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Abstract: Software agents represent aim at automating user tasks. A central task of an agent is planning to achieve its 
goals. Unexpected disturbances occurring in the agent execution environment represent a serious challenge 
for agent planning. In this work, a recovery model for the planning process of agents is proposed to cope 
with disturbances caused by system failures; which often lead to system crashes. The proposed recovery 
model supports the Hierarchical Task Networks (HTN) planners which represent a broad family of planners 
that are widely used in agent systems. A prototype for the proposed recovery services is implemented to 
demonstrate the feasibility of the proposed approach. Furthermore, a simulation is built and many simulation 
experiments were conducted to gain insight about the performance of the proposed recovery model. 

1 INTRODUCTION 

Software agent systems are introduced to ease auto-
matable tasks of the end user. One of the important 
features that are required to exist in the developed 
agents is robustness. Relying on agents to perform 
critical tasks necessitates that they possess a high 
level of reliability to overcome possible failures in 
any of the agent components or in its environment. 

Various agent architectures tend to group agent 
components into subsystems, i.e. layers. Typical 
layers found in existing agent systems can be classi-
fied into the following: 

Cooperation Layer: this layer is responsible for 
the social ability of the agent. Interaction and com-
munication with other agents in the environment are 
handled by this layer in order to allow goal sharing 
and plan execution sharing. 

Planning Layer: having set a goal to achieve, the 
agent begins to generate a plan -which can be con-
sidered as a set of actions- to reach that goal. The 
agent accepts the current state of the environment, 
the goal to achieve and the possible actions allowed 
in the environment. The agent then attempts to gen-
erate a plan that accomplishes these goals. 

Execution Layer: This layer is responsible for 
executing the planned actions in the agent environ-
ment. This layer is also responsible for scheduling 
the tasks for execution to avoid invalid tasks inter-
leaving. Execution layer may include interface com-

ponents that are required to submit the agent actions 
to the environment, e.g. database interfaces. 

1.1 Robustness of Agents 

Robustness of agents has long been considered by 
agent system developers to provide a reliable execu-
tion of agents. A robust agent can be defined as an 
agent that is capable to identify and overcome a fi-
nite set of failures in order to allow transparent con-
tinuation of agent operation. 

Robustness should cover all layers of the agent to 
handle all possible failures/disturbances at each 
layer. Most of previous work in this context concen-
trated on the cooperation layer and the execution 
layer. Our recovery model addresses the planning 
layer to handle disturbances due to system failures; 
either hardware or software. Typical types of distur-
bances are the crash of the agent, and hence the loss 
of its generated plans, or unplanned changes of the 
state of the agent environment, which may make the 
generated plan invalid. We assume the correctness 
of the planning algorithms and hence the validity of 
the generated tasks. Therefore, our solution does not 
handle crashes due to logical errors in the plan itself. 

Naturally, after a disturbance occurs, the agent 
has to restart the planning process from scratch if no 
recovery services are provided. Recovering of the 
generated plan minimizes the penalty of these dis-
turbances by restoring a valid plan and returning it to 
the planner. 
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2 RECOVERY MODEL 

A recovery model is built to provide a robust plan-
ning process of agent systems. A lot of planning 
algorithms can be exploited to perform the planning 
of the agent goals. One family of these planners is 
the Hierarchical Task Networks (HTN) (Erol, et al., 
1994) and (Erol, 1995). The planners under this fam-
ily achieve a plan for a set of goal tasks by decom-
posing them into more primitive tasks. The decom-
position process is repeated until the most primitive 
tasks are achieved. There are many implementations 
for HTN such as NOAH, NONLIN, MOLGEN, 
UMCP, SHOP, SHOP2 (Nau et al., 2003) and oth-
ers. This family of planners is adopted to be sup-
ported by the proposed recovery service to prove the 
concept of plan recovery. 

2.1 Overview of HTN Planning 

HTN planners accept the initial state of the envi-
ronment, the goal tasks, and the definition of the 
problem domain as input. The output of the planner 
is a plan that can achieve the goal tasks. 

Tasks are classified to primitive and non-
primitive tasks. Non-primitive tasks are abstract 
tasks that must be decomposed by the planner to a 
set of more primitive tasks. Primitive tasks are the 
tasks that can be achieved by a single action (opera-
tor). 

An environment state S is a set of ground atoms 
that are true in the environment. The initial state at 
the beginning of planning is denoted as S0. An op-
erator α is an action that can be executed in the 
agent environment. It can be represented by a tuple 
(head, parameters, precond, del, add), where head is 
the operator name, parameters are its variable pa-
rameters, precond is a list of precondition that must 
be true in the environment state before execution of 
the operator, del is a list of terms to be removed 
from the state after execution, and add is a list of 
terms to be added to the state. 

Define a function named RESULT that maps a 
pair of a state and an operator to another state:  
RESULT: S × Op  S 

A plan P is a set of operators with a dependency 
between them. Formally, a plan P= {{(n1:α1),…, 
(nk:αk) },<p}, where αi is an operator in the plan with 
labels ni to distinguish similar operators. Define a 
function PL_RESULT that maps an initial state and a 
plan to a final state: PL_RESULT: S × P  S. 
PL_RESULT applies the operators in plan P succes-
sively in their precedence order against an initial 
state S0 to achieve a final goal state Sg. A method m 

is used to decompose a non-primitive task. A 
method m can be defined as follows: 

m = (head, parameters, precond, subtasks, <m), 
where head is the method name, parameters are a 
list of method parameters, precond are the precondi-
tions of the method, subtasks are a set tasks that can 
accomplish the goal task, and <m is the dependency 
relation between tasks in subtasks. A problem do-
main D is defined as a tuple (At,Op,Me) , where At is 
a list of all possible atoms in this domain, Op is a list 
of possible operators and Me is a list of possible 
methods. A planning problem Pr= (D,S0,T) consists 
of a problem domain D, an initial state S0 and goal 
tasks T. Its solution is a plan P that can achieve the 
goal tasks. 

Generally, an HTN planner, e.g. SHOP2, repeat-
edly picks (and removes) some task from T, decom-
poses it to more primitive tasks and returns them to 
T until the most primitive tasks remain in T.  At this 
point, each primitive task can be achieved by a sin-
gle operator. The operators used are appended to the 
output plan and the plan is then returned to the exe-
cution layer after all tasks are achieved. 

2.2 Assumptions 

We assume that the agent environment is open, i.e. it 
can be modified by other external entities, and his-
tory-independent, i.e. the outcome of an operator 
does not depend on the previously executed opera-
tors. Also, it is assumed that the execution process of 
the agent checks the satisfaction of all operator pre-
conditions before executing. 

Plan execution can begin before the completion 
of its generation. In other words, generated tasks of a 
partially developed plan can be executed by the 
agent. This feature is especially important in agent 
systems where planning can take considerable time, 
which motivates the necessity of recovery. Some 
planners cannot allow early execution of plans for 
certain reasons such as the use of backtracking algo-
rithms where a generated task be removed at a late 
planning step. We adopt the more general case 
where early execution of partially developed plans is 
allowed. 

2.3 Architecture of the Proposed 
Recovery Model 

Figure 1 depicts the architecture of the proposed 
recovery model. A typical agent system is used as a 
basis for the recovery service. The agent system 
consists of three typical layers: Execution Process, 
Planner, and Cooperation Process. The plan recov-
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ery service is tightly coupled with the planning 
process to provide recoverable plans. The planner 
initially submits the planning problem which is rep-
resented by the tuple (D,S0,T). Every time the plan-
ner generates a new task, it has to submit it to the 
recovery service so that the persistent image of the 
plan can be updated. Through its interaction with the 
execution process, the planner communicates the 
schedule and the state of execution of the plan to the 
recovery service module. Upon disturbance, the re-
covery service module recovers a valid plan with 
respect to the new environment state and returns it to 
the planner so that it can continue planning. The 
recovery service uses a persistent storage unit to 
store an image of the submitted planning informa-
tion so that it can be retrieved after a crash occurs. 

 
Figure 1: Agent system architecture with integration of 
planning recovery service. 
 

The traditional data structures used in the HTN 
planner, and which are also used in the recovery 
module, are the plan P, the goal tasks T, the initial 
state S0, the planning state Sp and the problem do-
main D. Additionally, we introduce a new data 
structure, the Plan Task List (PTL), to enable suc-
cessful recovery of plans. These data structures rep-
resent the state of the planner at any point of time 
and hence they have to be stored and maintained by 
the recovery module. The PTL data structure pre-
serves the following: 
– tasks hierarchy, i.e. the parent-child relation be-

tween generated tasks, 
– operators used to achieve primitive tasks, 
– methods used to decompose non-primitive tasks, 
– tasks that are already achieved or decomposed 

which are discarded from the goal tasks T. 
Formally the PTL can be represented as follows: 

PTL={(ti, subtasksi , mi, αi , θi ), <p}, 0 ≤ i ≤ no of 
nodes in the tasks hierarchy; where subtasksi are the 
subgoals of ti, αi is the operator to achieve ti, mi is 
the method used to decompose ti to subtasksi, and θi 
is the used binding that unifies the operator or the 
method with the task. Subtasksi and mi must be equal 
to φ whenever ti is primitive, and αi must be φ if ti is 
non-primitive. Also, subtasksi, mi, αi and θi must be 
equal to φ if ti∈T because at this point the task ti is 
not yet achieved by an operator, in case of primitive 
task, or decomposed, in case of non-primitive task. 
Each task in the goal tasks T is initially copied to 
PTL. When a task is decomposed, its subgoals are 
associated with it without deleting it from PTL.  

In (Beskales, 2005), we prove that this set of data 
structures is necessary and sufficient for a correct 
recovery of plans according to procedures men-
tioned in the next section. 

2.4 Logging and Recovery  
Procedures 

In order to allow the recovery service to do its func-
tion, logging procedures must be implemented to 
record newly generated tasks by the planner and to 
update the PTL structure accordingly. These proce-
dures are: Initialize, SubmitPrimitiveTask, Submit-
NonPrimitiveTask and UpdateTaskExecStatus. Due 
to space limitation, a pseudo code for each of these 
procedures is omitted. They can be found in 
(Beskales, 2005). The procedure Initialize must be 
invoked at beginning of planning. It stores new 
planning problems in the persistent storage and ini-
tializes the PTL structure. The procedures Submit-
PrimitiveTask and SubmitNonPrimitiveTask must be 
invoked by the planner after a primitive task is 
achieved by an operator and a non-primitive task is 
decomposed using a method, respectively. They 
store the subtasks and the used method in case of a 
non-primitive task, or the used operator in case of a 
primitive task. The PTL and P structure are updated 
accordingly. All modified structures are updated in 
the persistent storage. The procedure Up-
dateTaskExecStatus should be invoked by the execu-
tion process when a task is executed or by the plan-
ner if it has a full knowledge about the execution 
status of tasks from the execution process. The pro-
cedure RecoverPlan, listed below, is invoked by the 
planner after occurrence of disturbances. It retrieves 
the stored planning data from the persistent storage 
and starts to evaluate the validity of each item with 
respect to the current environment state. Only valid 
plan operators are returned in the plan while invali-
dated tasks are removed from the plan and are added 
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to the goal tasks for replanning. The returned data 
represents a consistent state for the planner, from 
which it continues processing. 

 
recoverPlan(State Sc): P, T, S0, Sp{ 
/*invoked after a disturbance. New en-
vironment state is Sc */ 
if(crash occurred)  
 restore(D,P,T,PTL,S0,Sp); 
Sc'=S0; // Sc' is the supposed state  
iterate over t∈P in prec. order <p{ 
 if(t.execStatus = 'completed'){ 
  Sc'= RESULT(Sc', t.α); 
  removeTask t from PTL and P; 
 } 
} 
S0=Sc ; //update S0 to the current env. 
state 
if(Sc==Sc'){        
 return P,T,S0,Sp; 
}else {  //Sc≠Sc' 
 Sp=Sc;    
 iterate over t∈PTL in depth first 
traversing in precedence order (<p){ 
  if((t == primitive ∧ t.α.precond  
    is not satisfied by Sp) ∨ (t is  
    not primitive ∧ t.m.precond is  
    not satisfied by Sp)){ 
   Task[] SubTasks = φ; 
   Task[] Dependents = {t}; 
   Loop until SubTasks and Dependents 
     stabilize{ 
     SubTasks = SubTasks  ∪  
       {t'∈ PTL: ancestor(t'',t') ∧  
       t''∈ Dependents ∪ SubTasks}; 
     Dependents = Dependents ∪  
       {t'∈PTL: t'' <p t' ∧  
       t''∈ SubTasks ∪ Dependents}; 
   } 
   Dependents = Dependents–SubTasks; 
   For each task ts∈ SubTasks{ 
     PTL.removeTask(ts); 
     T.removeTask(ts);  
     PTL.removeBinding(ts.θ); 
     T.removeBinding(ts.θ); 
     if(ts is primitive ∧ ts∈ P) 
      P.removeTask(ts); 
   } 
  For each task tp∈ Dependents{ 
   PTL.removeBinding(tp.θ); 
   T.removeBinding(tp.θ): 
   T.addTask(tp); 
   Task t'=PLT.searchForTask(tp) 

   t'.operator = t'.method =  
   t'.bindings = t'.subtasks = φ; 
   if(tp is primitive ∧ tp∈ P)  
     P.removeTask(tp); 
  } 
 }else  // t.precond is satisfied by Sp 
  Sp = RESULT(Sp,t.α);     
 } 
} 
update (P,T,PTL,S0,Sp); 
return P,T,S0,Sp; 

 
An example of plan recovery is shown in Figure 

2. After generating a plan P=(t0, t1, t2, t3, t4) with 
remaining goal tasks T={t5,t6,…}, and assuming that 
t0 and t1 are executed, a disturbance occurs. Invoca-
tion of the recovery procedure will result in the fol-
lowing: 
– Removing all completed tasks, i.e. t0 and t1. 
– Traversing the non-completed tasks in P and 

checking their validity with respect to the new 
environment state. This results in removing inva-
lid tasks t4.  

– Removed tasks are added to the goal tasks T to 
be replanned. 

– Finally, new initial state S0 (which equals the 
current environment state Sc) and new planning 
state Sp are calculated and returned to the planner 
along with the modified P and T. 

 

 
Figure 2: An example of plan recovery. 
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3 SIMULATION MODEL 

3.1 The Prototype 

In order to verify the feasibility of the proposed re-
covery model, a prototype is built that utilizes the 
logging and recovery procedures described earlier. 
The modules of the prototype, illustrated in Figure 3, 
are described below.  

We chose the JSHOP2 planner (Ilghami) to be 
integrated with our recovery service. JSHOP2 is an 
open-source Java implementation for the SHOP2 
planner, which takes the problem domain and goals 
as input parameters. The Recovery Module is re-
sponsible for storing and recovering the generated 
plans. It mainly consists of the implementation of 
the logging procedures and recovery procedure; de-
scribed in Section 2.4. The Simulated Persistent 
Storage is a transient data structure used to keep an 
image of the recovery information submitted by the 
recovery service. In our simulated environment, 
there is no need to actually store the plan in a physi-
cal persistent storage because the crashes are simu-
lated by another module rather than actually per-
formed. Upon receiving a crash signal, the planner 
internal variables are nullified, the recovery proce-
dure retrieves the stored recovery information from 
the simulated persistent storage, and finally a valid 
plan is returned to the planner after removing invalid 
tasks. The Crash/State Change Simulator Module is 
used to generate disturbances including simulated 
crashes of the planner and unplanned changes of the 
environment state according to the probability dis-
tributions mentioned in Section 3.2. The Plan-
ning/Recovery Monitor is responsible for observing 
the output of the planner as well as the recovered 
plans returned by the recovery service after a distur-
bance. By observing system outputs, the user can 
validate the correctness of the planner and the re-
covery service and gather the necessary measure-
ments for the performance metrics described in Sec-
tion 3.3. 

 
Figure 3: The implemented prototype. 

3.2 Probability Distributions Used in 
the Simulation 

The inter-arrival time between disturbances (in 
terms of processed tasks) follows an exponential 
distribution with mean Tdst. The probability of 
change of each ground atom in the environment state 
follows a Bernoulli distribution with probability of 
modification Pmod. If a ground atom is selected for 
modification, the new atom is randomly selected 
from all possible states. The number of completed 
operators of the generated plan at time of distur-
bance is uniformly distributed in the range from zero 
to the length of the partially generated plan. The 
probability of crash occurrence given that a distur-
bance already occurred is assumed to follow a Ber-
noulli distribution with expected probability of crash 
occurrence equal to Pcr. 

3.3 Performance Metrics 

The following performance metrics are used in the 
simulation study: 
– The number of processed nodes used in the plan 

generation is the main performance metric. In 
the presence of recovery, the total number of 
processed tasks is calculated including those 
processed by the planner and the recovery mod-
ules. The ratio of the number of tasks processed 
by the recovery procedure to the number of tasks 
processed by the planner is also monitored to 
provide an indicator about the relative overhead 
of the recovery service with respect to the plan-
ner.  
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– The number of performed I/O operations is also 
monitored. To count the I/O operations, the 
number of read/written bytes is monitored in 
each of the I/O events and then the number of 
I/O accesses is calculated at each event by divid-
ing the number of transferred bytes over the 
number of bytes per page.  

– The storage requirements of recovery are also 
recorded to obtain a complete image about the 
requirements of the recovery process. The stor-
age requirement is defined as the maximum 
number of bytes stored in the persistent storage 
for the duration of the planning process. 

3.4 Recovery Trade-off 

Recovery service introduces new overheads as a 
result of logging of planned tasks and executing re-
covery procedure after disturbances. These over-
heads can be justified if the recovery service can 
actually assist the planner to retract to a mature plan-
ning state rather that restarting the planning process 
from scratch.  

The proposed logging procedures and recovery 
procedure have the following overhead: 
– Fixed I/O overhead: due to logging of planning 

events.  
– Storage overhead: used to store the logged plan-

ning information. 
– Recovery overhead: encountered when recovery 

procedure is invoked after occurrence of distur-
bance. It is composed of additional I/O opera-
tions to retrieve the stored image of PTL, T and 
P from the persistent storage in case of crash, 
and the number of processed tasks in order to 
check the validity of each task in PTL before re-
turning the recovered plan and goal tasks to the 
planner.  

The cost of the planning process consists of: 
– Processed tasks: in order to generate a plan for 

the goal tasks, i.e. to decompose them using do-
main methods and operators to achieve a plan, 
and 

– I/O operations: which are performed initially and 
after each disturbance to read current environ-
ment state, i.e. perceptions. 
For the recovery approach to be efficient, the 

sum of the planning cost and logging/recovery costs 
must be less that the planning cost in absence of 
recovery services. In such case, the source of recov-
ery efficiency is that it allows the planner to retract 
to a mature, consistent and valid planner state rather 
than reinitializing its state after occurrence of distur-
bances. The number of disturbances must overpass a 

specific threshold and the recovered planner state 
should be as mature as possible. To find out these 
thresholds, several experiments are conducted based 
on the prototype under various conditions. 

4 EXPERIMENT RESULTS 

4.1 Effect of Varying Tdst and Pmod 

As expected, there is a significant performance gain 
when the recovery procedure is used especially at 
high disturbance rates, i.e. low values of Tdst, and in 
semi-static environments, i.e. at low values of Pmod 
(Pmod= 0.05) as illustrated in Figure 4 and 5. In ab-
sence of recovery services, the planner has to restart 
with an empty plan each time after disturbance oc-
currence while the recovery process restarts the 
planner from a more mature state. It is normal that 
increasing rate of disturbances, i.e. decreasing Tdst, 
leads to increasing the gap between the two ap-
proaches. This is mainly because each additional 
disturbance costs the planner further penalty when 
the recovery service is disabled compared to the case 
where the recovery service is exploited. 

In Figure 5, it is noticed that the number of per-
formed I/O operations at high values of Tdst, is 
slightly higher when the recovery service is used. As 
Tdst begins to decrease, the recovery enabled plan-
ning performs better than the traditional approach in 
terms of I/O operations. This observation is expected 
because at low rate of disturbances, the recovery 
service performs a greater number of I/O operations 
to log planned tasks, compared to the traditional 
approach where I/O operations are only performed 
for perceptions. At higher rates of disturbances, the 
duration of planning time when recovery services 
are disabled is much greater than the duration when 
recovery service is used because each disturbance 
has much penalty. As a result, the number of distur-
bances in the complete duration of planning is much 
greater when no recovery is used. This is directly 
reflected on the increasing number of I/O operations 
performed to read the environment perceptions after 
each disturbance, which exceeds the logging and 
recovery I/O overhead. 
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Figure 4: Total processed tasks (Pmod = 0.05). 

 

 
Figure 5: Performed I/O operations (Pmod = 0.05). 

 
Figures 6 and 7 depict the processed tasks and 

I/O operations in a highly-dynamic environment 
(Pmod=0.95) where environment state dramatically 
changes after disturbances. It is observed that the 
recovery service is inefficient at highly dynamic 
environments regardless of the rate of disturbances 
because the function of recovery procedure is most 
likely useless.  

 

 
Figure 6: Total processed tasks (Pmod = 0.95). 

 

 
Figure 7: Performed I/O operations (Pmod = 0.95). 

 
The main reason is that at very high values of 

Pmod, the recovery service loses its advantage to re-
cover to a mature state of the planner and degenerate 
to the same effect of the traditional approach, which 
leaves the logging I/Os as an unjustified overhead.  

In Figure 8 and 9, we fix Tdst at 80 and vary Pmod 
from 0.1 to 0.9. We observe different breakeven 
points than with the previous sets of experiments. 
Here the value of Pmod should not exceed 0.45 in 
order to make the recovery enabled approach cost-
effective in terms of both CPU and I/O operations. 

 

 
Figure 8: Total processed tasks (Tdst = 80). 

 

 
Figure 9: Performed I/O operations (Tdst = 80). 

 
So, we have to find out the constraints for effi-

cient plan recovery. In other words, we have to de-
fine the environment in which the recovery-based 
planning supersedes the traditional non-recoverable 
planning. In order to determine the thresholds of 
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Pmod for other values of Tdst, we executed multiple 
experiments for all values of Pmod and Tdst. The 
threshold values can be found in Figure 10. 

 

 
Figure 10: Constraints for efficient use of recovery. 

 
The area below the curve contains the values of 

Tdst and Pmod that make the recovery-based approach 
effective. A conservative approach is adopted while 
identifying the threshold values so that both the 
number of processed tasks and I/O operations of our 
approach must be lower than those of the traditional 
approach to conclude that the former is more effi-
cient. 

Since the absolute value for this threshold line 
varies with the problem domain, the simulator used 
for analyzing the performance of the proposed ap-
proach, can also be used as a system management 
tool that helps system administrators to keep per-
formance requirements. Thresholds for Tdst and Pmod 
can be obtained for the specific problems by the 
simulator. Then, the values of Tdst and Pmod of the 
agent environment can be monitored at the system 
operation, and a decision for enabling/disabling the 
recovery services can be taken accordingly. 

4.2 Storage Requirements 

Figure 11 depicts the storage overhead against vary-
ing values of Tdst in a semi-static environment where 
Pmod=0.05. It is observed that increasing the rate of 
disturbances results in less storage requirements. 
This is because increasing rate of disturbances re-
duces the probability of developing one complete 
image of plan which means less expected storage 
requirements. 

 
Figure 11: Storage overhead (Pmod = 0.05). 

 
According to Figure 12, it is noticed that increas-

ing Pmod results in insignificant changes to the stor-
age requirements, mainly slightly increasing values, 
due to increasing probability of state change and 
increasing overall planning time which in turn gen-
erates longer plans to cover all encountered states, 
especially those far from the goal states. In general, 
we can state that the storage requirement is quantita-
tively small and is relatively insensitive to the 
change in the environment parameters. 

 

 
Figure 12: Storage overhead (Tdst = 35). 

5 CONCLUSION 

Due to inherent problems of dynamic and unstable 
environments of software agents, we propose a re-
covery model for the central layer of typical agent 
systems: the planning layer. It is intended to support 
a widely used family of planners known as the Hier-
archical Task Network planners. We select SHOP2 
as a representative of HTN-based planners as a con-
crete model to prove the concept.  

The proposed recovery module introduces a set 
of logging procedures to record planner actions on 
persistent storage. A recovery procedure is proposed 
to restore the planning information from the persis-
tent storage and to process the retrieved plan and 
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goal tasks. It removes invalid tasks before returning 
the recovered planning state to the planner.  

A simulation model is built over the prototype to 
monitor the recovery process behaviour under vari-
ous conditions and to extract the conditions under 
which the recovery service is efficient. According to 
the simulation results, the recovery service provides 
an efficient overall system performance in semi-
static environments at high rates of disturbances. 
This is the expected behaviour of the recovery ser-
vices as restarting the planner from a mature state is 
more efficient than restarting from the planning ini-
tial state. In opposite cases where agents act within 
failure-free environments, the recovery-enabled sys-
tems will suffer from unjustified logging overhead. 
Also, a highly dynamic environment state will make 
the recovery of stored plan inefficient as larger por-
tions of the previously generated plan will be obso-
lete and will be discarded in such cases. 
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