
A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY

Ralf Bettentrupp
University of Paderborn, Faculty 5, Fürstenallee 11, D-33102 Paderborn, Germany

Sven Groppe, Jinghua Groppe
 Digital Enterprise Research Institute (DERI), University of Innsbruck, Institute of Computer Science, AT-6020 Innsbruck

Stefan Böttcher
University of Paderborn, Faculty 5, Fürstenallee 11, D-33102 Paderborn, Germany

Le Gruenwald
 University of Oklahoma, School of Computer Science, Norman, Oklahoma 73019, U.S.A

Keywords: XML, XSLT, XQuery, Source-to-Source Translation.

Abstract: XSLT and XQuery are the languages developed by the W3C for transforming and querying XML data.
XSLT and XQuery have the same expressive power and can be indeed translated into each other. In this
paper, we show how to translate XSLT stylesheets into equivalent XQuery expressions. We especially
investigate how to simulate the match test of XSLT templates by two different approaches which use
reverse patterns or match node sets. We then present a performance analysis that compares the execution
times of the translation, XSLT stylesheets and their equivalent XQuery expressions using various current
XSLT processors and XQuery evaluators.

1 INTRODUCTION

XSLT (W3C, 1999b) and XQuery (W3C, 2005) are
both languages developed for transforming and
querying XML documents. XSLT and XQuery have
the same expressive power. In this paper, we show
how to translate XSLT stylesheets into equivalent
XQuery expressions.

Many commercial as well as freely available
products support the evaluation of XQuery
expressions, but do not support the XSLT language.
Examples include Tamino XML Server (Software
AG, 2004), Microsoft SQL Server 2005 Express
(Microsoft, 2004) and Qizx (Franc, 2004). A
translation module from XSLT stylesheets into
XQuery expressions can make the XSLT language
available for these products.

Another usage scenario is the migration of sub-
systems of legacy systems from their current
language, XSLT, to the new language, XQuery.
Then a translation module can be used to translate

the old XSLT stylesheets so that the translated
XQuery expressions can be applied instead. Note
that XSLT has been used in many companies for a
longer time than XQuery; therefore many
applications already use XSLT. Furthermore, many
XSLT stylesheets for different purposes can be
found on the web, but the new XQuery technology
becomes more and more important in the context of
XML databases and XML enabled databases.
Whenever an application requires concepts primarily
supported by an XML database system or an XML
enabled database system (such as the ACID
properties, improved query processing or improved
security), most of these database systems will
require the application to use the XQuery language
as the query language. Again, our contribution
enables the user to alternatively formulate queries in
the XSLT language and, afterwards, apply our
proposed XSLT to XQuery translator to obtain
equivalent XQuery expressions.

22
Bettentrupp R., Groppe S., Groppe J., Böttcher S. and Gruenwald L. (2006).
A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 22-29
DOI: 10.5220/0002442100220029
Copyright c© SciTePress

2 TRANSLATION APPROACH

Due to space limitations, we do not describe XSLT
and XQuery in detail here, but refer interested
readers to their specifications published in (W3C,
1999b) and (W3C, 2005) respectively.

2.1 Differences Between XSLT and
XQuery

XSLT 2.0 and XQuery 1.0 are both based on the
XPath data model and both embed XPath as the path
language for determining XML node sets. Therefore,
a majority of the XSLT language constructs can be
translated into XQuery language constructs. For
example, xsl:for-each has similar functionality as
for, xsl:if has similar functionality as where and
xsl:sort has similar functionality as order by.

However, XSLT uses a template model, where
each template contains a pattern in form of an XPath
expression. A template model is not supported by
XQuery and must be simulated in the translated
XQuery expression.

XSLT and XQuery deal with parameters of
functions in a different way: Whereas XSLT binds
parameters of calls of functions and templates by
parameter names, XQuery binds parameters in
function calls by parameter positions. Thus, we have
to simulate named parameters using a data structure
containing the names and the values of the
parameters.

The given mode in a template definition and in
calls of templates defines in XSLT which templates
can be called.

Many complex XSLT instructions are not
supported by XQuery and must be simulated by
user-defined functions of a runtime library.

The translated XQuery expression has to simulate
different functionalities of XSLT. An example of an
XSLT stylesheet and its translated XQuery
expression is given in Section 2.2. The translated
XQuery expression has to simulate the template
selection process. For the template selection process,
we present two different approaches: the match node
set approach (see Section 2.3.1) and the reverse
pattern approach (see Section 2.3.2). Besides simple
XSLT instructions that can be easily translated into
an XQuery expression, some complex XSLT
instructions do not have corresponding functions
with the same functionality in XQuery. In Section
2.4, we outline how to use an XQuery runtime
library of those functions that simulate these
complex XSLT instructions. The overall translation
process is described in Section 2.5.

2.2 Translation Example
<xsl:stylesheet>
<xsl:template match="table">
 <table> <xsl:apply-templates select="row">
 <xsl:sort select="firstname"/>
 </xsl:apply-templates> </table>
</xsl:template>
<xsl:template match="*">
 <xsl:copy><xsl:apply-templates/></xsl:copy>
</xsl:template>
</xsl:stylesheet>

Figure 1: Example XSLT stylesheet stringsort.xslt of the
XSLTMark benchmark.

The XSLT stylesheet of Figure 1, which contains an
XSLT stylesheet of the XSLTMark benchmark
(Developer, 2005), is translated into the XQuery
expression of Figure 2 using the match node sets
approach described in Section 2.3.1.

declare variable $doc_node:=fn:doc("E:/db100.xml");
declare variable $matchBuiltIn1 as node()* :=
 $doc_node |
 $doc_node/descendant-or-self::node()/child::*;
declare variable $matchBuiltIn2 as node()* :=
 $doc_node/descendant-or-self::node()/text()|
 $doc_node/descendant-or-self::node()/attribute::node();
declare variable $match1 as node()* := $doc_node/
 descendant-or-self::node()(/self::node()|
 /attribute::node()|/namespace::node())/table;
declare variable $match2 as node()* := $doc_node/
 descendant-or-self::node()(/self::node()|
 /attribute::node()|/namespace::node())/*;
declare variable $noValue := <root>NOVALUE</root>;

declare function local:paramTest($name as item()*, $select
as item()*) as item()* {
 if(fn:empty($name)) then $select
 else if(fn:compare(fn:string($name),xs:string("NOVALUE"))
 =0) then () else $name };

declare function local:copy($n as node(), $value as
item()*)as item()*{
 if($n instance of element()) then
 element {name($n)} { $value }
 else if($n instance of attribute()) then
 attribute {name($n)} {xs:string($n)}
 else if($n instance of text()) then xs:string($n)
 else if($n instance of comment()) then
 comment{xs:string($n)}
 else if($n instance of processing-instruction())
 then processing-instruction {name($n)}
 {xs:string($n)} else () };

declare function local:builtInTemplate1($t as node(),
$param as item()*) as item()* {
 let $gerg:=local:apply_templates($t/child::*,$noValue)
 return $gerg };

declare function local:builtInTemplate2($t as node(),
$param as item()*) as item()* {
 let $gerg := xs:string($t) return $gerg };

declare function local:template1($t as node(), $param as
item()*) as item()* {
 let $zerg1 := element table{
 let $erg1 := $t/(row)
 let $erg21 := for $t in $erg1 order by $t/firstname
 ascending return $t
 let $zerg1:=local:apply_templates($erg21,$noValue)
 let $gerg := ($zerg1) return $gerg }
 let $gerg := ($zerg1) return $gerg };

declare function local:template2($t as node(), $param as
item()*) as item()* {
 let $zerg1 :=
 let $erg1 := $t/(child::node())
 let $erg21 := $erg1
 let $zerg1:=local:apply_templates($erg21,$noValue)
 let $gerg := ($zerg1)
 return local:copy($t, $gerg)
 let $gerg := ($zerg1) return $gerg };

A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY

23

declare function local:apply_templates($n as node()*,
$param as item()*)as item()* {
 for $t in $n
 return if($t intersect $match1) then
 local:template1($t, $param)
 else if($t intersect $match2) then
 local:template2($t, $param)
 else if($t intersect $matchBuiltIn1) then
 local:builtInTemplate1($t, $param)
 else if($t intersect $matchBuiltIn2) then
 local:builtInTemplate2($t, $param)
 else () };

let $doc:=$doc_node
return local:apply_templates($doc,$noValue)

Figure 2: Translated XQuery expression of the XSLT
stylesheet of Figure 1 using the match node set approach
(see Section 2.3.1).

The function local:paramTest is used for the
simulation of parameters in an XSLT stylesheet. The
function local:copy is a function of the runtime
library that simulates the <xsl:copy> XSLT
instruction. The functions local:builtInTemplate1
and local:builtInTemplate2 simulate the built-in
templates of XSLT. local:template1 and
local:template2 contain the translation of the user-
defined templates of Figure 1. local:apply_templates
simulates the <xsl:apply-templates> XSLT
instruction. The translated XQuery expression does
not consider different modes for the call of templates
as the original XSLT stylesheet does not use
different modes. In general, the function
local:apply_templates must have an additional mode
parameter and must consider the value of mode and
the modes of the XSLT templates for calling a
template.

When using the reverse pattern approach, the
translated XQuery expression does not contain the
declaration of the variables $matchBuiltIn1,
$matchBuiltIn2, $match1 and $match2. Furthermore,
we translate the function local:apply_templates into
the one given in Figure 3 instead of the one given in
Figure 2.

declare function local:apply_templates($n as node()*,
$param as item()*)as item()* {
 for $t in $n return
 if($t[self::table[self instance of
 element()*]/parent::node()])
 then local:template1($t, $param)
 else if($t[self::*[self instance of
 element()*]/parent::node()])
 then local:template2($t, $param)
 else if($t is root($t) or $t/self::element())
 then local:builtInTemplate1($t, $param)
 else if($t/self::text() or $t/self::attribute())
 then local:builtInTemplate2($t, $param) else () };

Figure 3: Function local:apply_templates when using the
reverse pattern approach (see Section 2.3.2).

2.3 Template Selection Process

XSLT uses a template model, where each template
contains a pattern in form of an XPath expression.
Whenever a current input XML node fulfills the
pattern of a template, the template is executed. An

XSLT processor starts the transformation of an input
XML document with the document node assigned to
the current input XML node. The templates are
again called when the XSLT processor executes the
<xsl:apply-templates select=I/> instructions, which
first select a node set I and then call the templates
for all nodes in I.

In this section, we present how a template is
selected for execution.

After initialization, the XSLT processor starts
processing the XSLT stylesheet by applying the
templates to the document node /. We simulate the
status of the XSLT processor’s input by using two
variables. The first variable, $n, represents the
current input XML node set of the XSLT processor
and is initialized with a set containing the document
node /. The second variable, $t, represents the
current input XML node of the XSLT processor. We
use $t in order to iterate over the current input node
set $n. Depending on $t, we start the template
selection process, the code of which is generated in
the XQuery function local:apply_templates as
follows.

We sort the templates according to their priority
(either explicit priority or computed default priority)
and import precedence (see (W3C, 1999b)), where
the built-in templates of XSLT are the templates
with the lowest priority. The selection process of the
templates is then coded in XQuery by first executing
the match test of the template with the highest
priority and, in the case of success, executing the
corresponding translated template. In the case of no
success, the match test of the next template in the
sorted list of templates is executed and, in the case
of success, the corresponding translated template is
processed. The translation generates code of the
template selection analogously for all other
templates in the list in the given order.

XQuery does not support checking the XPath
patterns of XSLT. Thus, we have to simulate the test
whether a pattern E matches an XML node in
XQuery. The original definition in the XSLT
specification (W3C, 1999b) is as follows:

Definition 1: A pattern is defined to match a node if
and only if there is possible context such that when
the pattern is evaluated as an expression with that
context, the node is a member of the resulting node-
set. When a node is being matched, the possible
contexts have a context node that is the node being
matched or any ancestor of that node, and a context
node list containing just the context node.

We present two different approaches, the match
node sets approach (see Section 2.3.1) and the
reverse pattern approach (see Section 2.3.2), for the
simulation of checking XPath patterns of XSLT in

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

24

XQuery. Furthermore, we describe in Section 2.3.3
how to simulate the use of parameters in the call of
templates.

2.3.1 The Match Node Set Approach

For the test whether a template t matches an input
XML node $c, the match node set approach checks
whether $c is contained in a pre-computed node set,
the match node set of t. The match node set of t
contains all nodes that could be matched by t.

Definition 2: An XPath expression I can be divided
into a relative part rp(I) and an absolute part ap(I)
(both of which may be empty) in such a way that
rp(I) contains a relative path expression, ap(I)
contains an absolute path expression, and the union
of ap(I) and rp(I), i.e. ap(I)|rp(I), is equivalent to
I. This means that applying I and applying
ap(I)|rp(I) will return the same node set for all
XML documents and for all context nodes in the
current XML document.

Example 1: Let I be (/child::a|child::b) /attribute::c.
The relative part of I is rp(I)=child::b/attribute::c, the
absolute part of I is ap(I)=/child::a/attribute::c.

Definition 3: The match node set of a template
<xsl:template match=M> are those XML nodes, which
are matched by M.

Proposition 1: Given a template <xsl:template

match=M>. If the absolute part of M and the relative
part of M are non-empty, i.e. ap(M)≠{} and rp(M)≠{},
the match node set of the template can be computed
by applying the XPath query
ap(M)|/descendant-or-self::node()(/self::node()|

/attribute::node()|/namespace::node())/rp(M).
If ap(M)={} and rp(M)≠{}, the match node set of

the template can be computed by applying the XPath
query /descendant-or-self::node()(/self::node()|/attribute
::node()|/namespace::node())/rp(M).

If ap(M)≠{} and rp(M)={}, the match node set of
the template can be computed by applying the XPath
query ap(M). If ap(M)={} and rp(M)={}, the match
node set of the template is an empty set.

Proof of Proposition 1: The XPath expression
/descendant-or-self::node()(/self::node()|

/attribute::node()|/namespace::node()) returns all
XML nodes of an input XML document. All XML
nodes, which are matched by M, are the union
(expressed by using the operator “|”) of the absolute
part of M, ap(M), and of those XML nodes which are
returned from the evaluation of M relative to each
XML node. ⁭

In the case that we only have to check whether
patterns match XML nodes of the input XML
document, we declare a variable for the match node
set of each template so that each match node set is
only computed once in the XQuery expression. In
the case that we have to check whether patterns
match XML nodes of computed variables, we must
compute the match node set of a variable after its
computation. Furthermore, in order to check whether
a current input XML node $c is in a match node set
$MN, we use the XPath expression $c intersect $MN,
which returns the node $c if $c is in $MN.

2.3.2 The Reverse Pattern Approach

For the test whether a template t with a match
attribute E matches a current input XML node $c, the
reverse pattern approach checks whether $c[E-1]≠∅,
where E-1 is the reverse pattern of E.

We present an extended variant of the approaches
in (Moerkotte, 2002) and in (Fokoue, 2005) for a
superset of the XPath patterns of XSLT. In
comparison to the approaches presented in
(Moerkotte, 2002) and (Fokoue, 2005), we present
the general rules for generating the reverse pattern.

To determine the reverse pattern of a given
XPath expression, we first define the reverse axes of
an XPath axis as shown in Figure 4.

Definition 4: The reverse axes of a given XPath axis
are defined in the middle column of Figure 4.

Axis A Reverse Axes of A Additional Test
ancestor 1) descendant

2) descendant-or-
self::node()/attribute
3) descendant-or-
self::node()/namespace

ancestor-or-self 1) descendant-or-self
2) descendant-or-
self::node()/attribute
3) descendant-or-
self::node()/namespace

attribute parent [self instance
of attribute()*]

child parent [self instance
of element()*]

descendant ancestor
descendant-or-self ancestor-or-self
following preceding
following-sibling preceding-sibling
namespace parent [not (self

instance of
element()*) and
not(self
instance of
attribute()*)]

parent 1) child
2) attribute
3) namespace

preceding following
preceding-sibling following-sibling
self self

Figure 4: Reverse axes and additional test of an XPath
axis.

A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY

25

Note that the parent of an attribute or a
namespace node is its element node, but an attribute
or namespace node is not a child of its element node.
Therefore, attribute nodes and namespace nodes
cannot be accessed by the child or descendant axes,
and also not by the descendant-or-self axis if the
attribute node or namespace node is not the current
context node. An attribute node can only be accessed
by the attribute axis and a namespace node only by
the namespace axis. Thus, there is more than one
reverse axis of the ancestor, ancestor-or-self or
parent axes (see Figure 4).

The reverse axis of the attribute axis, of the
child axis and of the namespace axis is the parent
axis, which does not differ for attribute, namespace
and other nodes (in comparison to the original axis).
Therefore, we use an additional test (see Definition
5) in the definition of the reverse pattern (see
Definition 6) to distinguish different node types.

Definition 5: The additional test of a given XPath
axis is defined in the right column of Figure 4.

Definition 6: The reverse pattern of a given XPath
expression is computed as follows: At first, we
transform the XPath expression into its long form. If
there are disjunctions (“|”) in the XPath expression
outside of a filter expression, then we factor out the
disjunctions and reverse each expression of the
disjunctions separately. The whole reverse pattern is
the disjunction of all separately reversed
expressions. Without disjunctions, a relative XPath
expression Erelative has the form

 axis1::test1[F11]…[F1n1]/axis2::test2[F21]…[F2n2]/…/

 axism::testm[Fm1]…[Fmnm],

and an absolute XPath expression Eabsolute has the
form

/axis1::test1[F11]…[F1n1]/axis2::test2[F21]…[F2n2]/…/

 axism::testm[Fm1]…[Fmnm]

where axisi are XPath axes, testi are node tests and
Fij are filter expressions. The reverse pattern of
Erelative and of Eabsolute is

self::testm[Fm1]…[Fmnm]Tm/(raxism1::testm-1|…|

 raxismpm::testm-1)[F(m-1)1]…[F(m-1)nm-1]Tm-1/…/

(raxis21::test1|…|raxis2p2::test1)[F11]…[F1n1] T1/

(raxis11::node()|…|raxis1p1::node()) Troot,

where Troot is [self::node() is root()] for Eabsolute
and Troot is the empty expression for Erelative, raxisi1 ...
raxisipi are the reverse axes of axisi, and Ti is the
additional test of axisi as outlined in Figure 4, or Ti
is the empty expression if there is no additional test
of axisi.

2.3.3 Simulating the Use of Parameters

Whereas XSLT binds parameters of calls of
functions and of templates by parameter names,
XQuery binds parameters in function calls by
parameter positions. Furthermore, XQuery functions
and, especially the function local:apply_templates,
do not support an arbitrary number of parameters.
Thus, we have to simulate named parameters using a
data structure containing the names and the values of
the parameters. For an example, for the template call

<xsl:apply-templates select=”*”>
 <xsl:with-param name=”a1” select=”$a”/>
 <xsl:with-param name=”a2”><xsl:copy-of select=”$a”/>
 </xsl:with-param>
</xsl:apply-templates>

we use the following data structure for the
simulation of parameters

<root> <a1> value of $a </a1><a2> value of $a </a2> </root>

This data structure is generated by the following
translated XQuery expression:

let $a := $t/(*) let $erg1 := $t/(*) let $erg21 := $erg1
let $newParam := element root {
 element a1 { $a }, element a2 { let $erg1 := $a
 let $zerg1 := local:copy_of($erg1)
 let $gerg := ($zerg1) return $gerg } }
let $zerg1 :=(local:apply_templates($erg21,$newParam))
return $zerg1

In general, the parameters are stored in an XML
tree with the root element <root>. The parameters are
children of the root element containing the value of
the parameter. The data structure used is as follows

<root> <PARAM-NAME_1>PARAM_1</PARAM-NAME_1>
 … <PARAM-NAME_n>PARAM_n</PARAM-NAME_n> </root>

where PARAM-NAME_i represents the name of the i-th
parameter and PARAM_i represents its value. In order
to access the parameters, we use the function
local:paramTest(…) given in Figure 2.

Due to the simplicity of the translation approach,
the simulation of parameters for templates does not
work correctly in rare cases. Let us consider the
parameter a1 in the example above. In XSLT, the
identities of the XML nodes of the variable $a
remain the same, but the identities of the copied
XML nodes in the data structure used for the
translated XQuery expression differ from the ones in
$a. Thus, we do not retrieve the same result when the
XML nodes of the parameter a1 are compared with
the XML nodes of $a by the XPath operators is, <<
or >>. In order to avoid this problem, we propose
three different strategies. First, the function
local:apply_templates could have a large list of
parameters to represent all possible parameters in the
XSLT stylesheet. This solution does not work if the
parameter name depends on the input. Second, the

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

26

function local:apply_templates could be inlined so
that functions that simulate the templates with
different numbers of parameters could be called. In
general, this solution does not work either if the
parameter name depends on the input. Third, the
identity of an XML node can be stored in an extra
attribute that is copied in the case of parameter a1
similar to the pre-processing step and post-
processing step discussed in (Klein et al., 2005) and
(Lechner et al., 2001) for XQuery to XSLT
translation. The XPath operators is, << or >> must
then be replaced by the ones that operate on this
extra identity attribute.

2.4 Runtime Library

The proposed translator uses a runtime library of
XQuery functions, which simulate certain XSLT
instructions. The runtime library includes the
functions simulating <xsl:copy> and <xsl:copy-of>,
which are given in Figure 2 and Figure 5,
respectively. The complex XSLT instructions
<xsl:number> and <xsl:message> are also candidates
for functions of the runtime library, which have not
yet been implemented in our prototype.

declare function local:copy_of($n as node()*)as item()*{
 for $t in $n return
 if($t instance of element())then
 let $next :=($t/child::node()|$t/attribute::node())
 let $new := element {name($t)}{local:copy_of($next)}
 return $new
 else if($t instance of attribute()) then
 let $new := attribute {name($t)}{xs:string($t)}
 return $new
 else if($t instance of text()) then
 let $new := xs:string($t) return $new
 else if($t instance of comment())then
 let $new := comment {xs:string($t)} return $new
 else if($t instance of processing-instruction())
 then let $new := processing-instruction{name($t)}
 {xs:string($t)} return $new else () };

Figure 5: Function simulating <xsl:copy-of>.

2.5 Translation Process

The translation process is executed in three phases
as follows. In Phase one, we parse the XSLT
stylesheet in order to generate its abstract syntax
tree. For an example, Figure 6 shows the abstract
syntax tree of the XSLT stylesheet of Figure 1. In
Phase two, the function local:apply_templates is
generated as described in Section 2.3 using the
match node sets approach (see Section 2.3.1) or
using the reverse pattern approach (see Section
2.3.2). In Phase three, we apply an attribute
grammar, which we do not present here due to space
limitations, to the abstract syntax tree of the XSLT
stylesheet. The attribute grammar describes how to
transform XSLT instructions into simple XQuery

statements or into a call to functions of the runtime
library (see Section 2.4).

Figure 6: Abstract syntax tree of the XSLT stylesheet of
Figure 1.

3 PERFORMANCE EVALUATION

This section describes the experiments that we have
conducted to compare the execution times of
translated XQuery expressions with the execution
times of the original XSLT stylesheets.

We have run the experiments on an Intel Pentium
4 with 2 GHZ and 512 MB main memory. The
system runs Windows XP and Java 1.5.

For the evaluation of XQuery expressions, we
have used Qizx (Franc, 2004) and Saxon (Kay,
2004), where we have stored the output in a string.
For the execution of the XSLT stylesheets, we have
used Xalan (Apache Software Foundation, 2003)
and Saxon (Kay, 2004). We have used the XSLT
stylesheets of the XSLTMark benchmark
(Developer, 2005) for our experiments.

The XSLTMark benchmark consists of 39
stylesheets, which are divided into two groups of
stylesheets. The first group consists of XSLT
stylesheets, each of which uses one own XML
document. The XSLT stylesheets of the second
group use a data set representing a database table
and vary in their sizes.

We present the average execution times of ten
experiments of the original XSLTMark queries
using the Xalan and Saxon XSLT processor with an
input stream for reading the input XML document as

stylesheet

TopLevel

matchTemp matchTemp

Node Node

element

Node

applyTemp

sort

copy

Node

applyTemp

“<xsl:stylesheet>“ “</xsl:stylesheet>“

XPath“<xsl:template match=‘“ “‘>“ “</xsl:template>“

“<xsl:element name=‘“ QName “‘>“ “</xsl:element>“

XPath “‘>“ “</xsl:template>““<xsl:apply-templates select=‘“

XPath“<xsl:sort select=‘“ “‘/>“

“‘table‘“

“‘row‘“

“‘table‘“

“‘firstname‘“

XPath

“<xsl:template match=‘“

“‘>“ “</xsl:template>“

“‘*‘“

XPath “‘>“ “</xsl:template>“
“<xsl:apply-templates select=‘“

“‘child::node()‘“

resultFunc

resultFunc

resultFunc

resultFunc

stylesheet

TopLevel

matchTemp matchTemp

Node Node

element

Node

applyTemp

sort

copy

Node

applyTemp

“<xsl:stylesheet>“ “</xsl:stylesheet>“

XPath“<xsl:template match=‘“ “‘>“ “</xsl:template>“

“<xsl:element name=‘“ QName “‘>“ “</xsl:element>“

XPath “‘>“ “</xsl:template>““<xsl:apply-templates select=‘“

XPath“<xsl:sort select=‘“ “‘/>“

“‘table‘“

“‘row‘“

“‘table‘“

“‘firstname‘“

XPath

“<xsl:template match=‘“

“‘>“ “</xsl:template>“

“‘*‘“

XPath “‘>“ “</xsl:template>“
“<xsl:apply-templates select=‘“

“‘child::node()‘“

resultFunc

resultFunc

resultFunc

resultFunc

A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY

27

input. In a variant, we first generate the DOM tree
from the input XML document and use this DOM
tree as input for the XSLT processors. We have
measured the average execution times of ten
experiments of the translated XQuery expressions
(including the time used for translation) with the
reverse pattern approach and with the match node
sets approach using the Saxon and Qizx XQuery
evaluators. We present the faster variant of the
match node sets approach, where we check the
intersection of the current node $t and of the match
node set $MN with the following two different XPath
expressions: (1) $t intersect $MN and (2) some $tmp
in $MN satisfies $tmp is $t. The Qizx XQuery
evaluator is faster when using the variant (1) and the
Saxon XQuery evaluator is faster when using (2).

In Figure 7, we present the execution time of the
XSLT stylesheets which use their own XML
documents. Here, the Qizx evaluator is faster than
Saxon most of the time, but processing the translated
XQuery queries is slower than processing the
original XSLT stylesheets in most cases. Processing
the translated XQuery expression is faster than
processing the original XSLT stylesheet e.g. for html
and priority using the reverse pattern approach and
Qizx in Figure 7. For the XSLT stylesheets with
their own XML documents and their translated
XQuery expressions, when using the match node
sets approach, the Qizx XQuery evaluator consumes
only 26% of the execution time of the Saxon
XQuery evaluator, but when using the reverse
pattern approach, this figure becomes 61%. The
Qizx (Saxon respectively) XQuery evaluator using
the match node sets approach is 8.69 times (20.66
times respectively) slower than the Qizx (Saxon
respectively) XQuery evaluator using the reverse
pattern approach. The XSLT processors using input
streams as input consume 90% of the execution time
of the XSLT processors using DOM as input. The
Saxon XQuery evaluator using the reverse pattern
approach is 14% slower than the Saxon XSLT
processor using input streams as input.

We present the execution times of the second
group of XSLT stylesheets in Figure 8 using the
db4000.xml input XML document (with size of 785
Kilobytes). Except for rare cases (e.g. XSLTMark
queries, axis and metric, in Figure 7), the reverse
pattern approach is more efficient than the match
node sets approach because the reverse pattern
approach avoids the pre-computation of the match
node sets. For the XSLT stylesheets with the input
XML document db4000.xml and their translated
XQuery expressions, the Qizx (Saxon respectively)
XQuery evaluator using the match node sets
approach is 41.6 times (203.36 times respectively)
slower than the Qizx (Saxon respectively) XQuery
evaluator using the reverse pattern approach. The

XSLT processors using input streams as input
consume 96% of the execution time of the XSLT
processors using DOM as input. The Saxon XQuery
evaluator using the reverse pattern approach is 69%
slower than the Saxon XSLT processor using input
streams as input.

Figure 7: Execution times of XSLTMark queries with their
own XML documents.

Figure 8: Execution times of XSLTMark queries with
db4000.xml document.

4 RELATED WORK

There exist already contributions, which compare
the languages XSLT and XQuery. (Lenz, 2004)

 1

 10

 100

 1000

 10000

 100000

x
s
lb

e
n
c
h
3

x
s
lb

e
n
c
h
2

x
s
lb

e
n
c
h
1

x
p
a
th

u
n
io

n

tr
e
n
d

to
w

e
r

to
ta

l

re
v
e
rs

e
r

q
u
e
e
n
s

p
ro

d
u
c
ts

p
ri
o
ri
ty

o
d
d
te

m
p
la

te

m
e
tr

ic

in
v
e
n
to

ry

id
e
n
ti
ty

h
tm

l

g
a
m

e

fi
n
d

c
u
rr

e
n
t

c
h
a
rt

b
ru

ta
l

b
o
tt
le

s

a
tt
s
e
ts

a
x
is

T
im

e
 (

m
s
e
c
)

XSLTMark Query

Qizx intersect
Qizx reverse

Saxon XQuery reverse
Saxon XQuery satisfies

Saxon XSLT
Saxon XSLT DOM

XALAN XSLT
XALAN XSLT DOM

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

s
u

m
m

a
ri
z
e

s
tr

in
g

s
o

rt

p
a

tt
e

rn
s

fu
n

c
ti
o

n
s

e
n

c
ry

p
t

d
e

c
o

y

d
b

ta
il

d
b

o
n

e
ro

w

c
re

a
ti
o

n

b
a

c
k
w

a
rd

s

a
v
ts

a
lp

h
a

b
e

ti
z
e

T
im

e
 (

m
s
e

c
)

XSLTMark Query

Qizx intersect
Qizx reverse

Saxon XQuery reverse
Saxon XQuery satisfies

Saxon XSLT
Saxon XSLT DOM

XALAN XSLT
XALAN XSLT DOM

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

28

shows that many XQuery constructs are easily
mappable to XSLT by examples, but does not
provide an algorithm for translating XQuery
expressions into XSLT stylesheets.

(Klein et al., 2005) and (Lechner et al., 2001)
present an algorithmic approach of translating
XQuery expressions into XSLT stylesheets, which is
the opposite direction to our translation.

Saxon (Kay, 2005) is a processor for both, for
XQuery expressions and for XSLT stylesheets,
which uses a mostly common object model.

(Moerkotte, 2002) describes how XSL
processing can efficiently be incorporated into
database management systems. We extend the
reverse pattern approach of (Moerkotte, 2002) by all
axes of XPath. In comparison to (Moerkotte, 2002),
we present a translation method from XSLT
stylesheets into XQuery expressions and introduce
the match node sets approach.

(Fokue, 2005) describes a translation from XSLT
stylesheets into XQuery expressions. In comparison
to (Fokue, 2005), we additionally introduce the
match node set approach. (Groppe, 2005) includes a
chapter dealing with the translation from XSLT
stylesheets to XQuery expressions.

5 CONCLUSIONS

In this paper, we have proposed a translation process
converting XSLT stylesheets to XQuery
expressions. The main difficulty is to simulate the
template selection of XSLT. In order to identify the
template to be executed, we have presented two
different methods for the simulation of the template
selection process. The match node sets approach
checks whether the current XML node is contained
in a pre-computed set of XML nodes and the reverse
pattern approach executes the reversion of the
match patterns of templates. We have developed a
runtime library, which contains functions in order to
simulate XSLT instructions. The remaining XSLT
instructions are inlined by XQuery sub-expressions.

We have carried out several experiments. In rare
cases, the translated XQuery expressions using the
reverse pattern approach with the XQuery evaluator
Qizx are a little bit faster than the execution of the
original XSLT stylesheet. Except of rare cases, the
reverse pattern approach is faster than the match
node sets approach for the XQuery expressions.

Therefore, we have achieved the goal to make
XSLT practically usable for the broad fields of
XQuery tools, XML databases and XML enabled
databases, which support XQuery.

ACKNOWLEDGEMENTS

This material is based upon works supported by the
EU funding under the Adaptive Services Grid
project (FP6 – 004617). Furthermore, this material is
based upon works supported by the Science
Foundation Ireland under Grant No.
SFI/02/CE1/I131. This material is based upon work
supported by (while serving at) the National Science
Foundation (NSF). Any opinion, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

Apache Software Foundation, 2003. Xalan-Java,
http://xml.apache.org/xalan-j/index.html.

Developer, 2005. XSLT Mark version 2.1.0,
http://www.datapower.com/xmldev/xsltmark.html.

Franc, X., 2004. Qizx/open version 0.4p1,
http://www.xfra.net/qizxopen/.

Fokoue, A., Rose, K., Siméon, J., and Villard, L., 2005.
Compiling XSLT 2.0 into XQuery 1.0, WWW 2005,
Chiba, Japan.

Groppe, S., 2005. XML Query Reformulation for XPath,
XSLT and XQuery, Sierke-Verlag, ISBN 3-933893-
24-0, Göttingen.

Kay, M. H., 2004. Saxon - The XSLT and XQuery
Processor, http://saxon.sourceforge.net.

Klein, N., Groppe, S., Böttcher, S., and Gruenwald, L.,
2005. A Prototype for Translating XQuery
Expressions into XSLT Stylesheets, In ADBIS, Talinn,
Estonia.

Lechner, S., Preuner, G., and Schrefl, M., 2001.
Translating XQuery into XSLT, In ER 2001
Workshops, Yokohama, Japan.

Lenz, E., 2004. XQuery: Reinventing the wheel?
http://www.xmlportfolio.com/xquery.html.

Microsoft, 2004. SQL Server 2005 Express,
http://www.microsoft.com/sql/express.

Moerkotte, G., 2002. Incorporating XSL Processing Into
Database Engines. In VLDB, Hong Kong, China.

Software AG, 2004. Tamino XML Server,
http://www.softwareag.com/tamino/News/tamino_41.
htm.

W3C, 1999a. XML Path Language (XPath) Version 1.0,
W3C Recommendation,
http://www.w3.org/TR/xpath/.

W3C, 2005. XQuery 1.0: An XML Query Language, W3C
Working Draft.

W3C, 1999b. XSL Transformations (XSLT) Version 1.0,
W3C Recommendation,
http://www.w3.org/TR/1999/REC-xslt-19991116.

A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY

29

