

A SYSTEMATIC ANALYSIS PATTERNS SPECIFICATION

R. Raminhos, M. Pantoquilho
UNINOVA – Desenvolvimento de Novas Tecnologias,

2829-516 Caparica, Portugal

J. Araújo, A. Moreira
CITI/FCT, Universidade Nova de Lisboa

2829-516 Caparica, Portugal

Keywords: Analysis patterns.

Abstract: Analysis Patterns are indicative analysis solutions for a recurrent problem. Many patterns have been
proposed and are successfully used. The writing of a pattern follows a specific structure that can be tailored
to each author’s needs. We have developed an analysis pattern template that solves some previously
identified gaps on other approaches. This paper focuses on the definition of a systematic process to guide
developers to fill in that analysis pattern template. This process will contribute to the unification of the
analysis patterns representation, and thus for their understandability and completeness.

1 INTRODUCTION

Patterns are a well-known and broadly used
technique to specify software design and
implementation (Gamma et al., 1995). Analysis
patterns usage is fast growing in the software
engineering community. Many templates to specify
analysis patterns have been proposed (e.g. (Fowler,
1997), (Fernandez and Yuan, 2000), (Konrad and
Cheng, 2002) and (Robertson, 1996)). As expected,
these templates are based on the work already
available for design patterns, and are tailored
according to each author’s needs and style. This led
to a wide variety of analysis patterns styles, which
compromise their usability by increasing the
difficulty in analyzing and understanding different
pattern templates.

In an attempt to unify the existing analysis
patterns templates, we propose a template that
combines the common features of the existing ones
and adds new features that were missing. Since this
template provides a wide variety of information,
filling in all the fields may be a difficult task. So, we
also propose a systematic process to assist software
developers in building analysis patterns.

This paper is organized as follows. Section 2
describes the proposed template. Section 3 shows
our process model. Section 4 discusses some related

work. Finally, Section 5 draws some conclusion and
points out directions for future work.

2 AN ANALYSIS PATTERN
TEMPLATE

Currently, the specification of analysis and
requirements patterns lacks key information for its
usage by both young and experienced developers.
Including certain specific details in the descriptions
of patterns would facilitate the developer’s work, as
this would help them to take the right decisions on
how to use the patterns efficiently and successfully.
Examples of such information are a detailed list of
functional and non-functional requirements,
dependencies, conflict management, static and
dynamic models, related patterns and anti-patterns.

Moreover, each existing approach suggests a
different template. Also, guidance on how patterns
should be specified is not clearly defined. The lack
of consensus on this matter, therefore, prevents those
approaches from being accepted widely.

We propose a template that unifies the existing
ones and defines new entries to fill the identified
gaps (Figure 1). An initial attempt to handle this
problem was made in (Pantoquilho et al., 2003).
These entries provide detailed information that
covers from requirements descriptions and structural

453
Raminhos R., Pantoquilho M., Araújo J. and Moreira A. (2006).
A SYSTEMATIC ANALYSIS PATTERNS SPECIFICATION.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 453-456
DOI: 10.5220/0002446404530456
Copyright c© SciTePress

and behavioural modelling of the pattern to
evolution issues, which are essential for the precise
application of the pattern by the developer.

1. Name: Pattern identifier.
2. Also known as: Additional names that can also identify this pattern.
3. History: Chronological register of all previous versions of this

pattern. The following notation should be used: {Date, Author,
Reason and Changes}. To be used by developers who have already
used the pattern to check its changes.

4. Structural adjustments: Introduction of field extensions and
omissions to the pattern template.

5. Problem: A short description of the problem that this pattern solves.
6. Motivation: Description of the forces involved and a problematic

situation intended to motivate the use of the pattern.
7. Context: Wide description of the environment in which the problem

and solution recur and for which the solution is desirable.
8. Applicability: Description of the conditions wherein the pattern can

be applied.
9. Requirements:

9.1. Functional requirements (FR): List of all FR organised
through use cases.

9.2. Non-functional requirements (NFR): List of all NFR (e.g.
security) organised in a SIG (Chung et al., 2000).

9.3. Dependencies and contributions: Identification of
relationships between requirements. These may be
dependencies, meaning that a requirement depends on
another, or contribution, meaning that a requirement
contributes positively or negatively to another requirement.
This is represented with a graph.

9.4. Conflict identification & guidance to resolution: Explanation
for requirements interaction and conflict resolution.

9.5. Priorities: Definition of priorities among the requirements.
This could be represented by a hierarchical structure.

9.6. Participants: Identification and description of the actors that
interact with the system.

10. Modelling:
10.1. Structure:

10.1.1. Class diagram: Structure of the elements of the
pattern.

10.1.2. Class description: Description of classes and their
responsibilities.

10.2. Behaviour:
10.2.1. Collaboration or sequence diagrams: Suitable for

scenarios description.
10.2.2. Activity diagrams: Suitable for scenarios and overall

description.
10.2.3. State diagrams: Suitable for scenarios and overall

description.
10.3. Solution Variants: Description of alternative structural and

behavioural models.
11. Resulting context: System configuration after the pattern

application.
12. Consequences: Advantages and disadvantages of the pattern

application.
13. Anti-patterns traps: Most common pitfalls that can be originated

from the pattern application.
14. Examples: One or more application examples that illustrate the

usage of the pattern: initial context.
15. Related patterns: List of similar patterns (describing similar

problems and solutions).
16. Design patterns: Design or architectural patterns that can be used

for further refinement.
17. Design guidelines: Advices on how the pattern should be

implemented (without specific details).
18. Known uses: Known pattern occurrences and applications in

existing systems. This should include at least three different
systems.

Figure 1: Proposed analysis pattern template.

Each entry in the template is numbered for
referencing purposes only, not representing the
filling order. This order, wherein the various entries
should be filled, is given by the process described in

Section 3. In general, there are no systematic
processes defined to help developers building
analysis patterns. The pattern community is usually
more interested in building patterns than in defining
rules to build them. For a practitioner, however, such
a process may be essential to get started, and to
know exactly what steps to take to have a pattern
defined in the end.

3 A MODEL FOR ANALYSIS
PATTERNS SPECIFICATION

The process depicted in Figure 2 as an activity
diagram, illustrates a systematic model for analysis
patterns specification. This process shows what a
developer should do when defining an analysis
pattern. Each marked block in the activity diagram
will be described next. Each activity helps filling in
one entry of the template. It is not the aim of this
paper to define how an analysis pattern is identified.
This work presupposes that this has already been
realised. The process is explained next, step by step.
Due to space reasons we could not illustrate the
approach, but a full example can be found in
http://ctp.di.fct.unl.pt/~ja/AP-Process.pdf, where the
approach is applied to the analysis pattern “Repair of
an Entity” (Fernandez and Yuan., 2001).
Context and Problem Definition. The first
activities are realized based on the pattern
identification, rooted in a set of applications that
were analysed beforehand. The Name must be
generic and abstract enough, being adaptable to the
same problem within several domains. The Problem
states the reason why the pattern is being developed.
A pattern only addresses one problem. If we realize
that the problem can be decomposed in several self-
contained sub problems, then we isolate one
problem per pattern, and recursively apply this
process to each identified sub-problem. The Context
characterizes the domain in which the problem
recurs, addressing its origin, main causes/reasons,
and any other relevant aspect. The Motivation entry
describes the forces that drive the pattern and gives
one example that motivates the use of the pattern.
Applicability involves enumeration of the problem
core characteristics that are solved through the
solution described in this pattern.
Requirements. The Requirements set of activities
starts by identifying and describing FRs, NFRs and
participants (which can be realised in parallel as they
are strongly coupled). To complement the
description of the FRs we can employ a use case
diagram, where each use case refers to one FR or a
set of FRs. Participants are mapped to actors. NFRs

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

454

are properties that constrain the FRs, identified using
catalogues as in (Chung et al., 2000). In the next
step, identify dependencies and contributions, we
need to find the relationships between the
requirements recognized. Next, we can characterise
conflicts by identifying negative contributions.
Conflicts must be negotiated by assigning priorities
to requirements.
Modelling. Once we have defined the requirements,
their dependencies, and solved the conflicts
identified, we are able to initiate the Modelling set of
activities. This starts by specifying the behavioural
model as a way to understand the dynamics of each
use case and to identify the objects necessary for its
“execution” with the help of sequence or
collaboration diagrams. Having done that, we can
then initiate the construction of the class diagram for
the pattern (based on the objects identified). To
Enumerate the existing solution variants we must
provide a list of other solutions for the same problem
described in the pattern. Although these solutions
may look unnecessary, since they are non optimal
compared with the solution presented, they should
be presented since a modification on the problem or
context may make them more appropriate.
Application Result. Once the modelling activity is
concluded, we have enough information to describe
the resulting context and the consequences of the
application of the pattern. While the Resulting
Context specifies the system configuration after the

pattern application, the Consequences entry lists both
the advantages and disadvantages of the pattern’s
application. The identification of the disadvantages can
be used as a starting point for the application of other
patterns, which would complement the current one.
Associated Patterns. Knowing the resulting context
and the consequences of the pattern application we
have all the information necessary to define a list of
Related Patterns that specifies different solutions for
related problems, as well as Anti-Patterns Traps
(Brown et al., 1998). The latter helps avoid common
errors in the pattern application by presenting the
most common negative results.
Examples. The previous steps encourage precise
definition of an analysis pattern. However, for better
understanding we need concrete examples. The
Known Uses field should enumerate at least three
examples of the pattern application in implemented
systems. The Examples field shows how the pattern
was applied and all transformations necessary to the
initial context so that it could be applied.
Design Guidance. Design Guidelines provide
advice and general guidelines for the
implementation step. These advices should be
platform and language independent. The Design
Patterns entry shows a list of suitable patterns that
can be applied to the implementation of a pattern.
Evolution. For evolution purposes, we need to
supply the requirements engineer with some extra
information. The History entry explains all the

Figure 2: The process model.

Build collaboration or
sequence diagrams

Build class diagram

Build activity or
state diagrams

Describe the classes
 in the class diagram

Enumerate the existing
solution variants

Describe the
resulting context

Identify the
related patterns

Enumerate the
known uses Give examples

Present the
structural adjustments

Complete the
history line

Find the also known as
names

Identify applicable
anti-patterns

Give design
guidelines

Select a name

Define the problem

Describe the
context

Context and
Problem Definition

Describe the motivation

Define the applicability

Identify and design
functional req.

Identify and design
non-functional req.

Identify and descibe
participants

Identify dependencies and contributions

Conflict identification and guidance resolution

Define priorities

Behavioural Model

Requirements

Structural Model

Identify the consequences
of the solution

Application Result

Identify
design patterns

Design
Guidance

Associated Patterns

Examples

Evolution

*

*

*

*

End of Process

Begin of Process

Modelling

Figure 2: The process model.

A SYSTEMATIC ANALYSIS PATTERNS SPECIFICATION

455

transformations the pattern suffered, tracking the
pattern’s progress, since the original version. This
helps developers to identify what changes have
taken place. Structure Adjustments should include all
additional extensions, all omitted fields, and the
reasons for those decisions. Also Known As lists
additional names for which a pattern is also known.

4 RELATED WORK

In (Whitenack, 1995), a pattern language is
described for requirements elicitation. Guidance is
provided for analysts and product developers to
apply a set of techniques to produce a deeper
understanding of the problem area. However, this
pattern language is more appropriate to simpler
pattern descriptions, not applicable to our template.

In (Robertson, 1996), an event/use case approach
is used and employs a simple template for pattern
description. In (Konrad and Cheng, 2002), the focus
is on requirements patterns for embedded systems.
In (Fowler, 1997), the concept of analysis patterns is
proposed for the representation of conceptual
models for commercial processes. In (Fernandez and
Yuan, 2000), the Semantic Analysis Pattern
presented portrays a small set of coherent use cases
that describe a basic generic application. All these
approaches focus on the structure of analysis
patterns, and not on the definition of a process of
how to build them. Our work addresses this issue by
presenting a systematic process model.

5 CONCLUSIONS

This paper presented a systematic process to specify
analysis patterns using a template that provides
detailed information. The aim was to facilitate the
developers’ work in charge of the analysis patterns
specifications by guiding them in this task. We
believe that this approach will (a) encourage
software engineers to specify patterns with better
quality and (b) provide developers with more
detailed information, essential to decide which
pattern should be chosen. Notice, however, that it is
not our intention to propose a rigid process.
Adaptations are allowed if needed to follow the
common practices of an organization.

As future work, we intend to adapt the process to
accommodate the emerging aspect-oriented analysis
specifications. With such work we envision that it
shall be possible to broaden the template’s
applicability and usage. Furthermore, we plan to
provide tool support not only for the process model

presented in this paper, but also to automatically
reconfigure and adjust this process to accommodate
organization’s particularities.

REFERENCES

Brown, W., Malveau, R., McCormick, H., Mowbray, T.,
1998. Anti-Patterns: Refactoring Software,
Architectures and Projects in Crisis, J. Wiley & Sons.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non-
Functional Requirements in Software Engineering.
Kluwer.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

Fernandez, E.B., Yuan, X., Semantic Analysis Patterns.
ER'00, USA, 2000.

Fernandez, E.B., Yuan, X., An Analysis Pattern for Repair
of an Entity. PLoP 2001, USA, 2001.

Fowler, M., 1997. Analysis Patterns - Reusable Object
Models, Addison Wesley.

Konrad, S., Cheng, B., 2002. Requirements Patterns for
Embebed Systems. RE'02, Essen, Germany.

Pantoquilho, M., R. Raminhos, Araújo, J., 2003. Analysis
Patterns Specifications: Filling the Gaps. Viking PLoP
2003, Bergen, Norway.

Robertson, S., 1996. Requirements Patterns Via Events /
Use Cases. The Atlantic Systems Guild.

Whitenack, B.G., 1995. RAPPeL: A Requirements
Analysis Pattern Language for Object Oriented
Development. Addison-Wesley.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

456

