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Abstract: A typical data warehouse report is the dynamic representation of some objects’ behaviour or changes of 
objects’ properties. If this behaviour is changing, it is difficult to make such reports in an easy way. It is 
possible to use the fact splitting to make this task simpler and more comprehensible for users. In the 
presented paper two solutions of splitting facts by using weights are described. One of the possible solutions 
is to make the proportional weighting accordingly to splitted record set size. It is possible to take into 
account the length of the fact validity time period and the validity time for each splitted fact record. 

1 INTRODUCTION 

Following the classical data warehouse theory 
(Kimball, 1996), (Inmon, 1996) there are fact tables 
and dimension tables in the data warehouse. 
Measures about the objects of interest of business 
analysts are stored in the fact table. This information 
is usually represented as different numbers. At the 
same time the information about properties of these 
objects is stored in the dimensions.  

A typical data warehouse report is a dynamic 
representation of some objects’ behavior. If this 
behavior is changing slowly, we can say the fact is 
slowly evolving.  It is difficult to make such reports 
in an easy way. Therefore we have introduced fact 
splitting using weights. This method gives a 
possibility to solve the problem.  

To describe slowly evolving fact we can say that 
the fact has a value for a time period and following 
this is a situation when the given fact corresponds to 
many time units in the time dimension.    

In some sources some situations are described 
when one object has a set of properties or it is 
connected with a set of other objects. This set can be 
considered as one entirety. To specify the percentage 
for each member of the set, weights are used. Such 
situation usually is called “many to many” 
relationship between the dimension table and the 
fact table. To cope with these situations, the bridge 
tables are introduced.  Each member from the set 
that is defined in the bridge table, gets its weight. 
Summarized total of weights for all members from 

one set have to be 100 percent.  There exists an 
opinion that bridge tables are not easily 
understandable for users, however such a modeling 
technique satisfies business requirements quite good. 

If a data mart exists with only aggregated values, 
it is not possible to get the exact initial values. It is 
possible to get only some approximation. So if we 
need to lower the fact table grain, we have to split 
the aggregated fact value accordingly to the chosen 
granularity. 

In section 2 related work is presented. Section 3 
gives data warehouse related definitions. Splitting 
fact using weights is introduced in section 4. It is 
followed by an example in section 5. Section 6 
concludes the paper and points out some further 
research directions.  

2 RELATED WORK 

The concept of “slowly evolving fact” was 
introduced by Chen, (Cochinwala, and Yueh, 1999). 
The authors argue that in some cases the classical 
approach to keep measurable facts in the star schema 
is not the best solution. If the fact value remains 
unchanged during some time period, the redundant 
values of measures, being at the same time the 
snapshots of the fact in every particular time unit 
during the period, are stored in the fact table. Instead 
of that a “transaction-oriented” fact table could be 
used, where the fact table records represent 
transaction by structure with measured fact value 
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and transaction start and end time representing the 
time period with unchanged fact value and very 
likely with long duration. 

The real transaction-level fact tables with facts 
that represent transactions in data sources are 
discussed in (Kimball, 1996). (Chen, Cochinwala, 
and Yueh, 1999) use the “transaction-oriented” fact 
table for answering the questions concerning the 
artificial transaction itself, e.g. the average length of 
the transaction duration, but in cases when lower 
detail data is necessary, a virtual cube is created to 
answer the question.   

The dimension tables are usually associated with 
the fact table using the relationship “one to many”. 
The real data warehouse projects sometime request 
the solutions for “many to many” situations keeping 
unchanged the star schema structure and also the 
simplicity of the model. (Song et al., 2001) describes 
different solutions for “many to many” relationship. 
Two of them are connected with lowering the grain 
of the fact table. When fact values are not accessible 
they are precomputed and divided according 
weights. Authors consider the solutions for 
transaction fact tables.  

The most popular solution for “many to many” 
relationship between the fact and dimension tables is 
known from Kimball’s books (Kimball et.al., 1998),   
(Kimball and Ross, 2002), where the solution with  
the bridge tables is explained. The attribute groups 
are defined in the bridge table from attributes of the 
dimension table and the weighting factors are 
assigned for each attribute within the group. 
(Kimball and Ross, 2002) mention also the possible 
change of the granularity of the fact table, where the 
detailed fact value could be computed from given 
fact value multiplied with the weighting factors for 
each attribute within the corresponding attribute 
group from the bridge table. The result is the 
growing number of the fact table records after this 
activity.  The solution could turn into a problem as 
well in the case when more than one dimension have 
“many to many” relationships with the fact table, 
because the explicit meaning of the newly computed 
fact is not possible to define.  

(Eder, Koncilia, and Kogler, 2002) suggest the 
solution with temporal data warehouse to depict the 
structural changes. The dimension attributes and the 
hierarchical relationships between them should be 

time stamped, that actually means a definition of a 
new version. Some solutions in (Eder, Koncilia and 
Kogler, 2002) are provided also concerning the fact 
attributes. For example, when the granularity of the 
time dimension changes and the fact values for the 
new detail level are not accessible, the 
transformation function is defined from one version 
to another, e.g. fact values for the month level are 
multiplied with 1/number_of_days_in_the_month. 

In our paper we describe the case of slow 
evolving fact as a many to many relationship 
between the fact table and time dimension and store 
the weighted facts in the same fact table with the 
original facts to compute dynamics of fact attributes.  

3 DATA WAREHOUSE RELATED 
DEFINITIONS 

In the data warehouse a multidimensional data 
model is used. In many books (Kimball, 1996), 
(Inmon, 1996), (Jarke, Lanzerini and Vassiliou, 
2002) and research papers (Abelló, Samos and 
Saltor, 2001), (Hüsemann, Lechtenbörger and 
Vossen, 2000) the key components of the 
multidimensional model are defined and their 
features analyzed. The main components are: fact, 
measures, dimensions and hierarchies.  

A fact is a focus of interest for the analytical data 
processing.  Measures are fact attributes usually 
quantitative description of the fact. The other 
component of the fact is the qualifying context, 
which is determined by the hierarchy levels of the 
dimensions. The fact is characterized by the 
granularity that also depends from the corresponding 
hierarchy levels of the fact.  

Dimensions are the classifying data used for 
grouping the fact data in different detail level. The 
dimension data are organized in hierarchies 
consisting of hierarchy levels prescribed for the fact 
aggregation at different detail level. 

As the special type of the facts we will consider 
the slowly evolving fact, the fact whose value 
remains unchanged during a time period with the 
period start time and the period end time connected 
to the fact from time dimension. 
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Fact table
Initial from Initial to Split from Split to Fact Unity split

15.04.2003 30.12.2004 15.04.2003 31.12.2003 10 0,5

15.04.2003 30.12.2004 01.01.2004 30.12.2004 10 0,5

24.01.2005 18.08.2005 24.01.2005 18.08.2005 20 1

Fact table
Initial from Initial to Split from Split to Fact Weighted fact

15.04.2003 30.12.2004 15.04.2003 31.12.2003 10 5

15.04.2003 30.12.2004 01.01.2004 30.12.2004 10 5

24.01.2005 18.08.2005 24.01.2005 18.08.2005 20 20

4 WEIGHTED FACT 

Speaking about splitting the facts and adding the 
weights, we must remember that there are different 
kinds of facts, additive, semi-additive and facts that 
can not be aggregated. Some cases and methods that 
describe how to split facts are described in the next 
sections. It will be pointed out, when the usage of 
weighted facts is appropriate solution. 

By a term weighting facts a process, when a 
single fact record is splitted in several records, will 
be denoted. The union of all fact validity time 
intervals in this new record group must match with 
the validity time for primary fact. The validity time 
intervals in the new fact record group must not 
overlap. And by using some special function it has 
to be possible to restore initial value of fact record, 
that were splitted. 

4.1 Proportional Splitting 

With the term proportional splitting we denote the 
case when each measure value in a new splitted fact 
group is calculated dividing the initial value by the 
size of a new fact record group. The validity period 
of this fact is not taken into account. For example, 
the validity time for the initial fact is from 20th 
December till next year’s 26th December. If this fact 
is splitted according the end of year, two fact records 
are made. Validity time for one fact is 11 days, but 
the second fact in this two records group is valid 
almost a year. Nevertheless the fact values for each 
of them are equivalent and are exactly one half of 
initial fact’s value as the new values depend on fact 
group size and not on validity time interval length. 

It is possible to describe a method how to 
calculate new fact values that are already weighted, 
and split validity time interval into smaller ones, in 
an algorithmic way. 

A period of time, when the initial fact value, for 
example f, is valid, will be denoted by interval  
[ft1::ft2]. As the data warehouse is a data storage 
that has a temporal nature, the value ft2 can be 
unknown. Usually this is a time moment in a future 
and is referenced as ‘now’ (Abelló and Martin, 

2003). Such a situation in splitting facts causes 
several problems that will be discussed later in this 
paper. For the first approximation we can assume, 
that ft2 is defined time moment, and so it is true in 
most cases. 

The time period from which one value will be 
taken for making dynamic of changes, will be 
denoted with [dt1::dt2]. Quite popular is situation, 
when this time interval is from 1st January till 31st of 
December. But in many cases this time period might 
be completely different. It is possible to compare 
values in the same moment for each day, each month 
or quarter. 

As [dt1::dt2] can be set in different ways, it is 
possible to speak about the length of this interval. 
There exist a lot of time units, like seconds, days, 
months, years. For indicating the length of this time 
span – Δdt, we propose to chose the smallest 
granularity unit in time dimension. Typically it is a 
day, but could be also other possibilities. It depends 
on each particular situation and requirements. 

To determine the size of the new splitted fact 
records set and find out the boundaries of the new 
valid time intervals an algorithmic approach can be 
used.  

 
Set_size:=0; 
if ft1<dt2 then Set_size:=Set_size+1; 
if dt1<ft2 then Set_size:=Set_size+1; 
Set_size:=Set_size + ((ft1-dt2)-(dt1-
ft2))/Δdt; 

(1) 
The method for getting splitted fact set size is 

described in a code (1). 
Formula {1} can be used to get the boundaries of 

valid time intervals, where k is natural number from 
the set [1..((ft1-dt2)-(dt1-ft2))/Δdt]. 

 
[(ft1-dt2)+k•Δdt :: (dt1-ft2)+ k•Δdt]        {1} 

 
According to the previous definitions and 

calculations the measure value fs for each fact 
record from new the fact records set can be 
calculated dividing initial fact value by the set size. 
It is represented in formula {2}. 
 

Figure 1: Additive fact weighting.        Figure 2: Semi-additive fact weighting. 
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      fs=f / Set_size        {2} 
 
If all values for f are from set [0,1], we call it a 

unity fact. And a process of dividing this record in 
weighted records – the unity splitting. Such a 
column with values 0 and 1 is usually used for 
counting objects in a process. 

If the fact that is splitted is additive, the 
formula {2} can be used for getting weighted fact 
value. The example of such fact table is given in 
figure 1, where two initial facts are, one of which is 
divided in two records group. 

There is also another way, which describes work 
with fact weights. This approach can be used also if 
a fact is semi additive. The solution is to add to the 
fact table a new column – the unity fact column. 
And then we can weight only this column, from 
which the unity splitting is made. After such 
operations the table showed in the figure 2 can come 
as a result.  

Making reports and building queries is the next 
challenging task in this approach. If the dimensions 
towards which the fact is additive are included in the 
report, both columns have to be multiplied. 
Otherwise initial values are taken. This solution is 
considered better as the first one, because it is easier 
to understand for users. We can say that there are 
just two different facts in fact table that in special 
cases can be multiplied. And of course it is always 
possible to make views for clearing such problems.  

4.2 Splitting Depending on Validity 
Time Interval Length 

In some cases it may be not enough, if only the new 
fact record set size is used for getting weighted fact 
values. Some times it may be important also to take 
the validity time length of the fact for each record 
into account. Referring back to the previous example 
where the fact record is valid from 20th of December 
till next year’s 26th of December it wouldn’t be a 
good idea to divide the fact “total income for 
period” into two equal values. There are almost no 
chances that income for six days is the same as 
income for almost a year. 

If it is needed to weight the fact accordingly to 
the validity time length for the each record in new 
splitted fact record groups, the formula {2} must be 
modified. We need a new function that can be called 
diff. This function finds the length of any time 
interval in lowest time dimension granularity units. 
So it can be the count of days, minutes, seconds 
depending on particular situation. If such a function 
exists, and usually it is already built in DBMS, the 

weighted values for each record in new fact record 
group can be found following formula {3}. 

{3} 
Here with [ts::tb] is denoted the time interval 

when the splitted fact value is valid. The length of 
this interval can be from one smallest time 
granularity object till the length of interval 
[dt1::dt2]. Also in this approach not the real initial 
fact value f can be weighted, but added unity fact, as 
it was described in the previous section. 

As it is seen from all formulas {1}, {2} and {3}, 
it is important to know the validity time interval for 
the initial fact. It is not always possible, but from our 
point of view it is not a good situation if ft2 is an 
unknown time moment in future. It is possible to 
choose one of two solutions to weight such facts. 
– During data warehouse load it is possible to 

assign to ft2 a fixed time moment in the future. It 
is not the best way, as we have to recalculate old 
fact when ft2 gets a real value. Also such 
splitting is not fully correct. 

– We can recalculate fact splitting each night, by 
assigning to ft2 a current moment of time. It 
works quite well, if lowest granularity unit in the 
fact table is a day or something less, for example 
month or year. 

5 MOTIVATING EXAMPLE 

In this section an example showing the way, how 
splitted facts can be used to get the change dynamic 
of the object status, will be provided.  In the figure 3 
a very simple star schema is given. To make the 
example more perceptible, the time dimension is 
taken away and the date is stored directly in the fact 
table. 

In the fact table company’s employees’ contracts 
of employment are stored as measures. The contract 
for each employee can be valid from several days till 
several years. A Typical situation is when the 
contract is made for several years, so the fact record 
is valid a lot of days that in this example can be 
perceived as a smallest granularity unit in the time 
dimension. Accordingly to the definition from  the 
section 3, this fact is slow evolving. Since we want 
to group employees according to their working 
place, the dimension ‘Department’ is used. In the 
dimension ‘Person’ the personal information for 
each employee is stored. 

[ ] ]::[
2::1

tbtsdiff
ftftdiff

ffs •=
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As it is seen from figure 3, the company has two 
different departments, and four employees are 
working there. With these persons contracts of 
employment are concluded. The count of employees 
in each department during the time is changing. 

The time period, where one value will be taken 
from to compute the dynamic of changes, is one year 
in our example, so the values are 1st  of January and 
31st of December. The Splitted facts are made and 
the weighted values and the valid time intervals are 
assigned according to section 4.1. 

In the figure 3 the company has one contract of 
employment with the person2 and person3. These 
contracts are valid in some parts of all these three 
years. For this reason the initial fact is splitted into 
three records and weighted values are 1/3 from the 
initial value that was 1 as it is the unity splitting. 
Fact records for other persons are splitted also 
accordingly to previously described ideas. 

From the data that are given in the figure 3, it is 
quite easy to get two of the most popular reports. 
One of them answers on the following question: 
“How many employees do we have in our company 
on the specified day, grouped by departments.” In 
the code (2) an example query is given. This query 
returns the number of employees in the company on 
1st of July 2004 grouped by departments. 
 
Select name, round(sum(weighted_fact)) 
from Department d, Fact_table f  
where f.department_id=d.department_id 
and ‘01.07.2004’ between (initial_from 
and initial_to) group by name 

(2) 
As the weighted fact values are almost not 

possible or at least not easy to store in a format 1/3 
or 1/7, the weighted fact values normally are finite 
decimal numbers. When the weights are 
summarized, it is not possible to get whole numbers. 
Some additional solutions can be introduced for not 
losing some data because of rounding, 

– Weighted fact can be stored using big precision. 
– The fact can be weighted in not exact values. 

This means that instead of three equal values of 
0.33 when splitting unity fact, it is possible to 
substitute one of the facts from the fact group 
with 0.34. In such a way the total for these 
weights will be exactly the beginning value 
which in this case was one. 

– To use views with partly summarized values. 
This approach also makes these solutions more 
understandable for data warehouse users. 
The results of query in the code (2) that are 

referencing the data structures from figure 4 are 
given in the table 1. 

 
Table 1: Company’s employees’ count in 1st of July 2004. 

Second typical data warehouse report that is 
possible to get using splitted facts is the change 
dynamics of the employees count across several 
years. This means that we would like to get 
employees count for each department in each year’s 
specified date. Normally this date is given as a 
parameter. In the code (3) a query is shown against 
figure’s 3 data structures. This query returns the 
distribution of the employees in each year 
separately. 
 
Select name, sum(fact), 
year(splitted_from) from Department d, 
Fact_table f where f.department_id= 
d.department_id and ‘01.07’ between 
(day_month(splitted_from) and 
day_month(splitted_to)) group by name, 
year(splitted_from)   

  (3) 
If we are building such queries, it is not possible 

to manage without different time functions. First of 

Figure 3: Star schema filled with data. 
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all the year has to be separated from the full date. On 
the other hand in real life situation in the fact table 
the foreign keys to the time dimension are stored. 
But in the time dimension usually is a column called 
“Year”. This is a reason why we can avoid the 
function year. In any case it is not the difficult one 
as function that extracts year from full date usually 
is built in DBMS. The mandatory function in this 
query is the one that can extract day and month from 
the full date. In this example we are calling it 
day_month. In a lot of situations it can be avoided 
using substrings, concatenations and data type 
translation functions. A little bit similar is the 
function between. This function in DBMS level is 
defined for built in data types like date, integer, real. 
This is why it should be overloaded in a way that 
between can work with partial date as the year this 
time is not important. 

The results from query in code (3) are presented 
in table 2. 
 
Table 2: Company’s employees’ count change dynamic 
calculated on each year 1st of July. 

 
When the fact splitting is used, the record count 

in fact table is growing. It is not possible to predict 
the percentage of growth for all situations. For each 
fact table it can be very different. It depends on the 
nature of facts, that is, how slow evolving they are. 
The second point is, how long is the period, from 
which we want to take the value for making 
dynamics. It can be day, hour, month or year. In our 
project, where the contracts of employment are 
stored, the record count grew about three times. 
Other benefit, which can be got by combining two 
different facts into one fact table, is less storage 
space. This is not only because we do not need to 
make almost the same fact tables with almost the 
same primary keys. Also the indexes should not be 
duplicated. 

6 CONCLUSION 

We introduced solutions for implementing splitted 
facts using weights in this paper. There were also 
given an example of how to use such structures in 
real world situation. However, fact splitting can be 
used in other situations as well. One of them is fact 

splitting in bitemporal data warehouses. The facts 
can be splitted accordingly to transaction time and 
validity time overlapping intervals. In that way we 
could analyze data looking at events history from 
different perspectives. 

Other situation when splitting facts could be 
appropriate solution is having inconsistent data from 
different data sources that has to be integrated. Such 
situations should be researched more closely. 
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