
KNOWLEDGE ENGINEERING USING THE UML PROFILE
Adopting the Model-Driven Architecture for Knowledge-Based

System Development

Mohd Syazwan Abdullah 1,2, Richard Paige2, Ian Benest2 and Chris Kimble2
1Faculty of Information Technology, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia

2Department of Computer Science, University of York, Heslington, York, United Kingdom

Keywords: Knowledge engineering, knowledge modelling, knowledge-based system, UML profile.

Abstract: Knowledge engineering (KE) activities are essential to the process of building intelligent systems; it
conceptual modelling is exploited so that the problem-solving techniques used may be understood. This
paper discusses platform independent conceptual modelling of a knowledge intensive application, focusing
on knowledge-based systems (actually, a rule-based KBS) in the context of a model-driven architecture
(MDA). It emphasises the use of problem-solving methods for developing the knowledge-level models. An
extension to the Unified Modeling Language (UML), using its profile extension mechanism, is presented.
The profile discussed in this paper has been successfully implemented in the eXecutable Modelling
Framework (XMF) – a Meta-Object-Facility (MOF) based UML tool. A case study demonstrates the use of
this profile; the prototype is implemented in the Java Expert System Shell (Jess).

1 INTRODUCTION

Knowledge-based systems (KBS) were developed
for managing codified knowledge (explicit
knowledge) in Artificial Intelligence (AI) systems
(Giarratano and Riley, 2004). These were known as
expert systems and were originally created to
emulate human expert reasoning (Studer et al.,
1998). They have been one of the most successful
outcomes from AI research (Metaxiotis and Psarras,
2003) and have been adopted in the medical,
business, manufacturing, and other domains.

KBS are developed using knowledge engineering

(KE) techniques (Studer et al., 1998), that are
similar to those used in software engineering (SE),
but they emphasize knowledge rather than data or
information processing. Central to this is the
conceptual modelling of the system during the
analysis and design stages of the development
(known as knowledge modelling). A number of KE
methodologies have emphasized the use of models,
for example: CommonKADS, MIKE, KARL and
others (Gomez-Perez and Benjamins, 1999). KBS
continue to evolve as the need to have a stable

technology for managing knowledge grows; its
current role as an enabler in knowledge management
initiatives has led to its wider acceptance (Ergazakis
et al., 2005). It has matured from a non-scalable
technology (Giarratano and Riley, 2004).Once
restricted to the research laboratory, it is now used
for demanding commercial applications and is a tool
widely accepted by industry (Liebowtiz, 2001). As a
result, the Object Management Group (OMG),
which governs object-oriented software modelling
standards, has started the standardisation process for
production rule representation (PRR) (OMG, 2003)
and knowledge-based engineering (KBE) services
(OMG, 2004). Standardising PRR is vital as it will
allow interoperability of rules between different
inference engines – much needed by industry
(McClintock, 2005, Krovvidy et al., 2005).

This paper is organised thus. Section 2 discusses

knowledge modelling. Section 3 explains the
rationale for having an extension in UML. Section 4
overviews the UML extension mechanism, and
section 5 describes the knowledge modelling profile.
With the aid of a case study, section 6 illustrates
how the profile can be used to develop a KBS.
Section 7 concludes with directions for future work.

74
Syazwan Abdullah M., Paige R., Benest I. and Kimble C. (2006).
KNOWLEDGE ENGINEERING USING THE UML PROFILE - Adopting the Model-Driven Architecture for Knowledge-Based System Development.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - AIDSS, pages 74-81
DOI: 10.5220/0002447100740081
Copyright c© SciTePress

2 KNOWLEDGE MODELLING

Newell (Newell, 1982) emphasises the importance
of developing problem-solving models of the
domain rather than focusing on knowledge
representation. This is usually referred to as the
knowledge-level principle and differs from the
previous mining view (Motta, 2002). Two strands of
research have been established based on this
knowledge-level modelling principle (Chan, 2004).

One emphasises the refinement of existing

knowledge-level principle formalisation languages
such as KARL (Angele et al., 1996) and KADS’s
ML2 language (Flores-Mendez et al., 1998). The
other area deals with developing knowledge-level
models for a variety of tasks and domains in order to
understand the problem-solving techniques used.
There are two distinct Knowledge Modelling (KM)
approaches: the problem-solving method (PSM), and
the domain ontology (Chan, 2004, Schreiber et al.,
1999, Angele et al., 1996, Dieste et al., 2002). The
PSM exploits domain independent abstract models
that describe the generic inference patterns for
different tasks (Angele et al., 1996); while an
ontology defines the commonly agreed vocabularies
for representing the domain knowledge (Gruber,
1993). The focus of this paper is on using PSM
techniques for developing knowledge-level models.

While it is commonly agreed that conceptual

modelling is an important stage in any software
system construction (Naumenko and Wegmann,
2002), both SE and KE communities have developed
different modelling techniques that are almost
unrelated (Dieste et al., 2002) resulting in
fundamental computational differences in the way
they solve the same problem (Juristo, 1998). This
makes it difficult to interchange their models
(Juristo, 1998). Nevertheless, most KE modelling
notations have adopted those from the more
established SE domain (though KE contributed
object-oriented development through frames).
Among the approaches to KE, CommonKADS is the
most comprehensive and well structured
methodology (Motta, 2002) and is widely used. Its
graphical notation has a strong resemblance to those
used in object languages such as the Unified
Modeling Language (UML) (Dieste et al., 2002).

3 RATIONALE FOR EXTENSION

Research has shown that neither technical nor
economic factors determine whether KBS
technology will be successfully adopted, but rather it

is the organisational and managerial environment
that is the main determinant (Gill, 1995, Tsui, 2005).
Gill (1995) highlights one of the problems: the
management of the development team. KBS projects
are specialised in nature requiring team members to
have knowledge of both the problem domain and the
development tools. As a result, the team members
are skilful individuals and the success of the project
is threatened if one or more leave the team mid-way
through the development or during the maintenance
period. But a KBS that is designed using an
appropriate, well-understood, standard language for
conceptual modelling along with a methodologically
sound representation technique, should be readily
understood by new team members.

The major problem with KM is that there is no
standard language available to model the knowledge
for developing a KBS (Chan, 2004, McClintock,
2005, Krovvidy et al., 2005). Most of the languages
used are adapted from SE. The languages used in
KM are project based using a mix of notations such
as UML, IDEF, SADT etc. The SE community has
adopted UML as the de facto standard for modelling
object-oriented systems and the KE community
should do the same. This would be beneficial in the
long-term as KBS can be easily integrated into other
enterprise systems (Krovvidy et al., 2005,
Giarratano & Riley, 2004) particularly if their
designs were based on a standard language; it would
help facilitate communication and sharing of
blueprints among developers (Abdullah et al, 2002).
OMG’s PRR (OMG, 2003) should go some way to
satisfy this standardisation requirement.

The motivation for the extension was to

accommodate UML for KM in designing KBS.
There was a need for a standardised approach in
designing KBS, and reaping the benefits of using
UML (better tool support, large user base familiar
with the language, and an evolving standard).

4 THE UML EXTENSIONS

The OMG’s Model Driven Architecture (MDA) – a
model-driven engineering framework – provides
integration with, and interoperability between,
different models developed using its standards
(Muller et al., 2003) (such as UML, Meta-Object
Facility (MOF), and others). The growth of MDA
will fuel the demand for more meta-models to cater
for domain specific modelling requirements.

KNOWLEDGE ENGINEERING USING THE UML PROFILE - Adopting the Model-Driven Architecture for
Knowledge-Based System Development

75

Profiles have ‘precisely’ defined semantics and
syntax, which enables them to be formally integrated
into UML, though of course they must adhere to the
profile requirements proposed by OMG. Previous
profile development for modelling knowledge has
concentrated only on certain task types such as
product design and product configuration. In
contrast, the work described here emphasises the
development of a generic profile.

Developing a meta-model for KM will enable it

to be integrated into the MDA space allowing the
relation between the knowledge models and other
language models to be understood. It provides for
seamless integration of different models in different
applications within an enterprise.

UML is a general-purpose modelling language

(Muller et al., 2003) that may be used in a wide
range of application domains. It can be extended to
model domains that it does not currently support, by
extending the modelling features of the language in
a controlled and systematic fashion. The OMG
(OMG, 2001) defines two mechanisms for extending
UML: profiles and meta-model extensions. Both
extensions have (unfortunately) been called profiles
(Muller et al., 2003).

The “lightweight” extension mechanism of UML

(OMG, 1999) is the profile. It contains a pre-defined
set of Stereotypes, TaggedValues, Constraints, and
notation icons that collectively specialize and tailor
the UML. The main construct in the profile is the
stereotype that is purely an extension mechanism. In
the model, it is marked as «stereotype» and has the
same structure (attributes, associations, operations)
as that defined by the meta-model. However, the
usage of stereotypes is restricted; changes in the
semantics, structure, and the introduction of new
concepts to the meta-model are not permitted (Perez-
Martinez, 2003).

The “heavyweight” extension mechanism for

UML (known as the meta-model extension) is
defined through the Meta-Object Facility (MOF)
specification (OMG, 2002) which involves the
process of defining a new meta-model (Perez-
Martinez, 2003). This approach should be favoured
if the semantic gap between the core modelling
elements of UML and the newly defined modelling
elements is significant (Muller et al., 2003).

It is preferable to create a profile using the
“lightweight” extension since it is easier to use,
easier to introduce new concepts through the
existing meta-model and has better tool support
compared with that of the meta-model extension.

The work presented in this paper exploits the
“lightweight” extension using the XMF approach.

5 THE KM PROFILE

The OMG UML specifications only specifies what
profiles should constitute and not how to design
them. By adopting the XMF (eXecutable Meta-
modelling Framework) approach (Clark et al.,
2005), the profile development is structured into
well-defined stages that are easy to follow and
methodologically sound. The XMF is a newly
developed object-oriented meta-modelling language,
and is an extension to existing standards for meta-
models such as MOF and UML. XMF offers an
alternative approach in profile design, which allows
modification, or addition, of new modelling
constructs; and these are easily integrated into the
core meta-model of UML. The creation of a profile
can be divided into three steps: the derivation of an
abstract syntax model of the profile concepts, a
description of the profile’s semantics, and the
presentation of the profile’s concrete syntax (not
discussed here) if this is different from UML
diagrams.

5.1 Abstract Syntax

The abstract syntax describes the vocabulary of
concepts in the profile and the associations between
those concepts. It also defines the well-formed-ness
rules that determine the models validity. The
processes involved in creating the abstract syntax
are: identifying the domain specific concepts to be
modelled including the related well-formed-ness rules
for constraining the manner in which the concepts may
be used; modelling the concepts by creating an abstract
syntax meta-model of the profile; defining the well-
formed-ness rules of the profile; defining operations and
queries related to the profile where applicable and
validating and testing the profile to ensure the
correctness of the abstract syntax model.

Profile Concept
The concepts for the profile are re-used from the
existing BNF definition of the CommonKADS
Conceptual Modelling Language (CML) (Schreiber et
al., 1999); this provides a well-defined and well-
established main set of concepts for the domain. Most of
these elements are generally adopted in the KBS
literature and are widely used for representing
concepts in KBS in the KE domain. These concepts

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

76

are itemised in Table 1 and the abstract syntax model of
the profile is shown in Figure 1.

Model Extension
The knowledge modelling profile concept extends
the existing meta-models of UML by defining the
profile’s abstract syntax. There are three places
where the profile can be viewed as an extension to
UML and these are: Class, Named Element and
Constraints, all of which are central to the core UML
meta-model and are also found in UML. The KM
concept class enables the concept to inherit all the
features of a class and allows it to specify attributes
and constraints on the attribute values. Other
concepts such as inference, task, task method,
dynamic role, static role, and the transfer function
are also viewed as a subclass of an UML Class and
inherit the class features. This allows operations
related to objects to be expressed, such as an execute
inference call from the task method, the execution of
the inference process and the access to knowledge in
the knowledge base through the static role. At the
same time, it allows these elements to specify
attributes.

Table 1: Main Knowledge Modelling Concepts.

Modelling Concept Description
Concept (class) Class that represents the category of

things
FactBase/Working
Memory

Collection of information/facts that
will be matched against the rule

Inference The lowest level of functional
decomposition into primitive
reasoning steps

Transfer Function Transfers information between the
reasoning agent and external entities
(system, user)

Task Defines the reasoning function
Task Method Describes the realization of the task

through sub-function decomposition
Static Knowledge Role Specifies the collection of domain

knowledge that is used to make the
inference

Dynamic Knowledge
Role

Run-time inputs and outputs of
inferences

Rule Type Categorization and specification of
knowledge

Rule Expressions that involve an attribute
value of a concept

Knowledge Base Collection of data stores that contain
instances of domain knowledge types

Knowledge base is a subclass of the UML class. It
has a ‘content’ slot for specifying tables. This is a
natural choice for a subclass as the knowledge base

is actually a collection of tables grouped together in
order to store rule type instances. The profile’s tuple
concept is also extended from Class. Constraint class
is a subclass of the UML meta-model, incorporating
profile concepts such as axioms and rule type
expressions. All these concepts need the ability to
express constraints; this class allows for this. Rule
Type is a subclass of the UML Named Element,
allowing rules to be identified using a name. All the
associations described in the profile are extensions
of the UML association class. However, they are not
shown in the profile, as it would clutter the diagram.

Figure 1: Knowledge Modelling Profile.

Well-formed-ness Rules
Defining the well-formed-ness rules of the profile
modelling elements in OCL helps to make
impossible illegal models that might otherwise be
created using the profile concepts. The following
well-formed-ness rules are defined for the concepts
in the profile and listed in Table 2. An example of
one of the rules written in XMF OCL syntax) is as
follows (each inference must have a unique name):

context Inference
@Constraints InferencesHaveUniqueNames
inference->forAll (s1 | states->forAll
(s2 | s1.name = s2.name implies s1 =
s2))end

<<Concept>>

name: String
input: String
output: String

<<Task>>

Class
(From XMF)

name: String
decomposition: String
intermediate role: string

<<Task Method>>

name: String
dynamic input: String
dynamic output: String
static role: String
inferencetype : {foward,backward}

<<Inference>>

communicationtype:
{provide, receive,
obtain, present}

Transfer Function

input: String

<<Static Role>>input: String
output: String

<<Dynamic Role>>

<<Knowledge
Base>>Class

(From XMF)

method
1..*

0..1

*
rolesroles

<<ordered>>
0..1

*

knowledge
elements

*
input

output

1..*

1..*

*

1..*

1..*

1..*

Rule Type Expression

<<Tuple>>
1..*

1..*

1..*

tuples

expressions

Constraint
(From XMF)

roles

<<Axiom>>

axioms
*

Constraint
(From XMF)

rules * <<Rule>>

<<Decision Table>>

Class
(From XMF)

name: String
antecedent: String
consequent: String
connection: String

<<Implication Rule>>

*rules

*
rules

NamedElement
(From XMF)

rules

Knowledge Modelling Profile

<FactBase/
WorkingMemory>>instances *

decomposition

decomposition

Note:
All association in the profile are extended
from UML association class

KNOWLEDGE ENGINEERING USING THE UML PROFILE - Adopting the Model-Driven Architecture for
Knowledge-Based System Development

77

Table 2: Profile Well-formed-ness rule.

Class Well-formed-ness rule description
Concept • Concept cannot own operations.
Inference • Inference must have a unique

name.
• Inference can only be associated

with task method, dynamic and
static role.

Transfer
Function

• Transfer function can only be
associated with task method and
dynamic role.

Task • Task must have a unique name.
• Task can only be associated with

task method.
Task Method • Task method must have a unique

name.
• A task method can only be

associated with transfer function
and inference.

• Task method can only be
decomposed to task, inference and
transfer function.

Factbase • Factbase can only be associated
with concept and dynamic role.

Static
Knowledge
Role

• Static role can only be associated
with inference and knowledge-
base.

Dynamic
Knowledge
Role

• Dynamic role can only be
associated with factbase, transfer
function and inference

Rule Type • Any one of the rule types must
exist: constraint, implication and
decision table.

Implication
Rule

• Rule can only be associated with
concept and knowledge-base.

Knowledge
Base

• Knowledge base can only be
associated with tuple, rule and
static role.

All
associations

• Can only be used to join those
concepts that it is linked with in
the profile

5.2 Semantics

The semantics describe the meanings of the concepts
within the profile in terms of behaviour, static
properties or the means by which it may be
translated into another language. Semantics are
important to the profile as they are used to
communicate the meaning of the models amongst its
users and avoid misinterpretation; they are a core
part of the profile’s meta-model and are there
instead of formal (mathematical) methods that are
often difficult to comprehend.

The Dynamic Role class specifies the
‘information’ flow of attribute instances from the
concepts. It also specifies the outputs that arise from
executing the inference sets. The output of this
inference process is the ‘result’ of matching the
antecedent of the rule with the consequent part.
Depending on what the knowledge-based system is
reasoning about, if it is not the final output of the
system, then the output can be used in another
inference.

The Static Role class is the function responsible

for fetching the collection of domain knowledge
(rules) from the knowledge base prior to an active
inference. Inferences do not access the knowledge
base directly, but request the necessary rules related
to the particular inference from the static roles. In
some knowledge-based system shells this is similar
to posting the rules to the inference process or
similar to setting which rule should be fired. This
allows the inference process to handle a specific
reasoning task and invoke those rules that are
appropriate.

An Inference process class executes a set of

algorithms for determining the order in which a
series of non-procedural, declarative statements are
to be executed. The inference process infers new
knowledge from information/facts that are already
known. The Task Method invokes this. The input
(information/fact) used by this process is provided
by the dynamic role. The result of the inference
process is then passed to the dynamic role. The
knowledge element used in the inference is accessed
through the Static Role, which fetches the group of
rules from the knowledge base. There are several
different inference processes for a given task, most
of which are run in the background by the inference
engine.

The Rule class of the profile describes the

modelling of rules within the domain concept. Rule
class is used to represent knowledge elements in
KBS and is viewed as ‘information about
information’. Rule class allows for rules to be in
different formats. There are three types of rule:
implication rule, decision table and constraint rule.
An implication rule is of the form: ‘if-then’ premise
followed by an action. This type of representation is
widely used in KBS; they are known as production
rules. A decision table is an addition to the rule
class. It is introduced here because certain rules are
best expressed in the form of a decision table, even
though they are usually converted to flattened
production rules. This paper only concentrates on

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

78

rule-based KBS as it is the one widely adopted by
industry.

The knowledge base class contains domain

knowledge, represented as rules, which are used by
the inference process. The contents of the
knowledge base are organized in tuples (records). A
tuple is used to group rules according to their
features. This allows the partitioning of the
knowledge base into modules that enables the
inference process to access the rules faster. The
maintainability of the rules is enhanced when it is
organised in this manner.

6 CASE STUDY – CLINICAL
PRACTICE GUIDELINE
RECOMMENDATIONS

The Clinical Practice Guideline (CPG)
Recommendations contains statements that are
graded according to the following three strengths of
evidence: (a) generally consistent findings in a
majority of multiply acceptable studies; (b) either
based on a single acceptable study, or weak or
inconsistent findings in multiply acceptable studies;
(c) limited scientific evidence that does not meet all
the criteria of acceptable studies of good quality.
The recommendations cover assessment of leg
ulcers, management of venous leg ulcers, cleansing,
removal of medical debris, dressing and contact
sensitivity, education and training, and quality
assurance categories. A KBS for educational
purposes was designed to list the recommendations
based on (a) evidence strength; (b) evidence strength
and category; (c) category only. Figure 2 shows how
the profile has been used to represent part of the
CPG case study.

The profile here only concentrates on showing
the task of making recommendations (considered as
classification task-type), based on the user-selected
criteria. The task is invoked by the task method
“prune set” which is executed by several inferences
and intermediate roles. For the matching process to
provide recommendations, different sets of rules are
used depending on the criteria selected by the user.
To arrive at a recommendation, the inference would
need the pertinent knowledge or rules from the
knowledge base. This is provided by the static role,
and the facts (CPG recommendations in the
factbase) to match them are gathered by the dynamic
role.

Figure 2: CPG Recommendations Case Study Model.

The case study was implemented as a prototype
system in the Java Expert System Shell (Jess), that is
based on the popular CLIPS program (Friedman-
Hill, 2003). Because of the declarative nature of
expert system shell programming, the concepts of
the profile cannot be entirely matched to a Jess
meta-model. However, the KM profile was very
useful in understanding the KBS requirements for
the CPG recommendations. Some sample rules for
listing recommendations based on evidence strength
(in the actual recommendation each recommendation
has a brief explanation rather than ID shown below
as I1, II2, III4, etc.) are:

If evidence.strength = I Then Recommendation = {I1,
I2, I3, I4}
If evidence.strength = II Then Recommendation =
{II1, II2, II3, II4, II5, II6}
If evidence.strength = III Then Recommendation =
{III1, III2, III3, III4, III5,…. to III19}

This rule set is mapped into Jess code as follows:

(defrule strength-I
 (user (strength ?i&:(= ?i 1)))
 => assert (recommendation I1 , I2 ,
I3 , I4)
explanation "Strength equals 1"))))

(defrule f strength-II
 (user (strength ?i&:(= ?i 2)))
 => (assert (recommendation II1 , II2
, II3 , II4 ,II5 ,II6)
 explanation "Strength equals 2"))))

(defrule strength-III
 (user (strength ?i&:(= ?i 3)))

dynamic-input: CPG Classification
dynamic-output:CPG Classification + Attribute

<<Dynamic Role>>

dynamic-input: CPG Classification + Attribute
dynamic-input: Attribute_Value
dynamic-output: Recommendation

<<Dynamic Role>>

name: Specify
dynamic-input: CPG Classification
dynamic-output: CPG Classification + attribute
static-input: Attribute Selection
inference-type: {forward}

<<Inference>>

name: Match
dynamic-input: CPG Classification + attribute
dynamic-input: Attribute_Value
dynamic-output: Recommendation
static-input: Recommendation-Knowledge
inference-type: {foward}

<<Inference>>

input: Attribute Selection

<<Static Role>>

input: Recommendation-
Knowledge

<<Static Role>>

name: Transfer_Function_2
communication_type: {obtain}
input: Recommendation category & Attribute
output:Attribute_Value

<<Transfer Function>>

name: Recommendation
value: {I1-I3, II1-II6, III1-III17}

<<Dynamic Role>>

name: Prune set
decomposition : Generate Inference
decomposition : Specify Inference
decomposition : Match Inference
decomposition : Transfer Function 1
decomposition : Transfer Function 2
intermediate role: CPG classification
intermediate role: attribute

<<Task Method>>

name: Classification/
Recommendation
dynamic-input: CPG
dynamic-output: Recommendation

<<Task>>

method

knowledge

decomposition

kn. elements

input
output

roles

roles

recommdendations

knowledge

input
output

name: CPG

<<KnowledgeBase>>

name: Recommendation Rule
antecedent: Matching Element
consequent: Recommendation
connection: has recommendation

<<Implication Rule>>

decomposition

rules

KNOWLEDGE ENGINEERING USING THE UML PROFILE - Adopting the Model-Driven Architecture for
Knowledge-Based System Development

79

 => (assert (recommendation III1 ,
III2 , III3 , III4 ,III5 ,III6 ,III7,
III8,III9,III10,III11,III12,III13,III14
,III15,III16,III17, III18, III19)
explanation "Strength equals 3 "))))

7 CONCLUSION AND FUTURE
WORK

KBS development is similar to that experience in
software engineering; both rely on conceptual
modelling of the problem domain to provide an
orientation as to how the system addresses the
problem. UML has been adopted by those working
in the SE domain as a standard for modelling, but
there is still no consensus in the KE domain. This
paper describes an extension to UML using the
(lightweight) profile mechanism for knowledge
modelling that allows KBS to be designed using an
object-oriented approach. The profile has been
successfully tested on several case studies. This
includes designs from scratch and re-engineering
existing KBS. Currently work has concentrated on
building an Eclipse plug-in to support the profile.
The plug-in will allow profile-compliant diagrams to
be drawn and validated, and XML or XMI
representations produced. The infrastructure in the
Eclipse plug-in will make this mapping
straightforward to implement.

The future work in this area involves studying

how to map the profile to a specific inference engine
meta-model and work in this area is in progress
(Wu, 2004). Jess will be used initially as this has
been widely adopted and will help assess not only
the utility of the profile for building realistic KBS,
but also the utility of XMF for capturing the meta-
models and building the transformations.

REFERENCES

Abdullah, M.S., Benest, I., Evans, A., & Kimble, C.
(2002) Knowledge Modelling Techniques for
Developing Knowledge Management Systems. In
Proceedings of the 3rd European Conference on
Knowledge Management, Dublin, Ireland.

Angele, J., Decker, S., Perkuhn, R. & Studer, R. (1996)
Modeling Problem-Solving Methods In New Karl. In
Proceedings Of Tenth Knowledge Acquisition For
Knowledge-Based Systems Workshop (Kaw'96).
Calgary, Canada.

Chan, C. W. (2004) Knowledge And Software Modeling
Using UML. Software And Systems Modelling, 3, 294-
302.

Clark, T., Evans, A., Sammut, P. & Willians, J. (2005)
Metamodelling For Model-Driven Development: To
Appear.

Dieste, O., Juristo, N., Moreno, A. M., Pazos, J. & Sierra,
A. (2002) Conceptual Modelling In Software
Engineering And Knowledge Engineering: Concepts,
Techniques And Trends. In Chang, S. K. (Ed.)
Handbook Of Software Engineering & Knowledge
Engineering. World Scientific Publishing Company.

Ergazakis, K., Karnezis, K., Metaxiotis, K. & Psarras, I.
(2005) Knowledge Management In Enterprises: A
Research Agenda. Intelligent Systems In Accounting,
Finance And Management, 13, 17-26.

Flores-Mendez, R. A., Van Leeuwen, P. & Lukose, D.
(1998) Modeling Expertise Using Kads And Model-
Ecs. In Eleventh Workshop On Knowledge
Acquisition, Modeling And Management. Banff,
Canada.

Friedman-Hill, E. (2003) Jess In Action: Rule-Based
System In Java, Greenwich, US, Manning Publication.

Giarratano, J. C. & Riley, G. D. (2004) Expert Systems:
Principles And Programming, Boston, Massachusetts,
Course Technology.

Gill, G. T. (1995) Early Expert Systems: Where Are They
Now? MIS Quarterly, 19, 51-81.

Gomez-Perez, A. & Benjamins, V. R. (1999) Overview Of
Knowledge Sharing And Reuse Components:
Ontologies And Problem-Solving Methods. In IJCAI-
99 Workshop On Ontologies And Problem-Solving
Methods (KRR5). Stockholm, Sweden.

Gruber, T. R. (1993) Toward Principles For The Design
Of Ontologies Used For Knowledge Sharing. Stanford
University. Report No. KSL-93-04.

Juristo, N. (1998) Guest Editor's View. Knowledge Based
System, 11, 77-85.

Krovvidy, S., Bhogaraju, P. & Mae, F. (2005)
Interoperability And Rule Languages. W3C Workshop
On Rule Languages For Interoperability. Washington,
D.C., USA.

Liebowtiz, J. (2001) If You Are A Dog Lover, Build
Expert System; If You Are A Cat Lover, Build Neural
Networks. Expert System With Applications, 21, 63.

McClintock, C. (2005) Ilog's Position On Rule Languages
For Interoperability. W3C Workshop On Rule
Languages For Interoperability. Washington, D.C.,
USA.

Metaxiotis, K. & Psarras, J. (2003) Expert Systems In
Business: Applications And Future Directions For The
Operations Researcher. Industrial Management And
Data System, 103, 361-368.

Motta, E. (2002) The Knowledge Modelling Paradigm In
Knowledge Engineering. In Chang, S. K. (Ed.)
Handbook Of Software Engineering & Knowledge
Engineering. World Scientific Publishing.

Muller, P.-A., Studer, P. & Bezivin, J. (2003) Platform
Independent Web Application Modeling. In Stevens,
P., Whittle, J. & Boochgrady. (Eds.) The Sixth

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

80

International Conference On The Unified Modeling
Language (Uml 2003). Springer-Verlag.

Naumenko, A. & Wegmann, A. (2002) A Metamodel For
The Unified Modeling Language. In Jezequel, J. M.,
Hussmann, H. & Cook, S. (Eds.) UML 2002. Dresden,
Germany, Springer-Verlag Berlin.

Newell, A. (1982) The Knowledge Level. Artificial
Intelligence, 18, 87-127.

OMG (1999) Requirements For UML Profile.
Framingham, MA, U.S.A., Object Management
Group.

OMG (2001) Unified Modeling Language Specification
(Version 1.4).

OMG (2002) MOF Specification Version 1.4.
OMG (2003) Production Rule Representation - Request
For Proposal. Object Management Group.
OMG (2004) KBE Services For Engineering Design -

Request For Proposal. Object Management Group.
Perez-Martinez, J. E. (2003) Heavyweight Extensions To

The UML Metamodel To Describe The C3
Architectural Style. ACM Sigsoft Software
Engineering Notes, 28.

Schreiber, G., Akkermans, H., Anjewierden, A., De Hoog,
R., Shadbolt, N., De Velde, W. & Wielinga, B. (1999)
Knowledge Engineering And Management: The
Commonkads Methodology, Massachusetts, MIT
Press.

Studer, R., Benjamins, R. & Fensel, D. (1998) Knowledge
Engineering: Principles And Methods. Data &
Knowledge Engineering, 25, 161-197.

Tsui, E. (2005) The Role Of It In KM: Where Are We
Now And Where Are We Heading. Knowledge
Management, 9, 3-6.

Wu, C.G. (2004) Modelling Rule-Based Systems with
EMF. Accessed at http://www.eclipse.org/articles/

KNOWLEDGE ENGINEERING USING THE UML PROFILE - Adopting the Model-Driven Architecture for
Knowledge-Based System Development

81

