in the earlier phases of software development 
of these systems, precisely during the user 
requirement analysis, the software architecture 
design and the system specification. To manage this 
complexity we opt for a mixed approximation that 
combines a semi-formal and a formal method by 
means of a systematic derivation procedure, starting 
from a semi-formal model of the user system 
requirements to obtain a formal specification of the 
entire system. We consider the Object Oriented 
modelling language UML-RT (OMG, 2003), which 
is a de facto standard in the industry, as an ideal 
notation for the development of industrial real-time 
software. Despite its strengths, the rigorous 
development of non-trivial applications does not 
seem feasible without the support of a formal 
method that gives a formal semantics to UML-RT 
analysis entities upon which the verification of the 
system software can be carried out. A number of 
proposals for combining UML with a formal method 

have already been made (Ng, 2003) (Fischer, 2001). 
Typically, each contribution to formalize UML 
focuses on a particular aspect of the system 
modelling, state, structure or class diagram. Those 
works which specify a behavioural and static view 
of the systems, e.g. (Möller, 2004), do not present a 
defined set of mapping rules and the semantics of 
the defined notation is only explained by an informal 
presentation based on examples. To the best of our 
knowledge, our proposal is the first one that allows 
the specification of RTS from a global view (i.e., 
including behavioural, static and timing aspects).  

The method proposed here systematically 
transforms UML-RT modelling entities with a visual 
orientation (Class Diagrams, State Diagrams, etc.) 
into syntactic terms of CSP+T (Zic, 1994), which 
have a precise semantics based on a textual and 
equational orientation, by applying a set of mapping 
rules proposed in a previous work (Capel, 2005a). 

By packing components in entities named 
capsules and by describing their interactions in the 
form of protocols, a UML-RT system model gives a 
global view of the architectural and the behavioural 
aspects of a system. The behaviour of each capsule 
is defined using state diagrams, denoted as UML SD 
in the sequel, whose standard notation (as initially 
defined by OMG) is extended with tags labelled 
with expressions that are used to represent time 
limits, event activation intervals, etc. Being all of 
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these syntactical constructions inspired on the 
CSP+T language to specify time requirements. To 
give a formal semantic to an initial UML-RT model, 
we use a series of rules (Capel, 2005b) that grant a 
precise signification to these modelling entities, and 
a precise description of certain event occurrences 
during the system dynamics. As to show the 
applicability of the proposed method, we have used 
it to obtain the development of a basic component of 
a manufacturing industry paradigmatic case: the 
Production Cell. The rest of this paper is structured 
as follows: section 2 provides an overview on UML-
RT and the UML diagrams used in our approach, 
section 3 explains the CSP+T specification language 
features, section 4 describes the system specification 
method that we propose here. In section 5, using the 
example of the Production Cell, we present a 
complete system specification as a practical 
application of our method. The article ends up with 
some conclusions and a reference list, as well as a 
list of related links in order to get further 
information. 

2 UML/RT 

UML is a collection of notations (Booch, 1999) for 
capturing a software system specification. These 
notations have a specific syntax defined by the 
Object Management Group (OMG), but many of 
their constructs only present informal semantics. 
They are primarily graphical, oriented to give visual 
information that includes some textual annotations. 
The inadequacies of standard UML as a vehicle for 
complete specification and implementation of real-
time embedded systems has led to a variety of 
competing and complementary proposals. The Real-
time UML profile (UML-RT) (OMG, 2001) and 
UML 2.0 (2003), more recently. UML-RT, 
developed and standardized by OMG, defines a 
unified framework to express time, scheduling and 
performance aspects of a real-time system. In this 
way, it can be used to do a formal analysis based on 
these models, and to assess the functionality and 
schedulability of a system before carrying out its 
implementation. UML-RT standardises an extended 
notation of UML to support the interoperability 
among different views (or models) of a system 
design.  

The UML extension is centred on Capsules, 
Ports, and Protocols. Capsules are constructs for 
isolating functionality with a very clearly defined 
interface: Each capsule operates according to an 
UML State Diagram (UML-SD), responding and 

generating signals through its ports. The signal 
contents on each port are prescribed by its role in a 
protocol. 
 

CapsB

CapsA
p3 p1

p2

 
Figure 1: An example of UML-RT concepts. 

3 CSP+T 

CSP+T extends the well-known CSP 
(Communicating Sequential) formal specification 
language with timing primitives. CSP is an event 
based notation primarily aimed at describing the 
sequencing of events within a process behaviour and 
the synchronisation (or communication) between 
processes. CSP+T, which is a new real-time 
specification language, extends CSP (Hoare, 1978), 
(Roscoe, 1997), by introducing a new set of 
constructs, to allow the description of complex event 
timings from within a single sequential process, 
thereby providing a valuable insight into the 
behavioural specification of real-time systems. 

The syntax of CSP+T, which is a superset of the 
CSP one, has been adapted to our method. The 
differences between the two formal specification 
languages are described as follows: 

- Every process P defines its own set of 
communication symbols, termed the communication 
alphabet α(P). These communications represent the 
events that process P receives from its environment 
(constituted of all the other processes in the system) 
or that occur internally, such as the event τ which is 
not externally visible. External events can be 
understood as the pure synchronization between an 
asynchronous process and its environment. Any type 
of event causes a state change of the process in 
which it is observed. 

- The communication interface comm._act(P) of 
a given process P contains all the CSP-like 
communications, i.e. the synchronous, one-to-one, 
communications between parallel processes, in 
which process P can engage and it also includes the 
alphabet α(P), representing signals and events 
occurring in P. Therefore, the communications of 
process P are given by the set Comm-act(P)= 
(Interface(P) U α(P)). 
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- A new operator, ∗ (star), is introduced in the 
programming notation to denote process 
instantiation. An instance of a process term must be 
created before it can execute. This event is unique in 
the system since it represents the origin of a global 
time at which processes can start their execution. As 
an example, let us consider a process P that initially 
can only engage in the event a. In CSP, this process 
would be denoted as: P = a →STOP, but it must be 
instantiated before being executed in CSP+T. Given 
P', the timed version of P, which is instantiated at 
time 1, where s is a time stamp associated to the 
abstract communication a, the specification of P' 
becomes, 
P'= 1. ∗ → s.a →STOP where s ∈[1, ∞[. 

It should be noted that event a occurs only once 
in the interval. 

- A new event operator >< is introduced to be 
used jointly with a “marker variable” to record the 
time instant at which the event occurs. ev>< v means 
that the time at which ev is observed during a 
process execution is in the marker variable v. The 
value of time stamps is taken from the set of positive 
real numbers, so that successive events form a non-
decreasing monotonic sequence. As several 
successive events can instantiate the same variable at 
different times, if we specify the process P as 
follows: P= 1. ∗ → a>< var → STOP, 
for each process execution, the marker variable var 
will record the corresponding time value at which 
event a occurred, and it will always satisfy var > 1.  

The scope of marker variables is strictly limited 
to one sequential process. They cannot be referenced 
or accessed in any other way within a concurrent 
composition of processes. 

- Each marker event is usually associated with a 
time interval, which is called its “event-enabling” 
interval and represents the period of time over which 
the event is continuously available to the process 
and its environment. During this interval, the event 
can be detected, then provoking an instantaneous 
change of state either in the process or in the 
environment. The initial times for intervals are 
relative to a preceding event or to a marker variable, 
which is instantiated during current process 
execution. A process is considered to be the STOP 
process if it cannot engage in the marker event or in 
an alternative event during the enabling interval. Let 
us suppose, for instance, that there is a process P, a 
process which can only engage in event a, which can 
only occur between 1 and 2 units of time from the 
process instantiation time (the preceding event), 
recording in the marker variable v the time at which 

the event a occurred. The specification of this 
process is therefore, 

P= 0. ∗ → [1, 2].a >< v → STOP 
After the process execution, the value of the 

marker variable satisfies the inequality 1 ≤ v ≤ 2. 
The enabling interval can be defined in a more 

compact way by using the function I, I (T,v), where 
v is the marker variable that records the time instant 
at which the preceding event occurred, and T defines 
the duration of the time interval starting at the time 
instant stored in v. An example is: 
P = 1. ∗ → a><v → I(3,v).c → d → STOP 
in which the event c can occur at least three time 
units after the process P engages in the event a.. 

If the marker variable does not appear in the 
signature of function I, the enabling interval is 
relative to the previous marker variable in the scope 
of the process, otherwise the enabling interval for 
that process is considered the default interval [0,∞]. 
The times for events are absolute and the times for 
intervals are relative to the preceding time stored in 
marker variable. 

- The semantics of the parallel composition of 
two processes with enabling intervals which must be 
synchronized depends on whether the values of these 
intervals are identical, partially overlapping or 
disjoint. In the first case, the processes synchronize 
on the common initial events, as established in CSP 
communication semantics, i.e., given P= E1.Q and 
R= E2.S, then  
P//Q ≠ STOP iff α(Q)∩α(S)≠Ø ∧ E1∩E2≠Ø. 

In the case of disjoint enabling intervals (E1∩E2 = 
Ø), the parallel composition of processes behaves as 
the STOP process. 

4 THE PROPOSED 
METHODOLOGY 

The complexity of real-time systems have 
substantially increased over the last few years, with 
more and more tasks, many of them critical to the 
well-being of people, which are needed to provide 
the facilities demanded by their current users. Thus, 
we must ensure, in the earlier phases of the 
development cycle, where the error correction is 
more advantageous and less expensive, that the 
software behaves as expected, without leading to 
potentially dangerous situations. That obviously 
leads to the use of formal methods, which are 
advocated as a means of providing a higher level of 
confidence in the correct functioning of software.  
However, formal methods are hard to master and too 
expensive to be used extensively during the entire 
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software construction process. A different approach 
to the specification of a software system is taken 
when semi-formal methods are used as a modelling 
language. In contrast to formal methods, the semi-
formal ones do not involve all that mathematical 
knowledge to be used efficiently, and UML in 
particular provides a graphical mean of describing 
an initial specification of the system, which is 
detailed enough to satisfactorily capture the user 
requirements of a RTS. UML syntax is well defined 
and widely accepted in the industry, but it lacks of a 
formal semantics. Thus, the combination of both 
methods may take advantage of their benefits and 
overcome its deficiencies if the integration scheme 
between formal constructs and UML analysis 
entities is well performed. Our methodology consist 
of a series of transformation steps, starting the 
development process by modelling the software 
semi-formally (using UML-RT) and then translating 
the UML model into CSP+T terms to obtain a 
formal specification. This translation is performed 
by means of a set of mapping rules already 
established in previous works (Capel 2005a-b).  

4.1 Modelling 

There is a general agreement in the fact that, in order 
to build systems with a guaranteed level of quality in 
a cost effective manner, it is essential to construct a 
global model, integrating all aspects of the system. 
In order to be able to integrate temporal properties in 
an early development stage of a software system, we 
extended UML-SD with new annotations inspired on 
CSP+T syntax. This extension deals with the use of 
timing events, enabling intervals assigned to events 
to restrict time execution, and a new transition 
labelled with a special event, named timeout, which 
triggers the system to a Skip State. 

The global view is obtained by combining class 
diagrams, which illustrate the architecture of 
software components and the dependencies between 
them, and extended UML-SDs that describe the 
behavioural aspects and the state changes of each 
component over the time course of a RTS model, as 
it shown in figure2. 

.

Behaviour 1 Behaviour 2

<<Capsule>      
Capsule 1

<<Capsule>       
Capsule 2

<<Protocol>>     
Protocol1-2

 

Figure 2: RTS model. 

Creating a RTS model in UML-RT using the 
extended UML-SD involves performing the 
following actions: 
1. First of all, we define the dynamic behaviour of 

all components in the system using UML SD, 
then, for all the active objects, we define:  

 
a. Initial State, the starting point of the system 
b.  All the states which an object passes 
through 

c.  For all events and actions triggering state 
transitions of objects, do the following steps: 

i.  Find the marker events and the 
restricted ones 

ii. Assign a special function gettime () to 
the marker event, so the occurrence 
instant is obtained  

iii.  Assign an enabling interval to the 
restricted event 

d.  Identify all the transitions triggered by a 
special timeout event, which serves to model 
the situation in which a restricted event e2 does 
not occur within the enabling interval. See rule 
3 of Table I as an example of this scenario 

2. Create a class diagram for modelling the whole 
system to show the relation between system 
components:  
a.  Model all system components 
(subsystems) as capsules  

b.  Model the interaction between capsules as 
protocols 

c. Capsule operations are private and protocol 
operations are public 

4.2 Transformation Rules 

Obviously, the way of transforming a model 
described by a semi-formal language into another 
formal one, will always possess some specific 
characteristics of interpretation, which may lead the 
analyst to make a decision among several 
alternatives. These are actually transformation rules, 
see Table I, and not translation rules, since the 
semantics of semi-formal and formal entities, by 
definition, cannot be considered as to be 
mathematically equivalent. This implies agreeing, 
obviously, on the definition of a set of rules that 
explain the meaning of the semi-formal elements 
within the mathematical formal model.  
The completeness and soundness of these rules may 
only be shown if one is acquainted with the 
specification of RTS. 
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Table I: Mapping Rules from UML/RT to CSP+T. 

 StateChart Diagram + Class Diagram Description CSP+T Model 
 
1. 

 

 

  
Initial State 

 
Sys = 0.∗ →A 
(∗: instantiation event) 

  
2.1 

     
 

 
 

 
Transition from a simple 
State A to a simple State B 
triggered by a marker event e 

 
A = e >< me→ B 

 
2.2 

 
Transition from a simple 
State A to a Composite State 
with an initial State Bi 

 
A = e><me→ Bi 
 

 
2.3 
 

 
Transition from a Composite 
State with a final State  Af to 
a Simple State B 
 

 
Af = ef → e →B 
  
Af is a final state in a 
composite state 

 
     
3. 

 
  

 
(e1,e2) two successive events, 
e1 is a marker event and e2 is 
its restricted event 
 

 
A = e1>< me1 → B 

 
B = (I(T,me1). e2→ C  
| I(T,me1) → Timeout 
→ Skip). 

 
4.1 
 
 
 
 
 
 
 
4.2 

External choice: 
 
 
 
 
 
 
 
Internal choice: 
 

 
 
The choice of which branch 
to take depends on the trigger 
event occurring upon exiting 
from the current state 
 
 
 
The decision on which branch 
to take depends on the prior 
action within the same 
execution step 

 
 
A= (e1&b1→B □ e2&b2→C) 
If  (e1≠ e2)  we can 
write : 
A= (e1&b1→B | e2&b2→C) 
 
Operator □ represents non-
deterministic  and operator  | 
represents deterministic 
choice. 
 
A=([0, T1].e 1→ B) п   
([T1,T2].e2→C ) 
with 0 < T1 < T2  

 
5. 

 
Prot A-B

CapsB CapsB

 
 

 
Association between two 
capsules sharing a protocol 

 
Sys = {A//B}\ {Ep} 
Ep: a set of  protocol 
operations 
If  Ep= {} then Sys = A 
/// B. 

 
 
6. 

Prot A-B

CapsB

Prot A-B

CapsC

Sys

CapsB

 

 
Association  between more 
than two capsules 

 
Sys = {A//B}\ {EAB} 
The protocol common to 
capsules A and B is hidden 
from the environment 
Sys1={Sys//C}\{EAC} 
 

 
 

 

Af… Beef 

A B 
e 

 e1   e2 
A B C 

  Timeout 

C 

B
A

A

C 

Be1[b1] 

e2[b2] 

[0, T1].e1 

[T1,T2].e2 

Bi …
A 
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4.3 Specification 

The integration of CSP+T with UML-RT provides a 
precise semantics to the graphical analysis entities 
offered by UML/RT, and thus opens up the 
possibility of verifying a software system design by 
using, for instance, the model checker FDR (Roscoe, 
1997) (Formalsystems, 2005), The system 
specification in terms of CSP+T serves as a bridge 
between the abstract, user level, graphical, UML 
specification of the system and its detailed design 
and final implementation. 
The transformation is obtained by applying a set of 
mapping rules shown in Table I. In order to do so, 
we follow a procedure consisting of the following 
steps: 
1. Transform each SD diagram into a CSP+T 

process 
a. Map each state into a CSP+T process, the 
initial state is assigned to a process term that 
includes the instantiation event (rule 1), which 
gives the global time origin 

b. Transition from P to Q, triggered by a 
marker event e, is translated into the CSP+T 
process P= e>< te → Q, being te the instant 
of the event occurrence, this mapping is 
summarized as rule (2). 

c. There are two possible representations of 
choices: a choice state (represented as a 
diamond shape) or a normal state with more 
than one outgoing transition. In the choice 
state, the decision on which branch to take next 
depends on the prior actions performed by the 
process within the same execution step. In a 
normal state, the choice depends on the trigger 
event that occurs upon exiting from the current 
state (rule 4) 

2. To combine the individual processes obtained in 
step 2, we transform the system class diagram 
into CSP+T processes,  
a.  Treat each capsule as a CSP+T process  
b.  Capsule operations become the internal 
events of the process 

c. Protocol operation denotes the 
communication between two capsules, or in 
other case the signals shared between two 
processes 

d.  Two associated capsules are presented as 
two processes composed in parallel with all the 
events in their common protocol hidden (rule 
5) 

e. Processes associated to the classes are 
progressively composed in parallel and the 
operations appearing in the associated protocol 

become hidden (rule 6) 
f. The transformation finishes when all the 
classes are composed and all internal events 
(private operations) are hidden. 

4.4 Refinement 

A kind of model transformation named refinement is 
usually performed at the design stage of complex 
systems. Refinement serves to tackle design 
complexity and to potentially improve reuse of 
software packages by defining an interface for each 
package. There are two participants involved in a 
refinement action, the abstract specification and the 
concrete specification. The abstract interface 
specifies to the classes outside the package how it 
can be used without knowing the concrete 
specification of the package.  

The final set of operations chosen to model the 
system behaviour, representing the abstract 
specification, and the concrete specification that 
groups all the system classes into a package, are 
shown in figure 3. 

 
Spec

<<T>>

Imp Sys
 

Figure 3: UML Refinement. 

Refinements are the primary focus of analysts’ 
attention during design reviews, inspections, and 
testing tasks within the design stage of software. 

The transformation of the concrete specification 
into the abstract specification in figure 3 can be 
written in CSP terms as it follows:      

Spec [T = Imp_Sys \{hidden events} 
The hidden events are all these events within the 
system classes which are not public. 

5 PRODUCTION CELL:  
USE CASE 

The Production Cell (PC) (Lindert, 1995) processes 
metal blanks which are conveyed to a press by a 
feed belt. A robot arms takes each blank from the 
feed belt and places it on the press, then the robot 
arm withdraws from the press proximity, the press 
processes the metal blank and opens again. Finally, 
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another robot arm takes the forged metal plate out of 
the press and puts it on a deposit belt, as it is shown 
in Figure 4. 

 

 
 

Figure 4: Production Cell. 

5.1 Modelling the Robot 

The robot comprises two orthogonal arms. Each arm 
can retract or extend horizontally. The end of each 
robot arm is fitted with an electromagnet that allows 
the arm to pick up metal plates. The robot’s arm task 
consists in taking metal blanks from the elevating 
rotary table to the press and transporting forged 
plates from the press to the deposit belt. 
 

electromagnets

Electric
motor

arm1

robot

Electric
motor

Press

arm2

 

Figure 5: Robot and press (top view). 

The Robot Class Diagram, Figure 6, shows the 
robot architecture, the interaction between the robot 
controller and the two arms of the robot.  

 
<<Capsule>>  

Arm1
<<Capsule>> 

Arm2
<<Capsule>>
Robot-Controller

<<Protocol>> 
P-Arm1 <<Protocol>> 

P-Arm2

-Getposition

-Turn

+ Extend1     
+ Load1 
+Unload1      
+ Retract1 
+Stop1

+ Extend2     
+ Load2 
+Unload2      
+ Retract 2 
+Stop2  

Figure 6:  the Robot class Diagram. 

Applying rule 6 in Table I, we obtained a 
specification of the subsystem composed by the 
Robot Controller and Arm1.  
RobotController-Arm1 = 

(Robot controller // Arm1) 
\{A1Extend, A1Retract, A1Load, 
A1Unload, A1Stop}. 
By composing in parallel the processes 

RobotController-Arm1 with Arm2 we obtain the 
Robot process structure (Rule 6, Table 1):   

 
Robot = (Robotcontroller-Arm1 // Arm2) 
\{A2Extend, A2Retract, A2Load, 
A2Unload, A21Stop}. 
 

A normal work cycle of the robot can be 
described in four main steps. We single out here the 
clockwise robot rotation until Arm 1 is faced to the 
table, when it extends and picks up a metal blank 
from the table. To avoid collision between arm 1 and 
the press, we store in a variable tpos1 the time at 
which the robot arrived to a given position. We 
assign an interval I [TCU, tpos1] to the event 
which warns the controller that the component is 
ready to be unloaded. The arm can extend only if the 
event occur within the enabling interval, or 
otherwise the timeout event is triggered and the 
robot exits the actual state and turns towards another 
position to complete its task. To allow safe rotation, 
the arm must be retracted before the robot can turn. 
These concepts are integrated in SD diagram as it is 
shown is Figure 7. 

 

WFT WA1R

a1extended ^ a1.Stop ^ a1.Load ^ retract
Tex=gettime tload=gettime

I.a1retracted ^ a1.Stop ^  Table.unloadedtimeout

TableReady ^ a1.Extend
Ttr= gettime

WA1E

CWW

Turn(left)

CW
Start

Pos1 ^ turn(Stop)
Tpos1=gettime

 
Figure 7: Robot Controller Statecharts diagram (one 
composite state). 

Applying the mapping rules from fig.7 to CSP+T we 
obtain : 
 
Robot-Controller = RC 
RC = Start → CW 
CW = Pos1 >< tpos1→ WFT 
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WFT = ((I (TTR, tpos1).TableReady >< ttr → 
A1.extend) → WA1E1) | I (TTR, tpos1) → 
TIMEOUT → Turn (left) → CWW 
WA1 E1 = I (TEX, ttr).A1Extended ><tex → 
A1.stop → I (Tload, tex).A1.load ><tload → 
WA1R1 
WA1R1= (I (Tret, tload) .A1retracted → 
A1.stop →Table.Unload → Turn (left) 
→CWW 
The robot refinement behaviour is described in UML 
by: 

Spec(Robot)

Extend 
Retract
Load 
Unload 
Stop

<<T>>

Imp(Robot)
 

Figure 8:  Robot Refinement. 

The robot controller and the two arms are 
grouped under package named Imp(Robot), the 
operation in the Spec(Robot ) represent the protocol 
operation in Robot class diagram, figure 6. 
 

Spec_Rt [T = Imp_Rt \{turn, getpos} 
 

The hidden operation is the capsules operation in 
robot class diagram. 

6 CONCLUSION 

We have presented a systematic method to derive a 
correct system specification in terms CSP+T from a 
semi-formal model described in UML-RT. The 
proposed method takes advantage from the benefits 
of the two languages combined and overcomes the 
drawbacks of using only one of them when 
designing software for RTS. The future and ongoing 
work in our project is aimed at using the proposed 
method for automatic code generation of embedded 
control real-time systems. CSP+T will serve as a 
bridge between the high-level graphical UML model 
and the final implementation. Java code is obtained 
from a CSP+T specification, which is automatically 
generated from the UML-RT graphical model of the 
intended system, by using the tool CSPJade 
(Escamez, 2005) that is being developed in our 
laboratory.  
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