
PROPOSALS FOR ITERATED HASH FUNCTIONS

Lars R. Knudsen
Technical University of Denmark

Department of Mathematics, Building 303, 2800 Kgs. Lyngby, Denmark

Søren S. Thomsen
Technical University of Denmark

Department of Mathematics, Building 303, 2800 Kgs. Lyngby, Denmark
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Abstract: The past few years have seen an increase in the number of attacks on cryptographic hash functions. These
include attacks directed at specific hash functions, and generic attacks on the typical method of constructing
hash functions. In this paper we discuss possible methods for protecting against some generic attacks. We also
give a concrete proposal for a new hash function construction, given a secure compression function which,
unlike in typical existing constructions, is not required to be resistant to all types of collisions. Finally, we
show how members of the SHA-family can be turned into constructions of our proposed type.

1 INTRODUCTION

Attacks on hash functions can broadly be divided into
two categories; generic attacks on hash function con-
structions, and so-called short-cut attacks that exploit
weaknesses of specific hash functions. The last few
years have seen a fairly large number of attacks of
both kinds. In this paper, we particularly focus on
generic attacks. We propose a new hash function con-
struction which we believe protects against existing
generic attacks, and we argue why it will also compli-
cate short-cut attacks on existing hash functions mod-
ified to be based on this construction.

A common method of constructing hash functions
taking an input of arbitrary size is to iterate a num-
ber of times over a so-called compression function
f : {0, 1}n × {0, 1}m → {0, 1}n taking only fixed-
length input. The messaged is split into a number of
blocksdi of equal sizem. To do this, the message
must in general be padded, and this is usually done
by always appending a ’1’-bit to the message, then a
suitable number of ’0’-bits, and finally the length of
the original message is appended. When the message
is split into blocksd1‖d2‖ . . . ‖ds, each block can be
processed individually by the compression function
f . An initial n-bit valueh0 is defined for the hash
function, and then subsequent chaining variables are
computed ashi = f(hi−1, di), i = 1, 2, . . . , s. We
shall refer to this as the Merkle-Damgård construc-
tion (Damg̊ard, 1989; Merkle, 1989).

In this paper, we propose a new method of con-
structing a hash function from a compression func-
tion. The new method has some attractive properties.
For instance, it does not require the compression func-
tion to be completely collision resistant in order for
the hash function to be so. It makes some generic at-
tacks much harder to mount, and it also seems to pro-
tect very well against known short-cut attacks such
as recent attacks on MD5 (Wang and Yu, 2005) and
SHA-1 (Biham et al., 2005; Wang et al., 2005). In
general, it leaves an attacker with much less freedom,
and the amount of freedom that an attacker has to
choose messages in existing hash functions is, we be-
lieve, a very important reason for the failure of these
hash functions to achieve collision resistance. We dis-
cuss possible methods of complicating the generic at-
tacks that our proposal in its bare form does not pro-
tect against.

In the following we denote bythe SHA-family of
hash functionsthe collection of hash functions of
(FIPS180b, 1995) and (FIPS180c, 2002), i.e. SHA-1,
SHA-256, SHA-512, SHA-224, and SHA-384.

2 PROPERTIES OF EXISTING
CONSTRUCTIONS

In this section we consider some of the generic attacks
on the Merkle-Damg̊ard construction as well as on the
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underlying Davies-Meyer construction.

2.1 The Davies-Meyer Construction

The compression functions of most popular hash
functions, including the SHA-family, in use today are
of the formf : {0, 1}n × {0, 1}m → {0, 1}n,

hi = f(hi−1, di) = p(hi−1, di) + hi−1, (1)

wherep is a bijective mapping onn bits for fixed
value of di. This construction was known as the
Davies-Meyer construction for many years, but was
since contributed to Matyas and Meyer (Preneel,
1993). Such functions are traditionally built from it-
erating a relatively weak function, sayg, a number of
times,p(x, y) = g ◦ g ◦ · · · ◦ g(x, y). If the size of
the range ofg would be less than2n, then the size of
p would decrease with the number ofg invocations.
Therefore,g is a bijection in most designs. An in-
vertible compression function is however not always
desirable which is why one adds one of the two in-
puts ofp to the output. This design is very similar to
the designs of modern block ciphers, which are typi-
cally constructed from iterating a weak function sev-
eral times. Indeed the compression functions from the
SHA-family can be used for encryption (Handschuh
et al., 2001).

It is well-known (Preneel, 1993) though that the
Davies-Meyer construction has an unfortunate prop-
erty, which adds to the success of the 2nd preimage
attack of Section 2.2.3.

• Let py(hi−1) denotep(hi−1, di) for a fixed value
of di = y.

• Choose anym-bit valuey and anyn-bit valueα.

• Computehi−1 = p−1
y (α).

It follows that p(hi−1, y) = α. Consequently one
getshi = f(hi−1, di) = hi−1 + α. E.g., by choosing
α = 0 one getshi = hi−1 which is called afixed
point for the compression functionf .

2.2 The Merkle-Damg̊ard
Construction

Collision resistance of a compression function is ex-
tended to the hash function when using the Merkle-
Damg̊ard construction, as proved by the well-known
Theorem 1.

Theorem 1. Let H be a hash function based on the
Merkle-Damg̊ard construction with length padding
(also known as MD-strengthening) and compression
functionf . Then a collision ofH implies a collision
of f .

A number of attacks on the general Merkle-
Damg̊ard construction show that if the compression

function fails, then the entire hash function goes
down. Some of these attacks are now described.

2.2.1 Multi-collisions

In (Joux, 2004), Antoine Joux described a new
method for constructing multi-collisions from a num-
ber of single collisions. A multi-collision is a set of
messages, all having the same hash value. If ann-
bit hash function produces random hash values, then
the complexity of a multi-collision attack consisting
of r messages is about2(r−1)n/r. Joux shows that
in the Merkle-Damg̊ard construction, this complexity
can be reduced to(log2 r)2n/2.

The method is quite simple. It requires access to
a machineC that finds ordinary one-block collisions
of a hash functionH given any initial value. Let the
initial value ofH beh0, and letf be the compression
function ofH. f accepts two inputs, a chaining vari-
able and a message block. Obtain a collision(d1, d

′

1)
from C with h0 as the initial value, i.e.f(h0, d1) =
f(h0, d

′

1). Call this valueh1, i.e. h1 = f(h0, d1).
Now, obtain a second collision(d2, d

′

2) from C with
h1 as initial value. Repeat thist = log2 r times. We
now havet pairs of messages, where for each pair we
can select an arbitrary member of the pair to construct
a message oft blocks, and all such messages have the
same hash value. There arer = 2t ways to select
such a message, an hence we have anr-way multi-
collision. The complexity of the attack ist times the
complexity of finding a single collision withC, and
this is at most2n/2 for any hash function.

2.2.2 The Herding Attack

The herding attack (Kelsey and Kohno, 2006) by
Kelsey and Kohno bears some resemblance to the
multi-collision attack of Joux. From a large (power
of two) numberN = 2ℓ of chaining variables, col-
liding pairs of messages forming a binary collision
tree are found such that by each level in the tree, the
number of chaining variables is reduced by a factor
two. At the root of the tree is the chaining variableh.
From theN chaining variables there areN messages
of lengthℓ blocks, all having the hash valueh. This
tree of collisions can be used as follows.
Say an adversary would like to falsely claim that he
is in possession of some knowledge. He constructs
the collision tree described above, and publishesh.
Some time later, when he acquires the knowledge, he
forms a messagedI containing the information, and
computes its intermediate hash. He then searches for
a linking messagedL, such that the intermediate hash
of dI‖dL is among theN chaining variables at the
top of the collision tree. From this chaining variable,
he selects the set of message blocks that “herds” the
entire message to the hash valueh.
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Note that the kind of collisions needed for this at-
tack is different from the multi-collisions found using
the method of Joux. In this case, the multi-collision
must form a binary tree. Such multi-collisions seem
harder to find than those of Joux, however, a method
faster than brute force is given in (Kelsey and Kohno,
2006).

2.2.3 2nd Preimage Attack

In (Kelsey and Schneier, 2005) a second preimage
attack on the general Merkle-Damgård construction
was presented. This attack makes use of what the au-
thors call expandable messages – a set of messages
of different lengths, which all have the same inter-
mediate hash given a certain initial value and not in-
cluding MD-strengthening. In the Merkle-Damgård
construction, any message of the expandable message
set can be replaced with any other message from the
set, without changing the intermediate hash value. To
be more precise, given a hash functionH with com-
pression functionf and initial valueh0, assume that
(µ1, µ2, . . . , µk) arek messages of lengths1 to k, all
producing the same intermediate hash value given the
initial valueh0. ThenH(µi‖x) = H(µj‖x) for anyx
and any0 < i, j ≤ k when length padding is omitted.

Consider again the hash functionH, and let its
length ben. If one has produced an expandable set
E of messages with the initial valueh0, then a second
preimage attack can be performed as follows. Given
a very long messageM (whose second preimage we
are looking for), compute a listL of all (except the
first few) of the intermediate hashes ofM , i.e. all
the chaining variables that are produced whenM is
hashed. Iff(h0, di) = he for all di ∈ E , then look
for a messagedL for which f(he, dL) ∈ L. SinceL
is a very long list, this has complexity less than2n.
Say such adL has been found, and it matched thejth
element inL. Now, choose the messaged∗ ∈ E such
that the number of blocks ofd∗‖dL is j, meaning that
the first j blocks inM can be replaced withd∗‖dL

without changing the length of the message. LetM ′

be this new version ofM . ThenH(M ′) = H(M).
The expandable message set can be quite easily

produced if the hash function contains fixed points,
see Section 2.1, but it is also possible in general by
finding collisions between messages of lengths 1 and
a for different values ofa, and then concatenate mes-
sages in different ways similarly to the multi-collision
attack described above.

2.2.4 Length-extension Attack

The Merkle-Damg̊ard construction is susceptible to
a length-extension attack (Ferguson and Schneier,
2003): Given a hash functionH, assume an attacker
knows H(d) and the length ofd. In the Merkle-

Damg̊ard construction he can then select a suffixx,
and computeH(d‖x) without knowledge ofd. He
does this by setting the first part ofx to be the padding
of d (which he knows since he knows|d|), and he is
then free to choose the remainder ofx.

2.2.5 Discussion on the Generic Attacks

The attacks just described show that it is too simple to
build messages with certain properties in the Merkle-
Damg̊ard construction. The effect of replacing a part
of a message by something else, or prepending or
appending some message to another message, is too
modest. Moreover, recent short-cut attacks (Biham
et al., 2005; Wang et al., 2005; Wang and Yu, 2005)
on hash functions such as MD5 and SHA-1 prove that
it is not as easy to construct a collision resistant com-
pression function as once believed.

3 POSSIBLE
COUNTERMEASURES

In this section we discuss some possible methods for
defeating the attacks and weaknesses mentioned in
the previous sections.

3.1 Alternatives to Davies-Meyer

There are twelve secure compression function con-
structions (Preneel et al., 1993) based on a family of
2n bijections onn bits. For eight of these, including
the Davies-Meyer construction, it is relatively easy to
find fixed points. One of the remaining four is the
“dual mode” to the Davies-Meyer construction

hi = f(hi−1, di) = p(di, hi−1) + di, (2)

attributed to Matyas, Meyer, and Oseas (Preneel,
1993). Note that the problems of (1) stem from the
facts thatp is invertible when the second argument is
fixed, and that the second argument is formed from
the message block (alone), and thus the attacker has
complete control over this. This is not the case in (2),
where the second argument is formed from the chain-
ing variable alone. In this light it may seem strange
why (1) is more employed in practice than (2), but this
is probably due to a choice of efficiency on behalf of
security. One advantage of (1) compared to (2) (seen
from the designer’s point of view) is that the size of
the data block in the former can be made larger than
the size of the chaining variable, thus providing faster
hashing.
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3.2 Extensions and Alternatives to
Merkle-Damgård

It is not as easy as it may seem to protect against the
generic attacks on the Merkle-Damgård construction.
The following is a discussion on what might and what
might not work.

3.2.1 3c, A Recent Proposal

A recent proposal named 3C (Gauravaram et al.,
2006) continuously updates an additional variable by
adding (xoring) to it the chaining variable after each
iteration. In the end, this additional variable is con-
verted into a message block, which is appended to
the original message. This method might complicate
short-cut attacks, but it does not have any effect on the
multi-collision attack, since the chaining variables are
identical after each iteration.

Since 3C is just Merkle-Damgård with an extra
message block derived from all intermediate chain-
ing values, fixed points can be found in the same way
as in the standard Merkle-Damgård construction. In
3C, if the fixed point is applied2k times, then for
any positivek the additional message block is the
same. However, it seems difficult to make use of
this fact, since this does not produce infinitely many
collisions because of the length padding, and Kelsey
and Schneier’s second preimage attack is thwarted be-
cause it is hard to ensure that the additional message
block has the same value as for the target message.

In the following section we analyse more general
methods of appending a checksum-like value to the
message. The aim is to complicate the multi-collision
attack of Joux.

3.2.2 Appending a Checksum

The hash function MD2 is an iterated hash function
which differs from constructions of the SHA-family
in several ways. One particular distinct feature is the
use of a checksum function (RFC 1319, 1992), which
computes an additional message block as a function
of all other (original) message blocks. The checksum
block is appended to the original message. It shall
be assumed that the checksum is computed iteratively
as follows. Letd1, d2, . . . , ds be the blocks to be
hashed and letc1, c2, . . . , cs denote the intermediate
checksum, such that,c1 = C(d1), c2 = C(d1, d2),
andcs = C(d1, d2, . . . , ds). We shall show that such
checksums do not always provide much added secu-
rity against some of the generic attacks listed above.

Consider first the simple checksum function where
one computes the exclusive-or sum of all data
blocks. Or more generally, consider checksum func-
tions such that there exist invertible subfunctions

C1, C2, . . . , Cs such that

cs = C(d1, d2, . . . , ds) =

s∑

i=1

Ci(di). (3)

Such checksum functions do not add much protection
against the multi-collision attack. LetC be a collision
finder of the compression function, that always re-
turns one-block collisions where for the two messages
di, d

′

i the checksum valuesCi(di) andCi(d
′

i) agree
on the firstm−(n/2+ǫ) bits. For positive but smallǫ,
this gives enough freedom forC to actually find such
collisions. Chooset > n/2 + ǫ. Find a chain oft
collisions, which form an intermediate2t-way multi-
collision, excluding the checksum. Now choose some
valueS for the checksum of all blocks – of course,
the firstm− (n/2 + ǫ) bits ofS are fixed by the mes-
sages in the multi-collision. Form two sets of check-
sums; the checksums of all2t/2 combinations of the
first t/2 blocks, and the valueS subtracted the check-
sums of the lastt/2 blocks. From the relation (3) one
sees that this corresponds to all possible values ofct/2

such thatS is reached by the lastt/2 blocks. Since
t > n/2 + ǫ and the firstm − (n/2 + ǫ) bits always
match, with good probability there will be a match
between the two sets. The running time of the attack
which finds (roughly) a2t−n/2-collision is the time
it takes to find thet collisions, plus the time it takes
to compute about2t/2+1 checksums (or inversions).
If t = n, for instance, then a2n/2−collision is ex-
pected with a total running time of about(n+2)2n/2.
Note that Joux’s attack on a construction without the
checksum finds a2n/2-collision in time(n/2)2n/2.

The checksum function of MD2 is not as simple
as the above. There is a rotation of the bytes in a
block and applications of a nonlinear S-box, features
which make it seemingly impossible to ensure that the
final checksum has a number of fixed bits as above
– at least when the messages are long enough. As-
sume, however, that a checksum function similar to
the one of MD2 is used to construct a checksum of
µ bits, and this checksum is appended to the message
(padded, if necessary). Assume that this checksum
function is invertible, that is, ifcs = c(d1, . . . , ds), is
the checksum function value after processing thesth
block, then it should be possible givends to compute
cs−1 = c(d1, . . . , ds−1), The MD2 checksum func-
tion is invertible under this definition. An attacker
would choose some value of the checksum, sayS.
He would then build a, say,2t-way multi-collision
as usual, but not considering the checksum. Similar
to above, he would compute2t/2 intermediate check-
sums of the firstt/2 blocks of each message, and2t/2

intermediate checksums of the lastt/2 blocks in a
backward direction starting fromS. These last2t/2

checksums are those from whichS is reached by the
last 2t/2 blocks. He would then perform a meet-in-
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the-middle search for matches between the two sets of
checksums. One expects to get multi-collisions with
2t−µ matches. The complexity of a2t−µ-collision at-
tack is roughly the time it takes to find thet collisions
on the compression functions, plus the time it takes to
compute about2t/2+1 checksums.

In this case the complexity of the multi-collision
attack depends very much onµ, the size of the out-
put. In the case of MD2,µ = n, so multi-collisions
for MD2 can be found considerably faster than by
a brute-force attack. However, ifµ would be much
larger thann, sayµ = 2n, then the complexity of the
(generic) attacks would be much higher.

These considerations indicate that if one wants to
use a checksum to protect against the multi-collision
attack, then one will have to select the checksum func-
tion carefully. At the very least the checksum value
that is appended to the message must be large enough
to make the attacks described at least as hard as a
brute-force attack, or the checksum function must be
non-invertible.

An alternative method is to insert a (simpler)
checksum block for everyj iterations, with e.g.j = 8.
This would prevent an attacker from being able to
chooset large enough to ensure that the2t-way multi-
collisions would contain collisions also on the check-
sum.

The herding attack and the 2nd preimage attack are
also complicated by appending or inserting the output
of a checksum function. It becomes much more diffi-
cult to replace part of a message with something else,
or to use just any of a large set of messages as in the
herding attack. One would have to select a value for
the checksum before the hash value is chosen, and not
much freedom is left for finding the linking message
in the end.
The length-extension attack is complicated by the fact
that the adversary does not know the checksum of the
original message.

The drawbacks of the checksum approach are that
it requires both time and memory to compute and
store the checksum. What’s more, the resulting mes-
sage length increases, and so the compression func-
tion must be invoked an additional number of times.
However, the checksum function can be constructed
such that it is much faster than the compression func-
tion, and the rather limited number of additional bits
of message do not affect the total running time by
much.

3.2.3 A Wide-pipe Method

As first suggested by Lucks (Lucks, 2004), the se-
curity of the Merkle-Damg̊ard construction might be
regained by choosing a compression function with a
larger output size than the final output of the hash
function. This would make each regular collision of

the multi-collision attack more time-consuming, as-
suming the quickest method to find collisions of the
compression function is the birthday attack. By dou-
bling the internal width of the hash function, the com-
plexity of the multi-collision attack becomes greater
than the complexity of a brute-force multi-collision
attack.

This method also complicates the other attacks
mentioned. The herding attack and the 2nd preimage
attack are complicated in that each collision is more
difficult to find. The length-extension attack is com-
plicated in that the adversary does not know the final
output of the compression function, because this is
not the same as the output of the hash function.

Again, the most significant drawback of this
method is that it slows down the entire operation – as-
suming that a larger compression function is slower.
In any case, an output transformation from the final
output of the compression function, to the output of
the hash function, is needed. This could be a nar-
row version of the compression function or something
else, but this is an additional potential weak point of
the hash function.

4 PROPOSALS FOR ENHANCED
SECURITY

This section gives a proposal for a variant of the
Merkle-Damg̊ard construction. This variant, which
bears some resemblance to a proposal by Rivest
(Rivest, 2005), is constructed with the SHA-family in
mind and it has some attractive properties, as we shall
see.

Assume the existence of a (secure) compression
function

h : {0, 1}n × {0, 1}n × {0, 1}m → {0, 1}n.

Define a hash functionH as follows.

• Let d be the data to be hashed, and append a ’1’-
bit to d. Now append enough ’0’-bits to make
the length ofd a multiple of m. Now d =
d1‖d2‖ · · · ‖ds, where|di| = m, 1 ≤ i ≤ s. It
is specifically required thats < 2n/2.

• Let iv1 and iv2 be given (fixed)n-bit initial values,
and leth0 = iv1.

• Define

hi = h(iv1 + i, hi−1, di) for 1 ≤ i ≤ s

• DefineH(d) = h(iv2, hs, s) to be the output of the
hash function.

The value iv1 + i is to be computed modulo2n.
The values of iv1 and iv2 should be chosen such that
iv2 6= iv1 + i for any admissible value ofi. Note
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that this hash function can hash data strings of up to
a number of blocks equal to the minimum of2m − 1
and2n/2 − 1. If m < n/2 it is easy to extend the
above construction to allow for a number of blocks
up to2n/2 − 1. Simply splits into a pre-determined
fixed number of blocks, sayt, each ofm bits for
s = s1, s2, . . . , st. Then modify the last step of above
to xj = h(iv2, xj−1, sj), for 1 ≤ j ≤ t, where
x0 = hs and defineH(d) = xt.

Theorem 2. Let H be a hash function as defined
above. Let iv1 and iv2 be given. Then any collision
on H implies a collision onh where the first argu-
ments are identical. In other words, the existence of
two distinct stringsd andd′ such thatH(d) = H(d′)
implies the existence of two distinct triples(x, y, z)
and(x, y′, z′) such thath(x, y, z) = h(x, y′, z′).

Proof: Assume a collision forH, that is,d 6= d′,
such thatH(d) = H(d′). Let s and s′ denote the
number of blocks ind andd′ after the padding bits.
If s 6= s′, the result follows fromh(iv2, hs, s) =
h(iv2, h

′

s, s
′). Assume next thats = s′. Then if

hs 6= h′

s, the result follows again. Ifhs = h′

s,
then it follows that for somej, 1 ≤ j < s, one
getsh(iv1 + j, hj−1, dj) = h(iv1 + j, h′

j−1, d
′

j) and
(hj−1, dj) 6= (h′

j−1, d
′

j).

Theorem 2 shows that ifh is a compression func-
tion resistant to collisions where the first arguments
are identical, thenH is collision resistant.

4.1 Application to the SHA-family
Constructions

In the following we show how the members of the
SHA-family can be turned into constructions of the
above type. Given a hash functionH with compres-
sion functionf : {0, 1}n×{0, 1}m → {0, 1}n, where
m > n, of the form

f(hi−1, di) = g(hi−1, di) + hi−1,

cf. Section 2.1. Consider the following variantH̃ of
H. Let the compression function be

h : {0, 1}n × {0, 1}n × {0, 1}m−n → {0, 1}n.

• Let d = d1‖ · · · ‖ds be the data to be hashed (in-
cluding padding bits), where|di| = m − n for
1 ≤ i ≤ s, ands < 2n/2.

• Let iv1, iv2 and h0 be givenn-bit initial values
(these are chosen once and for all in the specifica-
tion of the hash function, and such that iv1+i 6= iv2

for any admissiblei).

• Define hi = h(iv1 + i, hi−1, di) = g(iv1 +
i, (di‖hi−1)) + hi−1 for 1 ≤ i ≤ s.

• Define H̃(d) = h(iv2, hs, s) = g(iv2, (s‖hs)) +
hs.

If the compression function of SHA-n is resistant to
collisions where the first input is identical for the two
messages, then the construction above using SHA-n
is a collision resistant hash function.

Note that a pseudo-preimage for the compression
function can be found in time2n/2. Givenhi, choose
arbitrary values ofhi−1 and di, and invertg. This
requires an expected2n/2 work, since2n/2 different
values ofi are admissible, and for eachdi, a random
n-bit value corresponding to the first argument ofg
is found (in assumed constant time). Here, it is as-
sumed that the fastest method to find an admissiblei
is by brute force. A pseudo-preimage is, however, not
immediately useful since the attacker has no control
over i, and it seems difficult to exploit such findings
to find preimages of the hash function.

Since invertingg takes time2n/2, this is also the
time it takes to find a fixed point of the compression
function. Therefore it seems that the 2nd preimage
attack of Kelsey and Schneier using fixed points to
produce expandable messages is no faster than a brute
force attack. Furthermore, the use of a counter in the
first argument means that the generic method of pro-
ducing expandable messages is also not applicable: a
one-block message cannot be replaced by ana-block
message without changing the input to the following
application of the compression function.

The length-extension attack can no longer be car-
ried out. The padding block is processed with iv2 as
the first argument to the compression function, and
when the attacker selects this block as part of the ex-
tension to the original message, iv1 + i for somei will
be used as the first argument. By definition, these two
values cannot be the same.

The reader may have observed that in the construc-
tion above we have not introduced any dedicated mea-
sures to try to protect against the multi-collision at-
tack, nor against the herding attack. However, these
attacks evidently require at least one collision on the
compression function. Thus if the size of the com-
pression function is large enough to make the birthday
attack computationally infeasible and if one’s aim is
to construct a compression function resistant to colli-
sions then this also protects against the multi-collision
attacks. Nonetheless, the multi-collision attacks on
the iterated hash function constructions do illustrate
properties which are not inherent in a “random hash-
ing”. If one wishes a construction where the com-
plexity of the multi-collision and the herding attacks
is higher than for the birthday attack, we list two pos-
sible ways:

• Truncation of the final hash value.

• The addition of checksums.

As an example of the first item take SHA-512. Here
the complexity of a birthday attack is2256, thus to-
day, one may safely truncate the final output to less
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than 512 bits, say, 320 bits. Here the birthday colli-
sion attack has complexity2160, whereas a collision
of a compression function (except for the final appli-
cation in a hashing) requires about2256 operations.
For the other members of the SHA-family we do not
recommend this measure.

As for the second item and applications which em-
ploy members of the SHA-family in the proposed
construction. Here we’d recommend to append to the
original message the values of two checksums, whose
outputs each has the size of one message block. These
two checksums must be different in such a way as to
avoid that by fixing certain bits in the message blocks
one also fixes certain bits in the checksums.

4.2 Performance

There is a slowdown when a hash function uses a
compression function in our new mode of operation
as opposed to the Merkle-Damgård mode. If the com-
pression function takes an(n + m)-bit input and pro-
duces ann-bit output, then in the traditional mode
of operation,m bits of message are processed per it-
eration of the compression function, whereas in our
new mode of operationm − n bits are processed.
This slows down the whole operation by a factor
m/(m − n). In SHA-1, n = 160 and m = 512,
so the slowdown when using the compression func-
tion of SHA-1 in our new construction is by a factor
of about1.5. In SHA-256,n = 256 andm = 512,
and so here the slowdown is by a factor of about2.0
which is also the case for SHA-512.

4.3 Resistance to Short-cut Attacks

It is clear that the above proposed construction when
applied to members of the SHA-family gives the at-
tacker less freedom, since there are fewer bits that he
can choose. Currently, the best collision attack on
SHA-1 is the one discovered by Wang et al. (Wang
et al., 2005). This attack produces colliding messages
each formed by two blocks, with a near-collision af-
ter the first block. Such an approach does not apply to
our construction used with SHA-1, because of the use
of the constant iv1 in the first argument ofh.

The attacks of Wang rely heavily on message mod-
ifications (Wang and Yu, 2005; Wang et al., 2005),
which do not leave much freedom for the attacker to
choose message bits. In our construction,160 bits of
the message block in SHA-1 are reserved for the bits
of the chaining variable, which makes life harder for
the attacker. But clearly this is not a strong argument
for our construction. The security arguments for an it-
erated hash function relies on the collision resistance
of the compression function. If a collision is found
for the latter, then there are no longer good arguments

to rely on the security of the hash function. However,
seen in the light of the recent developments in hash
function cryptanalysis, including the SHA-1 attacks,
there are good reasons to limit the freedom of the at-
tacker in future designs. This is a central idea in our
construction.

5 CONCLUSION

We have discussed some generic attacks on the
Merkle-Damg̊ard construction and possible counter-
measures to these. It turns out that some of these at-
tacks, notably the multi-collision and the herding at-
tacks, seem to be more difficult to protect against than
one might expect.

A new method for iterated hash function construc-
tion has been proposed. Given ann-bit compression
function resistant to collisions wheren bits of the two
inputs to the compression function are identical, our
construction ensures a completely collision resistant
hash function. In its bare form our construction does
not give added protection against the multi-collision
nor the herding attacks, but suggestions were given
for possible ways of efficiently thwarting these attacks
as well.
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